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Abstract 

In this paper, we present a new computational technique for solving nonlinear Fredholm integral equations of the 

second kind. This proposed method is based on Galerkin method and is computationally very attractive. Moreover, 

for reducing the operations in comparing similar works, we design our algorithm based on transformations of 

orthogonal polynomials in approximation coefficients calculating scheme. Finally, for showing the reliability and 

efficiency of this method, we use some numerical examples. 
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1. Introduction 

Various types of integral equations often occur in a 

wide variety of areas including mechanics, the theory 

of optimal control, economics models, vehicular 

traffic, chemical engineering processes, physical and 

biological sciences; see (Corduneanu, 1973; Burton, 

1983; Agarwal et al., 1999; Deimling, 2010; 

Ladopoulos, 2013) and the references therein. 

For instance, integral equations of the Fredholm-

Hammerstein type have been one of the most 

important domains of applications of the ideas and 

methods of nonlinear functional analysis and in 

particular of the theory of nonlinear operators of 

monotone type (Cardinali and Papageorgiou, 1999).  

Furthermore, this kind of integral equations appear 

in nonlinear physical phenomena such as electro-

magnetic fluid dynamics, reformulation of boundary 

value problems with a nonlinear boundary condition 

(Atkinson, 1997). This equation is as follows: 
 

           , [ ] .
b

m

a
u t K t y u y dy f t                   (1) 

 
where,  2 2( ) [ , ], , [ , ] [ , ],f t L a b K t y L a b a b    

are known functions,  u t is the unknown function 

to be determined, [ , ]t I a b   and 1m  is a 

positive integer (Hammerstein, 1930). Throughout 
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this paper, since any finite interval [ , ]a b  can be 

transformed to interval [ 1,1]  by linear maps, 

without loss of generality, we assume that  

1, 1a b  . 

Several numerical methods for approximating the 

solution of the above Fredholm- Hammerstein 

integral equations are known. For example, Tricomi 

in [1985, Sec. 4.6] introduced the classical method 

of successive approximations. Kumar and Sloan 

(1987), introduced a new collocation-type method 

for the numerical solution of Fredholm-

Hammerstein integral equations. Brunner (1992) 

applied this method to nonlinear Volterra integral 

and integro-differential equations and discussed its 

connection with the iterated collocation method. 

Guoqiang (1993) obtained the asymptotic error 

expansion of this method for nonlinear Volterra–

Hammerstein integral equations at mesh points. 

Elnagar and Kazemi (1996) investigated the 

Chebyshev spectral method to an equivalent 

equation of nonlinear Volterra-Hammerstein 

integral equations and discussed some convergence 

results. Hernandez et al. (2000) applied a one-

parametric family of secant-type iterations for Eq. 

(1) and established a semilocal convergence result 

for these iterations by means of a technique based 

on a new system of recurrence relations. Kaneko et 

al. (2003) developed the Petrov–Galerkin method 

and the iterated Petrov–Galerkin method for Eq. (1) 

and established a framework for fast algorithms to 

obtain approximate solutions based on Alpert’s 
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Wavelets. Contea and Prete (2006) proposed 

discrete collocation methods for Volterra integral 

equations of Hammerstein type, where the Laplace 

transform of the kernel rather than the convolution 

kernel itself is known a priori. In recent years, 

numerous numerical methods have been proposed 

to find Hammerstein integral equations. These 

methods include: Nyström type methods 

(Sommariva, 2005; Cheng and Huang, 2011), 

projection methods (Cai and Xu, 2008; Jiang and 

Xu, 2010), methods of special functions (Alipanah 

and Dehghan, 2007; Maleknejad et al., 2010; 

Babolian and Mordad, 2011), wavelets (Jang et al., 

2005; Mahmoudi, 2005; Maleknejad et al., 2006; 

Xiao et al., 2006; Lepik, 2006; Maleknejad et al., 

2007; Ordokhani and Razzaghi, 2008; Babolian and 

Shahsavaran; 2009; Saeedi et al., 2011; Aziz, 2013; 

Saberi Najafi et al., 2014), homotopy techniques 

and the Adomian decomposition method 

(Abbasbandy, 2006; Dong et al., 2013), Toeplitz 

matrix method (Abdou et al., 2009), polynomial 

interpolation procedures (Maleknejad and Lotfi, 

2005; Borzabadi et al., 2006; Bica et al., 2012) and 

multigrid methods (Atkinson and Han, 2007). The 

main problem for solution of Eq. (1) is  [ ]mu y . 

Some methods used quadrature formula methods 

and spline approximations (for example, see 

(Maleknejad and Lotfi, 2005)). Some methods 

considered  [ ]mu y  as an independent variable 

(for example, see Eq. (7) in (Babolian and 

Shahsavaran; 2009)). Some other methods applied 

equivalent equation as follows: 
 

     
1

[ ] ( , ( )) ( , , ( ) ).
n b

m

i i
a

i

u y ψ y u y ψ y c K y t b t dt f y


   
 

 
For more details, see (Elnagar and Kazemi, 1996; 

Kaneko et al., 2003; Maleknejad et al., 2006). 

These require a huge number of arithmetic 

operators, high computational costs and a large 

storage capacity. Some methods also used 

operational vector. For example, in (Mahmoudi, 

2005), Eq. (1) is studied using Legendre wavelets 

basis as 
11 2 2

( ) [ ( ), ( ),..., ( )]k

T

M
y ψ y ψ y ψ y  . Then 

this author approximated  [ ]mu y  as follows: 

 

  *[ ] [ ( )] ( ),m T m T

mu y U y U y     

 

where 
*T

mU  is a column vector, whose elements are 

nonlinear combinations of the elements of the 

vector U. 
*T

mU  is called the operational vector of 

the mth power of the function  u y . The method 

proposed only works under the condition that the 

operational vector 
*Y is a vector function of ,Y

moreover, this function must be explicitly known 

(see Eq. (4.2) in (Mahmoudi, 2005)). Generally, it 

is difficult to meet this requirement in practice.  

In this paper, we present an algorithmic approach 

which is new and different from all the existing 

methods. Our method is based on Galerkin methods 

and transformations of Legendre polynomials. This 

method is very simple to apply and offers several 

advantages in reducing computational costs. 

Furthermore, it is worthy to note that this method 

can be utilized as an accurate algorithm to solve 

linear and nonlinear integro-differential equations 

and functional integral equations arising in physics 

and other fields of applied mathematics. 

2. Solving the Nonlinear Fredholm-

Hammerstein Integral Equations 

First of all, we give some basic notations and 

preliminary results which are essential tools for 

describing our main results. 

2.1. Properties of Legendre Polynomials 

Legendre polynomials are important in 

approximation theory and numerical analysis and in 

some quadrature rules based on these polynomials 

such as Gauss-Legendre rule that appears in the 

theory of numerical integration (Chihara, 2011). 

Consider the well-known Legendre polynomials of 

order , ( ),nn P x  which are derived from the 

following recursive formula (for [ 1,1]x  ): 

 

0

1

1 1

( ) 1,

( ) ,

2 1
( ) ( ) ( ).

1 1
n n n

P x

P x x

n n
P x xP x P x

n n
 






 

 

                   (2) 

 
Moreover, these polynomials are orthogonal with 

respect to the weight function ( ) 1ω x   and 

satisfy: 
 
1

1

2
( ) ( ) ,

2 1
n m mnP x P x dx δ

n



                                  (3) 

 

where, mnδ  is the Kronecker delta. 

Furthermore, for writing 
nx  in terms of Legendre 

polynomials we have the following formula: 
 

, 2,

( ),n

l l
l n n

x γ P x
 

                                               (4) 

 
where, 
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                              (5) 

 

We note that !!n  is double factorial and defined 

as: 
 

( 2)( 4)( 6)...(4)(2)

!! ( 2)( 4)( 6)...(3)(1

 ,

 ) ,

1 0, 1.

If n is even

If n is odd

If n

n n n n

n n n n n

  


   








 

 
The first few powers in terms of Legendre 

polynomials are: 
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For more details, see (Abramowitz and Stegun, 

1972). 

2.2. Galerkin Method 

The basic idea in the weighted residual method is 

to assume that the unknown function  u t  in
 
Eq. 

(1)
 
can be approximated by the sum of 1N   trail 

functions  ib t , i.e,
 

 

 
0

( ) ( ) .
N

app i i
i

u t u t c b t


 
                                       

 (7) 

 

In this way the function appu  is a linear 

combination of  ib t  and it’s expansion 

coefficients ic  have to be determined uniquely. 

Substituting the approximate solution given by Eq. 

(7) into Eq. (1), the result is the residual function 

defined by: 
 

( , ) ( , ( )) [ ( )] ( ),i app appE t c E t u t L u t f t             (8) 

 
where, 
 

 [ ( )] ( ) , [ ( )] .
b

m

app app app
a

L u t u t K t y u y dy                 (9) 

 
Since the residual function is identically equal to 

zero for the exact solution, the challenge is to 

choose the coefficients ic  so that the residual 

function is minimized. In integral form this can be 

achieved with the condition:  
 

( ) ( , ) 0,
b

i i
a
ω t E t c dt 

                                      
 (10)

 
 

where ( )iω t are weight function. Galerkin 

approach makes the residual ( , )iE t c orthogonal to 

1N   given independent function on the domain

[ , ]a b . In this approach the weighting function is 

chosen to be identical to the trail functions. 

2.3. Main Results 

Consider the approximate solution given by Eq. 

(7) with   i

ib t t , i.e 

 

0

( ) .
N

i

app i
i

u t c t


                                                    (11)  

 
Let, 
 

0

( , ( )) [ ( )] [ ] ,
N

m i m

app i
i

ψ y u y u y c y


                      (12)  

 

by Taylor expansion of ( , )ψ y t  at y=0, we can 

write: 
 

2

2

2

( , ( )) ( 0, ( ))

1
( ( 0, ( ))) ( (

2!

1
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1
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D
D

D
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         (13) 

 

where, D mN . 
 

Then, we have: 
 

0
0

2
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Moreover, since  
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We obtain the following expansion of the above 

relation:  
 

0 0 1 0
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Therefore, we can write: 

 

0

[ ( )] ,
D

m i

app i
i

u y T y


                                                (16) 

 
where, 
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            (17) 

 
Now by transformations of orthogonal 

polynomials based on formula (4), we will obtain 

an efficient method to solve Eq. (1). This method is 

as follows: 

 

Algorithm1.  

Step 1. Choose 

0

( )
N

i

app i
i

u y c y


  and 

0

[ ( )]
D

m i

app i
i

u y T y


   

Step 2. Use formula (4) and set 
0

( ) ( )
N

app i i
i

u t α P t


  

and 

0

[ ( )] ( )
D

m

app i i
i

u y β P y


 . 

Step 3. Apply Galerkin method and solve the 

following nonlinear equations: 
 

,
0

2
, 0, , , 0, , ,

2 1

D

j i i j j
i

α β K f j N i D
j 

   



     

 (18) 

 
where, 
 

1

1

( ) ( ) ,j jf f t P t dt


                                              (19)
 

 
1 1

,

1 1

( , ) ( ) ( ) .i j i jK K t y P y P t dydt
 

                           (20)
 

3. Illustrative examples 

In this section, we give some numerical 

experiments to illustrate the results obtained in 

previous sections.  

 

Example 3.1. Consider the following nonlinear 

Fredholm-Hammerstein integral equation 
                       

   
4

1
2

2 1

( 3)
[ ] .

4

t t e
u t e ty u y dy

e 


     

where, 
4

2

( 3)

4

t t e
f e

e


  and the exact solution is 

  tu t e . 

To solve the above problem using our method, we 

do the following steps: 

Let us consider 2N  .Then we construct trail 

space as follows: 
 

2
2

0 1 2
0

( ) ,i

app i
i

u t c t c c t c t


   
 

 
and by formula (4) we have: 
 

2

0

( ) ( )app i i
i

u t α P t


 , 

 
where, 
 

0 0 2 1 1 2 2

1 2
, , .

3 3
α c c α c α c   

 
 
Similarly, 
 

4
2

0

[ ( )] ,i

app i
i

u y T y



 

 
where, 
 

2 2 2

0 0 1 0 1 2 1 0 2 3 1 2 4 1, 2 , 2 , 2 , .T c T c c T c c c T c c T c       

 
and by formula (4) we have: 
 

4
2

0

[ ( )] ( ),app i i
i

u y β P y


  

 
where, 
 

0 0 2 4 1 1 3

2 2 4 3 3 4 4

1 7 3
, ,

3 35 5

2 20 2 8
, , .

3 35 5 35

β T T T β T T

β T T β T β T

    

   

 

 
So we have, 
 

2 41

1
0 0

( ) [ ( )] .i i i i
i i

α P t ty β P y dy f


 

    

 
Now, we multiply both sides of the above relation 
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with 
2

0{ ( )}j jP t  , which, from orthogonality of 

Legendre polynomials we obtain the following 

nonlinear equations: 
 

0

10

21

32

4

872/371 

2 0 0 0 0 0 -422/749

2/3 0 4/9 0 0 0 .609/4255

2/5 0 0 0 0 0 167/8296

40/18063 

β

βα

βα

βα

β

   
   

       
        
       
          

     

 

 
Therefore, we get: 
 

0 1 2

1613 2109 1827
, , .

1619 1891 3404
c c c    

 
Table 1 and Fig. 1 show the absolute values of 

error for N = 2, 4 and 6. 

 

Example 3.2. As the second example consider the 

following integral equation:
                      

   
1

4

1

11
sin( ) 4 sin( )[ ] .

2 3

π t
u t t πty πy u y dy


     

 

with exact solution   sin( )
2

π
u t t . Table 2 and 

Fig. 2 are the numerical results for Example 3.2. 

 

Example 3.3. As the third example consider the 

following integral equation: 
 

   
1

1 2 2 3

1
( 1) [ ] ,t x yu t e e e e u y dy 


      

 

with exact solution   tu t e . Table 3 and Fig. 3 

illustrate the numerical results for Example 3.3. 

 

Example 3.4. As the last example consider the 

following integral equation:
                                       

1
3 5 3

1
)1 ( 2 )[ ] .(5.6 25u t t tt t t y u y dy


    

 

with exact solution  
2

21
1

(
0

1)
t

tu t   . Table 4 

and Fig. 4 are the numerical results for Example 

3.4. 

 

Remark: A notable difference of our method from 

the conventional Galerkin method such as models 

(Elnagar and Kazemi, 1996; Kaneko et al., 2003; 

Maleknejad and Lotfi, 2005; Maleknejad et al., 

2006; Babolian and Shahsavaran; 2009) with high 

computational costs and large storage capacity or 

model (Mahmoudi, 2005) with impractical 

conditions in general case, lies in the fact that the 

expansion coefficients can be computed 

algorithmically without evaluating the independent 

variable (Kazemi, 1996; Kaneko et al., 2003; 

Maleknejad and Lotfi, 2005; Babolian and 

Shahsavaran; 2009) or any requirement to 

redundant operational vector and vector function 

(Mahmoudi, 2005). Thus, our method may be 

reckoned as a cheap and accurate solver for integral 

equations based on orthogonal polynomials. 

 
Table 1. Absolute errors for Example 3.1 

 

it  N = 2 N = 4 N = 6 

-1.0 4.985309447948438e-002 1.004328462252735e-003 7.142154386019506e-006 

-0.8 1.759576087826509e-003 4.045100380887234e-004 1.812817149282608e-006 

-0.6 2.846767360847835e-002 1.843740711369168e-004 2.349736868190178e-006 

-0.4 3.426378701625354e-002 2.673281180076703e-004 1.824023998509006e-008 

-0.2 2.402447544707376e-002 3.433596111147574e-004 2.209651693174664e-006 

 0.0 3.705981679884784e-003 3.094137594139568e-005 1.381050315218957e-007 

 0.2 1.941672292683716e-002 3.272926702755363e-004 2.249326875869429e-006 

 0.4 3.645796829031300e-002 3.252658055907798e-004 2.519121500288435e-007 

 0.6 3.656477246333578e-002 1.499283565222775e-004 2.564063457555221e-006 

 0.8 6.481273361322426e-003 4.824575942268261e-004 1.828749566445964e-006 

 1.0 6.998327552762440e-002 1.204253212619744e-003 8.158223572252155e-006 

 

 
 

Fig. 1. Comparison plot of exact and approximation solution of Example 3.1, for N=2, 4 and 6 
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Table 2. Absolute errors for Example 3.2 
 

it  N = 2 N = 4 N = 6 

-1.0    2.226326862717143e-001 1.156312547339200e-002 1.585432956718869e-004 

-0.8    2.704963272221794e-002 1.614745215159363e-003 4.097514427281457e-005 

-0.6    7.543738261191890e-002 5.918714028074756e-005 5.111269450774891e-005 

-0.4    9.873217778378740e-002 3.501780277965771e-003 2.952098078878862e-006 

-0.2    6.449045712060453e-002 3.381778210274855e-003 4.848712811389433e-005 

 0.0                          0                      0                     0 

 0.2    6.449045712060461e-002 3.381778210274855e-003 4.848712811389433e-005 

 0.4    9.873217778378735e-002 3.501780277965771e-003 2.952098078878862e-006 

 0.6    7.543738261191879e-002 5.918714028063654e-005 5.111269450785994e-005 

 0.8    2.704963272221794e-002 1.614745215159363e-003 4.097514427281457e-005 

 1.0    2.226326862717143e-001 1.156312547339200e-002  1.585432956718869e-004 
 

 
 

Fig. 2. Comparison plot of exact and approximation solution of Example 3.2, for N=2, 4 and 6 
 

Table 3. Absolute errors for Example 3.3 
 

it  N = 2 N = 4 N = 6 

-1.0    6.114637826600777e-002 1.007226482430568e-003 7.142541026405880e-006 

-0.8    7.182258258249030e-003 4.022114717202596e-004 1.812637060893962e-006 

-0.6    2.191242883679023e-002 1.826774958223476e-004 2.349833650883149e-006 

-0.4    3.013027195289242e-002 2.684198300844098e-004 1.829614970638716e-008 

-0.2    2.234783022597919e-002 3.438430367994627e-004 2.209626592808434e-006 

 0.0    4.521346434996243e-003 3.081232507717857e-005 1.381096741415178e-007 

 0.2    1.607420806158011e-002 3.280393708791074e-004 2.249292343936560e-006 

 0.4    3.055316318097057e-002 3.266365281899830e-004 2.518480561874981e-007 

 0.6    2.806253697596839e-002 1.479258245749016e-004 2.564151238448886e-006 

 0.8    4.653532638009050e-003 4.798138344495051e-004 1.828667472558720e-006 

 1.0    8.378579217285997e-002 1.207549465869207e-003 8.158206790120914e-006 
 

 
 

Fig. 3. Comparison plot of exact and approximation solution of Example 3.3, for N=2, 4 and 6 
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Table 4. Absolute errors for Example 3.4 
 

it  N = 2 N = 4 N = 6 

-1.0 1.344011965602714e-001     7.337915747843371e-003                         0 

-0.8 9.323421997845260e-002     2.351515844836061e-004 4.440892098500626e-016 

-0.6 1.255635793743202e-001     1.504943471576703e-004                          0 

-0.4 6.204288162733052e-002     2.290566424352880e-004 1.110223024625157e-016 

-0.2 1.476787326251638e-002     3.437378955982728e-004 1.110223024625157e-016 

 0.0 5.072468529522056e-002     1.999424033731212e-004                          0 

 0.2 2.701155447078174e-002     4.423101718640243e-004                          0 

 0.4 3.755551921079992e-002     2.093421871821155e-004                          0 

 0.6 8.883253574952432e-002     1.209226642779004e-004                          0 

 0.8 4.425949514539118e-002     2.745804949899955e-004  2.220446049250313e-016 

 1.0 1.956196026015979e-001     6.845054366512504e-003  4.440892098500626e-016 
 

 
 

Fig. 4. Comparison plot of exact and approximation solution of Example 3.4, for N=2, 4 and 6 

 

5. Conclusions  

In this paper, we have proposed a new 

computational method for solution of Fredholm-

Hammerstein integral equation. This method offers 

several advantages in reducing computational costs. 

On the other hand, this method is very simple to 

apply and to make an algorithm. Thus, this method 

may be reckoned as a simple and accurate solver 

for integral equations and it is worthy to note that 

this method can be utilized as an accurate algorithm 

to solve linear and nonlinear integro-differential 

equations and functional integral equations arising 

in physics and other fields of applied mathematics.  
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