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Abstract

The aim of this paper is to show how some measures of noncompactness in the Banach space of continuous
functions defined on two variables can be applied to thesolvability ofa general system of functional integral
equations. The results obtained generalize and extendseveral equations. An illustrative example is also presented.
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1. Introduction

Measures of noncompactness are very useful tools
in the functional analysis. They are also used in the
studies of general functional equations, ordinary
and partial differential equations, fractional partial
differential equations, integral equations, optimal
control theory (Kominek et al., 1974; Kordylewski et
al., 1960; Kuczma et al., 1960; Matkowsski et al., 1974;
O'Regan et al., 1998; O'Regan, 1996; Szep 1971), for
example. Recently, several authors have investigated
the existence and behavior of solutions of Volterra
type integral equations using the technic of measure
of noncompactness (Agarwal et al., 2000; Agarwal
et al.,, 2009; Banas et al., 2009; Darwish 2007
Darwish 2008; Darwish 2009; Estrada et al.,
1999). Aghajani et al., in (2011), obtained some
results on the existence and behavior of solutions of
a class of onlinear Voltrra singular integral
equations of the form

X () =11(x (0% (@) +
(@ )O)] f2(t,5)(Ox s )ds,

and Darwish and Ntouyas in (2011) obtained
similar results on quadratic integral
equations . Also, Banas and Dhage in (2008), Banas
and Rzepka in (2003), Hu and Yan in (2006), Liu
and Kang in (2007) and Liu and Guo in (2005)
studied the existence and behavior of solutions
of integral equation of solutions of one variable
integral equation of Volterra type on the unbounded
interval. Aghajani and Jalilian in (2010) extended
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results of Banas and Dhage in (2008) by
considering the following general form of integral

equation x(1) = f(t,x(@(®)). [ g(t.5.x((s))ds).

Moreover, the problem of existence of solutions
for a system of integral equation has been studied
by many authors, see (Agarwal et al., 2000;
Aghajani et al., 2011; Aghajani et al., To appear;
Mursaleen et al., 2012; Mursaleen et al., 2012;
Olszowy 2009) and references therein. The object
of this paper is to discuss the existence of
continuous solutions to the system of nonlinear
integral equations

x;(t,8) = f,(t,8,x,(,5),....,x, (Z,5),

£i(9) 0B, ()
IO L g, (t,s,v,w,x,(v,w),...,x, (v,w)) (1)

dvdw),t,s e R, ,1<i<n,

where f,,g,,¢{, and f., i=1l,.,n, are
continuous function which satisfy some certain
conditions, specified later. To do this, first we state
and prove some existing theorems for a general
system of equations involving condensing
operators, which extend some results of Aghajani et
al., in (2013) and generalize the main result of
Rzepecki in (1982). Then using the obtained
results, we investigate the problem of existence of
solutions for system (1).

2. Preliminaries

The concept of measure of noncompactness was
initiated by the fundamental paper of Kuratowski in
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(1930). In a metric space X , the Kuratowski

measure of noncompactness of a subset S < X is
defined as

a(S)=inf{5>0[S =S, for some S, with ?)

i=1

diam(S,) <0 for 1<i<n <o},

Here diam(T) denotes the diameter of a set
T c X ,namely diam(T) := sup{d(x,y)|x,y € T}.

Now, we recall some basic facts concerning
measures of noncompactness from Banas et al., in

(1980). Denote by IR theset of real numbers and
put R, =[0,+00) . Let (E,]|||) be a Banach space

with zero element 0. The symbolf, ConvX will
denote the closure and closed convex hull of a

subset X of E, respectively. Moreover, let 901,
indicate the family of all nonempty and
bounded subsets of E and )1, indicate the family

of all nonempty and relatively compact sets. We
use the following definition of the measure of
noncompactness given Banas et al. in (1980).

Definition 1. A mapping £ : 90, — R is said
to be a measure of noncompactness in E if it
satisfies the followingconditions:

1°. The family ker g ={X €M, : (X ) =0}
is nonempty and ker p = 9ty .

2. XcY=uX)suy).

37 u(X)=u(X).

4°. u(ConvX)= u(X).

5 (X + (1= AW )< Au(X )+ (1= D) )

for 1 €[0,1].

6°.1f {X,} is a sequence of closed sets from 9T,
such that X, ,c X, for n=1,2,... and if

limuse 4(X,)=0,then X =" X, .

We need the following theorem that proved
Aghajani et al., in (2013), which guarantees the
existence of a fixed point for condensing operators
(i.e. mappings under which the image of any set is
in a certain sense more compact than the set itself)
on bounded, closed and convex subsets of a Banach
space E.

Theorem 1. (Aghajani et al., 2013) Let ) be a
nonempty, bounded, closed and convex subset of a

Banach space E and let F:Q—>Q be a
continuous mapping such that

H(FX) < p(u(X)) 3)

for any nonempty subset X of {2 where g is an
arbitrary measure of noncompactness and
@:R, > R, is a nondecreasing functions such

that lim,_»®" () =0 for each t>0. Then F

has at least one fixed point in the set {2 .
The following theorems and examples are basic
to all the results of this work.

Theorem 2. (Banas et al., 1980) Suppose
iy My,..., 4, are measures of noncompactness in

Banach spaces E|,E,,...,E, respectively. Moreover
assume that the function F':R} — R, is convex and
F(x,,....,x,)=0 if and only if X, =0for
i =1,2,...,n.Then

,LI(X) = F(/ul(Xl)uuz(Xz)auun(Xn))
defines a measure of noncompactness in
E xE,x...xE where X, denotes the natural
projection of X into £, fori =1,2,...,n.

As a result of Theorem 2 we present the
following example.

Example 1. Let x4, (i=1,2,...,n) be measures

of noncompactness in Banach spaces £, E,,..., E

respectively, considering F(x,,...,x,) = k max<i, X;
and F,(x,...,x,)=k(x,+...+x,), keR for
any (x,...,x,)eR", then all the conditions of
Theorem 2.2 are satisfied. Therefore,

Hy = ke maxisie, 40X;) A0 gy = k(u(X) + .+ u(X,))
define measures of noncompactness in the space

ExE,x..xE  where X,, i=12,...,n

denote the natural projections of X into £ .

3. Main results

In this section, we state and prove an existence
theorem of solutions for a system of equations
involving condensing operators in Banach spaces
which will be used in section 4 to study the system
of nonlinear integral equations (1).

Theorem 3. Let C ; be a nonempty, bounded, convex
and closed subset of a Banach space £,

(i:l,2,...,n), and let E :Cl XC2 X"‘ch _>Ci

(i=1,2,...,n) be a continuous operator such that
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for any subset X, of C,

1

HOF (X, x X, ... x X)) < @(max (X)) )

where g, is an arbitrary measure of

noncompactness on £, (i=1,2,...,n) and

@:R, > R, is a nondecreasing function such
that lim,_®"(¢)=0 for each #>0. Then
there exist (X, ,X,,...,X,) € C,xC,x...xC,
such that forall 1 <7 <n

*

F (X, Xy, X, )= X, . (5)

Proof: Define r:C xC,x..xC, - C,/xC,x...xC
as follows

n

F(x;,x,,...,x,) = (F(x,X%,,...,X,),
Fo (XXX, )seees
F (x,x,,...,x,)).

Also, consider the measure of noncompactness
H on ExE,x..xE  defined by

W(X) = maxW(X,), for any bounded subset

X CcExE,x..xE,, where X, (i=1,2,...,n)
denote the natural projections of X into E, (see

Example 2.1). It is obvious that F s
continuous. Now we show that F' satisfies (3). To
prove this, let X be any nonempty and bounded

subset of C;xC,x...xC, . Then by (2°) and

(4), we obtain

PE (X)) Sp(F (X, x X, x...x X, )x

F (X, xX,x...x X, )x...

X, (X, x Xy % x X))
:m]fzx},l(Fk(X1><X2><...><Xn)

< max ®(max (X))

< o(u(X))

Therefore, all the conditions of Theorem 1 are
satisfied, hence by that theorem F has a fixed
point, i.e., there exist (x;,x;,...,x)) e C,xC,x...xC,
such that

*

(xl*,x;,...,x:)ZF (xl*,x;,...,xn)
= (F(x],x5,..x,),

Fy(X X 50X )y (XX 5,00000X )
which gives (5) and the proof is complete.

In (Aghajani et al., 2013, Lemma 2.1) Aghajani et
al. proved that for every nondecreasing and upper

semicontinuous function @:R_ —> R, , the
following two conditions are equivalent:

(D limy—x @ (¢) = 0 forany £>0.
(I @(t) <t forany t > 0.

So the results of Theorem 3 remain true if (I) is
replaced by (II). The following result is a
generalization of similar results by Aghajaniet al.,
and Rzepecki in (1982).

Corollary 1. Let Cl. be a nonempty, bounded, convex

and closed subset of a Banach space E,

(i=12,...,n),and let F,:C, xC,x...xC, = C,

(i=1,2,...,n) be a continuous operator such that

H(F (X x X, x...x X)) < kmax u(X ;) for
J

any subset X; of C,, where g is an arbitrary
measure of noncompactness on E; and k €[0,1).
Then there exist (x;,x;,...,x,)eC,xC,x...xC,
such that forall 1<i<n
Fi(X],%y,..0,X,) = X, .

Proof: Take ¢(¢) = kt in Theorem 3.

As a consequence of Theorem 3 we obtain the
following corollary, which plays an important role
in the next section.

Corollary 2. Let Ci be a nonempty, bounded, convex

and closed subset of a Banach space E,

(i=12,...,n) and let F G :C,xC,x...xC, > E,
and T,:C, xC,x...xC, — C, be operators
such that
’Fi(xl’xza'“’xn)_F[(ylayza""yn)n
< p(maxlk;, —y,|)
J

and
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I3 (x5 %50 05%,) = T,(015 Yasee s VI S
HFi(xlaxzw--»xn)_Fi(ylayzw--»yn)H (©)
+ (G, (x),%55-,%,) = G, (V15 Y555 1,)I)

for any x,y,€C (i=12,...,n), where
@, ®:R, > R, are nondecreasing and right

continuous functions such that 1im,_.. @" (£) =0
for each 120 and ®(0)=0. Assume that G,

are compact, continuous operators for
i=12,...,n. Then there exists

(x/,%5,...,x,)€ C;xC,x...xC, such that for

all 1<i<n T.(x;,%5,...,X,) =X, .

Proof: Let X, be an arbitrary subset of C,

(j=1,2,...,n) and fixed 1<i<n. By the

definition of Kuratowski measure of

noncompactness, for every & > Othere exist
S),...,8, such that X, x X, x...x X, QUZ;ISk,
diam (F,(S,)) <

a(F, (X xX,x...xX ))+e

and diam(G,(S,)) <e¢.

Let us fix arbitrary 1<k <m. Then for every
P.q €S, we have

IL(p) T (q)l| <

IF:(p) = F ()l + (G, (p) — G, (9)])-

Thus, by properties of @ we obtain
diam (T’ (S,)) < diam (F,(S,))

+O(diam (G, (S, ),

diam (T (S,)) < a(F, (X, x...xX )
+&+D(¢)

and since & was arbitrarily and @ and @ are

nondecreasing and right continuous functions, the
following estimate holds

a(T (X, xX,x...xX ))<

(7
a(F (X, xX,x...xX))).

Now we show that 7, satisfies (4) for
(i=1,2,...,n). To do this fix arbitrary
x;,y,€X,(j=1.2,...,n) . Then

|F;(x1:xza---’xn)_E(J’UJ’za---’yn)H
= ¢(m_aXH’Cj _yjH)
J

< @(max diam X ;)
J

s0
diamF, (X | xX ,x...xX ) < d(maxdiam X ;)
j

Therefore from the definition of Kuratowski
measure of noncompactness we get

a(F, (X %X, %..xX ) < fmaxar(X ). (8)

Using (8) in ) we deduce
CZ(TI()(1 XX2 X...XXn)) < ([)(max CZ(X/))
J

Also, from condition (6), 7, is a continuous

operator, now an application of Theorem 3
completes the proof.

4. Application

In this section, as an application of Theorem 3 we
prove the existence of solutions for a large class of
systems of functional integral equations of Volterra
type in two variables.

Let BC(R, xR,) be the Banach space of all

bounded and continuous functions on R, xR,
equipped with the standard norm

||x|| = supﬂx(t, s)| 1,8 > O}.

For any nonempty bounded subset X of
BC(R,xR,), xeX,L>0 and £>0 let

o' (x,&) = sup{x(t,5) — x(u,v)|: 1,s,
u,ve [O,L],
0" (X, &) =supiw”(x,6):xe X|
oy (X) =limo" (X, ¢),

&,() = lim 0} (X),
X(t,5)= {x(t,s):x GX}

t—u|£8,

S—V|S8},

and

HU(X) = w,(X)+limsupdiamX (t,s) )

[I(Z.9)]|->0

where ||(z,s)||= max(z,s). Similar to Banas et
al., (1980) (cf. also Banas et al., (2003)), it can be
shown that the function #/ is a measure of
oncompactness in the space BC(RR, xR, ) (in the
sense of Definition 1).
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Theorem 4. Assume that the following conditions
are satisfied:

W\ B, R, > R, (i=1,2) are continuous
functions.

(i) f,: R, xR xR"™ >R (i=1.2,...,n) is
continuous. Moreover there exist nondecreasing
and right continuous functions @, P, : R, — R,
such that @(¢) <t for all 120, ®,(0)=0
(i=1,2,...,n) and

|fi(tﬂsﬂxlﬂ""xnﬂ)_fi(tassylﬂ”"ynﬂ) |S
p(max | x; =y, N+ @, (m;(6,8) [ X, =y, D

1<j<n

(10)

where m,:R xR, - R, is a continuous
function for i =1,2,...,n.

(ii1)

M =sup{|f.(t,s,0,...,0)|:t,s €R,

1<i <n}<co.

(iv)g, 'R, xR xR xR, xR" — R are
continuous functions for i =1,2,...,n and

é/l‘(s) ;Bl'(t)
D=suplm,(t,5)| [ ]

0
gt s, v,w,x,(v,w),...,x, (v,w)) (11)
dvdw|:t,se R, ,1<i<n,
X, Xy,...,X, € BC(R, xR,)} <co.

Moreover,
G (s) ¢B; (1)
lim mi(t’s)|jol jol

ll(2.5)]| >0
g, (t,s,v,w,x,(V,W),...,x, (V,W))

- g, (s, v,w,y, (v,w),...,y, (v,w))]dvdw|= 0
uniformly with respect to
XiseeesX, s Viseees ¥, €EBC(R, xR ) for all
1<i<n.

(v) There exists a positive solution 7, to the

inequality @(r) + M + max {(Di (D)} <r.

Then the system of functional integral equations
(1) has at least one solution in the space

BC(R, xR,)".
The proof relies on the following useful
observation.

Lemma 1. Assume that g, satisfy the hypothesis (iv)

for j=12,...,n, thenG : BC(R, xR,)" - BC(R, xR,)
defined by

69 = m [

g, (s, v,w,x,(v,w),...,x, (v,w))dvdw

(12)

are compact and continuous operators for
i=1,2,...,n.

Proof: Let us fix arbitrarily 1 <7 <7 . First notice
that the continuity of Gi ((x | )'}=1)(t,s) for any
fixed (x;)} € BC(R, xR,)" is
obvious. Moreover, by (12), Gl. is well defined on
BC(R,xR,)". Now we show that G, is a
continuous operator on BC(R, x R,)". To verify
this, take ((xj );f:l) S BC(RJr XR+)n and

>0 arbitrarily. Moreover take
((v,)1.) €BC(R, xR.)" with |k, y || <& Then

we have
|G ((x )} )E,8) =G, (v ;)i )(E,s) |

G () phi ()
am ol

g, sy, w,x,vV,w),...x, VW)
g, sy w,y, 0 w),...,y,0.w))ldvdw |

So, using condition (iv) we can find a 7 >0
such that for ||(¢,s)||>T

|G (x5 = G((v)j)E )< &
andif ¢,5 €[0,T], then

|Gi ((xj );1'=1)(tas)_Gi ((yj );=1)(tas) |S
mrﬂrgrlgi,r(g))a

where

By =sup{f.(t):t€[0,T],1<i<n},
¢, =sup{S,(¢):t[0,T],1<i<n},
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m, =sup{m,(¢,s):t,s €[0,T ],

1<i <n},

4, (&)=sup{| g, (t,s,v,w,x,....x )

—8i sy W,y sy,

t,s €[0,T ],v €[0,5.],w €[0,5; ],

X,y €l=b,b].|x, -y, <&}

with b = max; H’Cl” + & . By using the continuity of
g, on the compact set
[0,7]x[0,T]x[0, B8, 1x[0,£, 1x[-b,b]", we
have & ,(&)—>0as £€—>0. Thus, G, is a
continuous function on BC (R, xR _,)".To finish
the proof we only need to verify that Gl. is

compact. Let X |,..., X, be nonempty and bounded
subsetsof BC(R, xR, ), and assume that7 >0

and &>0 are arbitrary constants. Let
t,t,,8,,8, €[0,T], with |[t,—¢[<¢€,
| s, =5, |[< €and x; € X,. we have

G50 )(02552) = G5,V )15 <
< m, (tz’sz)J‘OQ (Sz)joﬂi (ty)

gi (tz,Sz,V aW axl(v aW )a'“a
x,v.,w)dvdw

£ (59) 0B (ty)
M, (tz’sz).[o .[o

gi (llaslav 9W 9x1(v DW )7"':xn(v ,W ))
dvdw |

g (32) B; (tz)
lm s )]

g, @t,s,,v.w,x,(v,w),...x, v,w))dvdw

é‘i (52) ﬁi(tl)
_mi(tzasz)_[o _[0

g.t,s,v,w,x,v,w),...,x, V.w)dvdw |

¢ () 0B 1)
+|mi(t2’sz).|.ol .[ol

g, s, ,v.w,x,(v,w),...,x v,w)dvdw

{i (Sl) ﬁl (tl)
_mi(tl’sl).[o .[0

g @t,s, v, w,x,v,w),...,x v,w)dvdw |

{i(sz) ﬂi (tz)
<my | J.o J.o

g, (ty,8,,v . w,x,(v,Ww),....x, (vV,Ww))

—g,(t,8,v,w,x,(v,Ww),...,x, (v,w))]dvdw |

é’i (52) ﬂi (tz)
+m, |.[ .[ g.t,s,v.,w,x,v.w),...,
0 B, ()

x,(v,w)dvdw |

é’l'(sz) ﬂi (tl)
iy |.[§l. (s7) J-o
g, @t,s, v, w,x,v,w),...,x, ,w)dvdw |
<m (¢ Bro, (g,5€)
+§TU1‘T60T (ﬂi,g)-l-ﬁTUrTa)T(gi,g))a (13)
where r=sup{lk|:x, € X,,1<i<n},

a)rT(giag):Sup{|gi(tlaslavﬂw’xl""axn)_
g8,V WX x|

t,t,,8,,8, €[0,T],]t,—t |<e,

|s, =5, [<&v,e[0,8,,wel0,5,],x, €[-r,r]},
@ (B,,) =sup{| B,(a)~ B,(b)|: a,b €[0,T],
la—bl< &},

@' (¢;,6) = sup{| £ (a) =&, (D) |:a,b €[0,T],
la—bl< e},

UrT =sup{| g,(¢,s,v,w,x,,...,x,)|: t,5s €[0,T],
vel0,5,],wel0,{,],x, e[-r,r]}.

Since X, was arbitrary element of X,, 1=1,...,n
in (13), we obtain

@ (G, (X, x...xX ),&) <

my (é/TﬁTa)rT (g,6)+

GU & (B,6)+ U, @' (S,8),)

and by the uniform continuity of g, ﬂi and & ; on

the compact sets

[0,7]x[0,T]x[0, B 1x[0,& Ix[-r,r]",
[0,T] and [0,T] respectively, we have

o' (B.,e) >0 and
@' (£,,€) = 0 ase —> 0. Therefore

we obtain

o, (g,,6) >0,

w, (G(X,x..xX,))=0
and, finally

0,(G,(X,x...xX,))=0. (14)

On the other hand, forall x,,y, € X, (i =1,...,n)

and 1,5 € R, we get
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|Gi(xla“-axn)(tas)_Gj(yla“-ayn)(tas) ‘S
Si(s)pp; ()
mol [

[gi(t,S,V,W ,XI(V,W ),...,xn(V,W ))_

g, s,y w,y, v w),...,y, v .w))ldvdw |

where

ARV AG)
6,(t,s)=sup{m, (t,)| [ |
[gi (l,S,V,W ,xl(V,W),...,xn(V,W ))
_gi(t,S,V,W Jyl(vaw)a---ayn(vaw ))]
dvdw |:x,y,...,x,,y, €BC(R,xR,)}.
Thus

diamG, (X, x...x X )t,s) < 6.(1,s). (15)

Taking f,8 —> 00 in the inequality (15), then using

(iv) we arrive at

limsupdiamG, (X, x...x X, )(t,s) = 0. (16)

[I(z.)| >0
Further, combining (14) and (16) we get

limsupdiamG, (X, x...x X )(t,s)
t,s—>00 (17)
+ @, (G(X, x...xX,))=0

or, equivalently

(G (X, x..x X)) =0.
Therefore, Gi is compact and the proof is complete.

Theorem 5. Under the assumptions (i)-(v), Eq. (1) has
at least one solution in BC(R, xR, )".

Proof: We define the operators
F.,T.: BC(R,xR,)" — BC(R, xR,) by
Fi(x)sex, )(t,5) = x,(2,5)

and
T (XX E,8) = 8,0, (E,8),0..,x, (E,5),

i () B
_[Og’( IO’(t)g[ sy w,x,,w),....x, v,w)dvdw).
Using conditions (i)-(iv), for arbitrary fixed
t,seR,,
T (%000, (6 5) <
<|f@as.x (@,s),..x, (E,8),

J‘Ogi (S)J‘()ﬁi (t)gi (t,S,V W 9x1(v W )""’x"(v W ))dVdW)
- f:(,5,0,...,0) |

we have

+| fi(t,5,0,...,0) |
S ) B ()
< gmax | ¥, (1,9) N+ @, (m, @,9)| [

0
g t,syw,x,v,w),....x, ©.w)dvdw |)
+| f:(,5,0,...,0) |

< @(max | x;(2,8)[) + M + D, (D).

Thus, l

T Cxrseeex,)l| < plmax ) + M +@(D) (18)

and T(xl,...,xn)eBC(R+><R+) for any
(x,...,x,)€ BC(R, xR,)". Due to Inequality
(18) and using (v), the function 7, maps
E’o X E’o X ... X E’o into B’o . Also, applying (10)

and definitions of Gi, E and T;., it is easy to verify
that

1T (% sees X )ES) =T (1 e ¥, )E8) S
P E, (x e NE,8) = F (V50,0 , )8 ])
+D,(|G, (x,...,x, )t,s)—

G (Y5 )E8) )

Thus, 7. satisfies (6), i=1,...,n, now an

1
application of Corollary 3.3 completes the proof.
The following examples illustrate the applicability of
our results.

Example 6. Consider the following system of
functional integral equations

_ ts +
(s +1)(|x,(,8) | +1)

1 tps
o arctan (J.0 IO
v? cos(x,(v,w))+e” sin(x, (v ,w))
2+sin(x,(v,w)))
dvdw)

x,(t,s)

(19)

x,(t,s
ERIN

x,(t,s)=sin(ts)+
(25 @) |x,(t,s)|+1

JnﬁJ-x/;
J1+sin’(@x @) +ts @v)" (1+x 5 @,v))

(+t7s)(1+x5@,v))

dudv

Eq. (19) is a special case of Eq. (1)
where
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_ _ _ _ Ve pls
AO=40=150) =0 =1, N
_ ts
fl(t’s’x"xz’z)f(zs+1)(\x1 1) et U sin(e () +s @) (1+x 3 )
) |x2 | (1+t7s7)(1+x§(u,v))
fz(t,s,xl,xz,z)—sm(ts)+m+z, dudv |<
_Vcos(x)+e” sin(x24) ts (wv)" —dudy
& (t,5,v,w,x,x,) = (2 + sin(x,) ’ |I '[ l+t 1+t |
13
, .2 11 4 — —
gz(t,S,V,W,Xl,XZ): 1+Sln (VXI)+IS(VW) (1+XZ)' 2tS +(ts)2
(1+27s7)(1+x3) ST
S
F the definiti f g . d
rom ? .e o IO.HS of i ¢is f an ) Ja forall 7,5 € R, so we obtain
hypothesis (i) and (iv) of Theorem 5 are obviously D<
satisfied. Also we have -
4
|f(t,S,x s Xy, Z )_f(tasay s V22 )lS g g —
1 154252 1 1>V2522 4+es s m+(ts)2
s sup{ , :s,t eR.}
< +——arctan(z,) — e" 1+t’s
s +D)(jx, [+]) e < oo,
s Moreover
——-arctan(z,) |
(s +1)(y, [+1) @ Jim S fT
< % = | — |z, -z, ] v* cos(x, (v, w)) +e” sin(x; (v, w)) dodw=10
ts =0,
(Ix [+D(»y, [+]) e (2+sin(x1(v,w)))
X, — 1
S | 1 yll +T|Zl_22| J‘J‘
[x =y [+l € i, o5
and similarly v? cos(x, (v, w)) +e" sin(x; (v, w))
— < ; -
f(ts,%0,%,5,2 ) =f 5,8, 1,1 5,2,) S (2 +sin(x, (v, w)))
X, — w o
%Hzl—zﬂ- v? cos(y, (v, w))+e” sin(y; (v, w))
X,=y, |+ :
2T 2 +sin(y, (v, w)))
Thus, by taking m,(Z,s)=——, m,(t,s)=1 dvdw =0
e and
o) =—— ad D)=D()=1, the j j
t+1 H(z v)Hw
functions f, and f, satisfy assumption (ii) of \/l+sin2(ux1(u,v)) +ts(uv)“(l+x;‘(u,v))
Theorem 5. Also, g, and g, are continuous on [ (1+¢7sT)(1+x2 (u,v))
R XR XR XR XRXR andslnce \/1+Sin2(uy1(u,v))+tS(uV)11(1+y;(u,V))]
H\v *cos(x, (v, w)) +e" sin(x,(v,w)) (1+17s )1+ uw))
(2 +sin(x, (v, w))) dudv =0,
dvdw |< uniformly with respect to x,,x,,y,,v, € BC(R,),
fesy e which  show  that assumption (iv) is
| I j dvdw | satisfied. Furthermore, we have
040 ets
=y M =sup{|f,(t,s,0,0,0)|:¢,s eR,,i =1,2}
“—te's—s
4 s .
< . = sup{ ,sin(ts),t,s eR, } =1.
e” ts +1

and
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So, taking 7, =2+D then we see

thatassumptions (iii) and (v) of Theorem 5 are
satisfied. Hence by that theorem the system of
integral equations (19) has at least one solution in

the space BC(R, xR, )*.
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