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Abstract

In this paper, we present a new computational technique for solving nonlinear Fredholm integral equations of the
second kind. This proposed method is based on Galerkin method and is computationally very attractive. Moreover,
for reducing the operations in comparing similar works, we design our algorithm based on transformations of
orthogonal polynomials in approximation coefficients calculating scheme. Finally, for showing the reliability and

efficiency of this method, we use some numerical examples.
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1. Introduction

Various types of integral equations often occur in a
wide variety of areas including mechanics, the theory
of optimal control, economics models, vehicular
traffic, chemical engineering processes, physical and
biological sciences; see (Corduneanu, 1973; Burton,
1983; Agarwal et al, 1999; Deimling, 2010;
Ladopoulos, 2013) and the references therein.

For instance, integral equations of the Fredholm-
Hammerstein type have been one of the most
important domains of applications of the ideas and
methods of nonlinear functional analysis and in
particular of the theory of nonlinear operators of
monotone type (Cardinali and Papageorgiou, 1999).

Furthermore, this kind of integral equations appear
in nonlinear physical phenomena such as electro-
magnetic fluid dynamics, reformulation of boundary
value problems with a nonlinear boundary condition
(Atkinson, 1997). This equation is as follows:

u() - K (L y)u(y)dy = f (). (1)

where,  f(t)el’[a,b], K(t y)eLl’[ab]x[ab],
are known functions, U (t) is the unknown function

to be determined,tel =[a,b] and Mm>1lis a
positive integer (Hammerstein, 1930). Throughout
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this paper, since any finite interval [@,b] can be

transformed to interval [—1,1] by linear maps,
without loss of generality, we assume that

a=-1b=1.

Several numerical methods for approximating the
solution of the above Fredholm- Hammerstein
integral equations are known. For example, Tricomi
in [1985, Sec. 4.6] introduced the classical method
of successive approximations. Kumar and Sloan
(1987), introduced a new collocation-type method
for the numerical solution of Fredholm-
Hammerstein integral equations. Brunner (1992)
applied this method to nonlinear Volterra integral
and integro-differential equations and discussed its
connection with the iterated collocation method.
Guogiang (1993) obtained the asymptotic error
expansion of this method for nonlinear Volterra—
Hammerstein integral equations at mesh points.
Elnagar and Kazemi (1996) investigated the
Chebyshev spectral method to an equivalent
equation of nonlinear Volterra-Hammerstein
integral equations and discussed some convergence
results. Hernandez et al. (2000) applied a one-
parametric family of secant-type iterations for Eq.
(1) and established a semilocal convergence result
for these iterations by means of a technique based
on a new system of recurrence relations. Kaneko et
al. (2003) developed the Petrov—Galerkin method
and the iterated Petrov—Galerkin method for Eq. (1)
and established a framework for fast algorithms to
obtain approximate solutions based on Alpert’s


http://ijsts.shirazu.ac.ir/
mailto:saedalatpanah@gmail.com

1JST (2015) 39A3 (Special issue): 399-406

400

Wavelets. Contea and Prete (2006) proposed
discrete collocation methods for Volterra integral
equations of Hammerstein type, where the Laplace
transform of the kernel rather than the convolution
kernel itself is known a priori. In recent years,
numerous numerical methods have been proposed
to find Hammerstein integral equations. These
methods  include:  Nystrém type  methods
(Sommariva, 2005; Cheng and Huang, 2011),
projection methods (Cai and Xu, 2008; Jiang and
Xu, 2010), methods of special functions (Alipanah
and Dehghan, 2007; Maleknejad et al., 2010;
Babolian and Mordad, 2011), wavelets (Jang et al.,
2005; Mahmoudi, 2005; Maleknejad et al., 2006;
Xiao et al., 2006; Lepik, 2006; Maleknejad et al.,
2007; Ordokhani and Razzaghi, 2008; Babolian and
Shahsavaran; 2009; Saeedi et al., 2011; Aziz, 2013;
Saberi Najafi et al., 2014), homotopy techniques
and the Adomian decomposition method
(Abbasbandy, 2006; Dong et al., 2013), Toeplitz
matrix method (Abdou et al., 2009), polynomial
interpolation procedures (Maleknejad and Lotfi,
2005; Borzabadi et al., 2006; Bica et al., 2012) and
multigrid methods (Atkinson and Han, 2007). The

main problem for solution of Eq. (1) is [u(y)]m.

Some methods used quadrature formula methods
and spline approximations (for example, see
(Maleknejad and Lotfi, 2005)). Some methods

considered [U(y)]" as an independent variable

(for example, see Eqg. (7) in (Babolian and
Shahsavaran; 2009)). Some other methods applied
equivalent equation as follows:

WO =p0uO) =0 36 [ K (108 Odc+ 1 (4).

For more details, see (Elnagar and Kazemi, 1996;
Kaneko et al., 2003; Maleknejad et al., 2006).
These require a huge number of arithmetic
operators, high computational costs and a large
storage capacity. Some methods also used
operational vector. For example, in (Mahmoudi,
2005), Eq. (1) is studied using Legendre wavelets

basis as W(y) =[y4 () ¥, (¥):---+ Wpesyy (V)] Then
this author approximated [u('y)]™ as follows:

u(y)I"=U"¥WI" =U¥(y),

where U;T is a column vector, whose elements are
nonlinear combinations of the elements of the
vector U. U;T is called the operational vector of
the mth power of the function u(y) . The method
proposed only works under the condition that the

operational vector Y "is a vector function of Y,
moreover, this function must be explicitly known
(see Eq. (4.2) in (Mahmoudi, 2005)). Generally, it
is difficult to meet this requirement in practice.

In this paper, we present an algorithmic approach
which is new and different from all the existing
methods. Our method is based on Galerkin methods
and transformations of Legendre polynomials. This
method is very simple to apply and offers several
advantages in reducing computational costs.
Furthermore, it is worthy to note that this method
can be utilized as an accurate algorithm to solve
linear and nonlinear integro-differential equations
and functional integral equations arising in physics
and other fields of applied mathematics.

2. Solving the Nonlinear  Fredholm-

Hammerstein Integral Equations

First of all, we give some basic notations and
preliminary results which are essential tools for
describing our main results.

2.1. Properties of Legendre Polynomials

Legendre polynomials are important in
approximation theory and numerical analysis and in
some quadrature rules based on these polynomials
such as Gauss-Legendre rule that appears in the
theory of numerical integration (Chihara, 2011).
Consider the well-known Legendre polynomials of

order N,P,(X), which are derived from the
following recursive formula (for x e[-1,1]):

(-1
RO9=x, @
2n+1

n
P (X) =——xP,(X) ——— P, (X).
n+1( ) n+1 n( ) n+1 n—l( )

Moreover, these polynomials are orthogonal with
respect to the weight function @(x)=1 and
satisfy:

1 B 2 3
| R 00R 008 =550 ®)

where, J,,, is the Kronecker delta.

Furthermore, for writing X" in terms of Legendre
polynomials we have the following formula:

an Z le(x)v (4)

I=n,n-2,...

where,
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@+nn! _ (5)
2020, 5(n—1))I(1 +n+D!!

h=

We note that N!! is double factorial and defined
as:

n(n-2)(n—4)(n-6)...(4)(2) If n iseven,
nll=4n(n-2)(n-4)(n-6)...3)Y If n isodd,
1 If n=0,-1

The first few powers in terms of Legendre
polynomials are:

1=R(x),
x=R(x),

= 2[R0 +2P,(X)]
K =2 [3R00 +2P (1),

X :%[7%(@ +20P,(x) +8P,(X)].

For more details, see (Abramowitz and Stegun,
1972).
2.2. Galerkin Method

The basic idea in the weighted residual method is
to assume that the unknown function u(t) in Eq.

(1) can be approximated by the sum of N +1 trail
functions b (t) , ie,

U(t) = Uy, (1) = Z:lcib. (t). (7)

In this way the function Uapp is a linear

combination  of bl('[) and it’s expansion

coefficients C; have to be determined uniquely.

Substituting the approximate solution given by Eqg.
(7) into Eq. (1), the result is the residual function
defined by:

E(t,G) = E(t Uy, (1) = LIy, 01— F©),  ©®
where,
LUy (] = U ()= [ K (£, ) [t ()" . ©)

Since the residual function is identically equal to
zero for the exact solution, the challenge is to

choose the coefficients C; so that the residual

function is minimized. In integral form this can be
achieved with the condition:

[0 E@.c)d=0, (10)

where @, (f)are weight function. Galerkin
approach makes the residual E(t,C,) orthogonal to

N +1 given independent function on the domain
[a,b]. In this approach the weighting function is
chosen to be identical to the trail functions.

2.3. Main Results

Consider the approximate solution given by Eq.

(7ywith b (t)=t',ie

Uy (1) = icit‘. (11)
Let,
W (0(3)) =ty )" =[iciyi]m, 12)

by Taylor expansion of w(y,f) at y=0, we can
write:

w(yu(y)=w(y=0, u(y)) +

(—!//(y U+ > 6y2 T o= (13)

OUNY ++ (= Ty =0urM"

N1oy
((D)I 37 (= 0u())®,
where, D=mN .

Then, we have:
V() =X T, o+
CpY) DNRNC A1) 38 pIRCRCE)
oot ——N[qui]m)y:oy“

D'&yD [ch]m y= Oy

Moreover, since

I3 ey, . =0 (15)

i=s+l
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We obtain the following expansion of the above
relation:

w(y,u(y»=([c01m)+(§[co+c]y1m)y:oy+

zlayz[z YTy + 3,@3[2 Y1)y

1 6N N m
N,ayN[Z YT,y +

1 6N+1 N m N+1
(N +1)|ayN+1 [ch] y= Oy

10 m
D,ayD[Z Y T)y0Y”

S

Therefore, we can write:

OO = 2T (16)
where,

S,$[ch]m o for s=01..,N, 17)
- slay )y for s=N+1..,D.

Now Dby transformations of orthogonal
polynomials based on formula (4), we will obtain
an efficient method to solve Eq. (1). This method is
as follows:

Algorithm1.

N
Step 1. Choose uapp(y)zzciy‘ and
i=0

D .
[Upy (DI" =D Ty
i=0
N
Step 2. Use formula (4) and set Uy, (t) =Y o.B(?)
i=0

and [u,,, (y)]" =2ﬁiPi(y)-

Step 3. Apply Galerkin method and solve the
following nonlinear equations:

ﬁaﬁgﬁi&d:fja j=0,..,N, i=0,..,D, (18)
where,
1

- [ P ot 19)
-1

= j i K(t,y)R(y)P;(t)dydt. (20)

3. Hlustrative examples

In this section, we give some numerical
experiments to illustrate the results obtained in
previous sections.

Example 3.1. Consider the following nonlinear
Fredholm-Hammerstein integral equation

t(e* +3
u(t)=e -1 [ ylu(y)rey
where, f:et_wand the exact solution is

4e?
u(t)=e'.
To solve the above problem using our method, we
do the following steps:

Let us consider N =2 .Then we construct trail
space as follows:

2 .
Uy (1) =D Ct' =C+Ct +Ct°,
i=0
and by formula (4) we have:

Uep O =Y R 0)

where,
=c +Ec =c —gc
0 =G 3 2100 =C, 05 3%
Similarly,
[Upgo (V) ZTy
where,

To :COZ’Tl :200C1,T2 :Cl2 +20002:1—3 :2C1021T4 :Clz'

and by formula (4) we have:

[, (V)T = 2@3@),

where,
1 3
b= T+3T+ 11,/7’1 gTe,,
2 20 8
ﬁzngz 35 Zuﬁa Tsvﬁ4_3_ 4+
So we have,

SR 0)-[ ST ARG~ .

Now, we multiply both sides of the above relation
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with {Pj(t)}?zo, which, from orthogonality of

Legendre polynomials we obtain the following
nonlinear equations:

B 1 [ 8721371
20, | [0 0 0 O O] B | | -422/749
2/30, |-|0 4/9 0 0 0} B,|=| 609/4255 |.
250, |0 0 0 0 Of | |167/8296

B, | |40/18063

Therefore, we get:
1613 2109 1827
CO =—, Cl = , C2 = .
1619 1891 3404

Table 1 and Fig. 1 show the absolute values of
error for N =2, 4 and 6.

Example 3.2. As the second example consider the
following integral equation:

u(t) :sin(gt)—%+ [ amtysingay)[u(»)1 v

with exact solution U (t) =Sin(gt) . Table 2 and

Fig. 2 are the numerical results for Example 3.2.

Example 3.3. As the third example consider the
following integral equation:

u(t)=e"(e—e’+1) +_[:ex’2y [u(y)Fdy,

with exact solution U(t)=g'. Table 3 and Fig. 3
illustrate the numerical results for Example 3.3.

Example 3.4. As the last example consider the
following integral equation:

U(t)=1-t(5.6+25t—~t9) + [ (t-2y)[u(y)F dy.

2
with exact solution u(t)zl—t—(t—l)z- Table 4
10

and Fig. 4 are the numerical results for Example
3.4.

Remark: A notable difference of our method from
the conventional Galerkin method such as models
(Elnagar and Kazemi, 1996; Kaneko et al., 2003;
Maleknejad and Lotfi, 2005; Maleknejad et al.,
2006; Babolian and Shahsavaran; 2009) with high
computational costs and large storage capacity or
model (Mahmoudi, 2005) with impractical
conditions in general case, lies in the fact that the
expansion  coefficients can be computed
algorithmically without evaluating the independent
variable (Kazemi, 1996; Kaneko et al., 2003;
Maleknejad and Lotfi, 2005; Babolian and
Shahsavaran; 2009) or any requirement to
redundant operational vector and vector function
(Mahmoudi, 2005). Thus, our method may be
reckoned as a cheap and accurate solver for integral
equations based on orthogonal polynomials.

Table 1. Absolute errors for Example 3.1

N=2

N=4

N=6

-1.0
-0.8
-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0

4.985309447948438e-002
1.759576087826509e-003
2.846767360847835e-002
3.426378701625354e-002
2.402447544707376e-002
3.705981679884784e-003
1.941672292683716e-002
3.645796829031300e-002
3.656477246333578e-002
6.481273361322426e-003
6.998327552762440e-002

1.004328462252735e-003
4.045100380887234e-004
1.843740711369168e-004
2.673281180076703e-004
3.433596111147574e-004
3.094137594139568e-005
3.272926702755363e-004
3.252658055907798e-004
1.499283565222775e-004
4.824575942268261e-004
1.204253212619744e-003

7.142154386019506e-006
1.812817149282608e-006
2.349736868190178e-006
1.824023998509006e-008
2.209651693174664e-006
1.381050315218957e-007
2.249326875869429¢-006
2.519121500288435e-007
2.564063457555221e-006
1.828749566445964¢-006
8.158223572252155e-006

25

215

05|, s

Exact

-05 0 05 1 -

t

-05 0 05 1 -

t

Fig. 1. Comparison plot of exact and approximation solution of Example 3.1, for N=2, 4 and 6
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Table 2. Absolute errors for Example 3.2

N=2

N=4

N=6

-1.0
-0.8
-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0

2.226326862717143e-001
2.704963272221794e-002
7.543738261191890e-002
9.873217778378740e-002
6.449045712060453e-002
0
6.449045712060461e-002
9.873217778378735e-002
7.543738261191879¢-002
2.704963272221794e-002
2.226326862717143e-001

1.156312547339200e-002
1.614745215159363e-003
5.918714028074756e-005
3.501780277965771e-003
3.381778210274855e-003
0
3.381778210274855e-003
3.501780277965771e-003
5.918714028063654e-005
1.614745215159363e-003
1.156312547339200e-002

1.585432956718869¢-004
4.097514427281457e-005
5.111269450774891e-005
2.952098078878862e-006
4.848712811389433e-005
0
4.848712811389433e-005
2.952098078878862e-006
5.111269450785994e-005
4.097514427281457e-005
1.585432956718869¢e-004

1

05

Exact

Exact
—-a——NA

F0.5

1.5

1

0.5

05

0 05 171
t

-05 0 0%
t

1 05 0 05

Fig. 2. Comparison plot of exact and approximation solution of Example 3.2, for N=2, 4 and 6

Table 3. Absolute errors for Example 3.3

N=4

N=6

1.007226482430568e-003
4.022114717202596e-004
1.826774958223476e-004
2.684198300844098e-004
3.438430367994627e-004
3.081232507717857e-005
3.280393708791074e-004
3.266365281899830e-004
1.479258245749016e-004
4.798138344495051e-004
1.207549465869207¢-003

7.142541026405880e-006
1.812637060893962¢-006
2.349833650883149e-006
1.829614970638716e-008
2.209626592808434e-006
1.381096741415178e-007
2.249292343936560e-006
2.518480561874981e-007
2.564151238448886e-006
1.828667472558720e-006
8.158206790120914e-006

3

(125

Exact
_*_'NA

3

Exact

251 —w—- I,

t, N=2
-1.0 6.114637826600777e-002
-0.8 7.182258258249030e-003
-0.6 2.191242883679023e-002
-0.4 3.013027195289242e-002
-0.2 2.234783022597919e-002
0.0 4.521346434996243e-003
0.2 1.607420806158011e-002
0.4 3.055316318097057e-002
0.6 2.806253697596839e-002
0.8 4.653532638009050e-003
1.0 8.378579217285997e-002

Exact J

N 7

- 1

05 0 05 g -

05 0 05
t

1 -1 05 0
t

Fig. 3. Comparison plot of exact and approximation solution of Example 3.3, for N=2, 4 and 6
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Table 4. Absolute errors for Example 3.4

t; N=2 N =4 N=6
-1.0  1.344011965602714e-001 7.337915747843371e-003 0
-0.8  9.323421997845260e-002 2.351515844836061e-004  4.440892098500626e-016
-0.6 1.255635793743202e-001 1.504943471576703e-004 0
-0.4 6.204288162733052e-002 2.290566424352880e-004 1.110223024625157e-016
-0.2  1.476787326251638e-002 3.437378955982728e-004  1.110223024625157e-016
0.0 5.072468529522056e-002 1.999424033731212e-004 0
0.2 2.701155447078174e-002 4.423101718640243e-004 0
0.4 3.755551921079992e-002 2.093421871821155e-004 0
0.6 8.883253574952432e-002 1.209226642779004e-004 0
0.8 4.425949514539118e-002 2.745804949899955e-004  2.220446049250313e-016
1.0 1.956196026015979e-001 6.845054366512504e-003  4.440892098500626e-016
] e ] 1
03 % J08
06 7 LY 106 {os
/ \
04 / \ 104
J AY
202 7 % {02 0
/ i
op SR
/ - ] ]
I Exact A 02 Exact °e i B
04 !,f N, ) 04 — i 3
0o 05 0 05 e 05 0 a5 - 08 o s !

t

t

t

Fig. 4. Comparison plot of exact and approximation solution of Example 3.4, for N=2, 4 and 6

5. Conclusions

In this paper, we have proposed a new
computational method for solution of Fredholm-
Hammerstein integral equation. This method offers
several advantages in reducing computational costs.
On the other hand, this method is very simple to
apply and to make an algorithm. Thus, this method
may be reckoned as a simple and accurate solver
for integral equations and it is worthy to note that
this method can be utilized as an accurate algorithm
to solve linear and nonlinear integro-differential
equations and functional integral equations arising

in physics and other fields of applied mathematics.
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