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Abstract– In this paper, the dynamical behavior of an axially moving string modeled by fractional 

derivative is investigated. The governing equation represented motion is solved by the method of 

multiple scales. Considering principal parametric resonance, the stability boundaries for string 

with simple supports are obtained. Numerical results indicate the effects of fractional damping on 

stability.           
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1. INTRODUCTION 
 

Many engineering materials such as power transmission belts, plastic films, magnetic tapes, paper sheets, 

thread lines, wires, chains, high speed fiber winding and textile fibers are important in terms of modeling 

axially moving string. The linear or non-linear vibrations of axially moving string are popular among 

many researchers. Sack [1] is one of the first researchers in this area. Also, Mahalingam and Archibald et 

al. [2, 3] investigated the transverse oscillations of travelling strings. Wickert and Mote [4] performed 

many studies to investigate transverse vibrations of such systems. Pakdemirli et al. [5] studied transverse 

vibrations of an axially accelerating string. The transverse vibrations due to tension or axial speed 

variation constitute a major problem. Therefore, many studies are focused on this subject. 

Two most common models which are translating string or beam are used to performed the dynamical 

analysis of such systems. These basic models related to the class of gyroscopic systems vanish for the 

fundamental natural frequency [6]. Yang et al. [7] applied the Lyapunov method to a two-span axially 

moving string subjected to varying tension and boundary disturbance. Von Horssen and Ponomareva [8] 

used the Laplace transformation technique to construct the solution of the problem of moving string with 

constant speed. On the other hand, Chen et al. [9] considered the transverse vibration of an initially 

stressed moving viscoelastic string obeying fractionally. Non-linear creep vibration of the axially moving 

viscoelastic string constituted by fractional differentiation law is analytically studied by Yang and Fang 

[10]. 

In recent years, there has been a growing interest in the area of fractional calculus and its applications 

[11]. Strictly speaking, fractional derivatives are useful for describing the transverse vibrations in 

engineering practice. Many vibration and wave problems have been investigated for the continua 
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constituted by the fractional differentiation [12]. When the literature is reviewed, it is easily seen that the 

number of the published papers especially regarding axially moving strings is very limited. 

In this study, we investigate stability region of parametrically excited string. In this model, the 

damping term is modeled as a fractional derivation. The method of multiple scales is used to analyze the 

dynamic behavior of tensioned axially moving string. 

 

2. EQUATION OF MOTION 

For the uniform axially moving tensioned string,   is the density, A  is the cross-sectional area,  ˆ ˆP t  is 

the initial tension, v̂  is the axial speed, L  is the distance apart between two simple supports, and also ̂  

is the damping coefficient. The equation of motion can be obtained as 

 2 ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 0A w vw v w Pw D w                                                (1) 

   ˆ ˆˆ ˆ0, 1, 0w t w t                                                          (2) 

where  ˆˆ ˆ,w x t  is the transverse displacement. Here, x̂  is the spatial variable and t̂  is the time variable in 

the space  ˆˆ,x t . The dot denotes the differentiation with respect to time t̂ . For convenience, we 

introduce the following non-dimensional variables and parameters: 

 

 

22

2 2 4

ˆˆˆ ˆ ˆ
ˆ, , , , , ,

EIx w I t EI A PL
x w r t v vL P

L r A L A EI EI L A





 


 




             (3) 

where   is a small dimensionless parameter, I  is the moment of inertia and E  is modulus of elasticity, 

and r  is radius of gyration. Thus, non-dimensional linear equation of motion for transverse vibration  

 2

0 12 cos 0w vw v w P P t w D w                                      (4) 

subject to the boundary conditions in non-dimensional form  

   0, 1, 0w t w t                                                       (5) 

is obtained. Also, we assume that the initial tension  P t  is characterized as a small periodic perturbation 

1 cosP t   superimposed on the steady state tension 0P , i.e. 0 1 cosP P P t   ; which is the same as 

in previous studies [9]. 

 

3. METHOD OF SOLUTION 

 

Let us consider the Eq. (4) which is a linear partial-differential equation with fractional derivatives. To 

solve this equation, the method of multiple scales is applied. A first-order approximation is considered in 

the form  

     0 0 1 1 0 1, ; , , , ,w x t w x T T w x T T                                      (6) 

where 0t T  is the usual fast-time scales, and 1t T   is the slow-time scales. Thus, the time derivatives 

are expressed in terms of fast and slow time scales as follows: 

0 1d dt D D   , 
2 2 2

0 0 12d dt D D D                                (7) 

where n nD T    [13]. On the other hand, the fractionally time derivative [14] is given by  
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  1

0 1 1

d
D D D D D

dt


    

 

 
      

 
                              (8) 

Besides the definition of Riemann-Liouville fractional derivative [15] is introduced as 

 
 

 

 

1

1

t w dd
D w t

dt t





 

 





  

 .                                            (9) 

Using Eq. (9), the fractional derivative of the exponential function is calculated as [14] 

 0

0

sini t i t utu
D e i e e du

u i



  



   


 
.                                    (10) 

Since the integral in the second term of Eq. (10) decays rapidly with respect to time t , it can be neglected 

as compared with the first term in Eq. (9) in the following cases [15-18]: (1)   is slightly different from 

unity, (2) the magnitude of fractional parameter   is small, (3) for large magnitudes of  . The second 

term in Eq. (9) can be also ignored from some instants of time after beginning of vibratory motion. Then, 

the fractional derivative of the exponential function can be obtained as 

 i t i tD e i e
                                                            (11) 

where D


, 

1D


, 

2D


,  are the Riemann-Liouville fractional derivative [14]. Substituting Eqs. (6), 

(7) and (8) into Eq. (4) and separating each order of approximation, one obtains  

   2 2

0 0 0 0 0 01 : 2 0O D w vD w v P w                                            (12) 

     2 2

0 1 0 1 0 1 1 0 0 0 1 0 0 0 0: 2 2 cosO D w vD w v P w D D w vw Pw T D w             .      (13) 

The solution of Eq. (12) can be written as follows [19]: 

         0 0

0 0 1 1 1, , n ni T i T

n n n nw x T T A T X x e A T X x e
 

                        (14) 

where nA  and 
nA  are complex amplitudes and their conjugates, respectively. Then, the mode function is 

found as 

 
2

0/ 0

2

0

sinniv x P v n

n

P
X x ce x

P v

 



                                            (15) 

where 

 2

0

0

; 1,2,n

n P v
n

P





                                                (16) 

Here, n  is the mode number and n  is the natural frequency. Substituting Eq. (14) into Eq. (13) for the 

solution of   order, one obtains 

       

     

0 00

0 0 0

2 2

0 1 0 1 0 1 1 1

1

1
2 2

2

1

2

n nn

n n n

i T i Ti T

n n n n n n

i T i T i T

n n n n n

D w vD w v P w D A i X vX e P A X e e

P A X e e i A X e cc

 

  



 

  

  

               

    
 

(17) 
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where cc  is the complex conjugates. In the next section, three different cases will be discussed. 

 

4. CASE STUDIES 

 

In this section, we assume that one dominant mode of vibrations exists. Then, the direct-perturbation 

method gives more accurate results for finite mode truncations. This is because the spatial functions 

appearing at higher orders of approximation represent the best to real system in the case of the direct-

perturbation methods [20].  

 

Case 1: Ω Away from 2ωn and 0 

In this case, no resonance exists. Hence, Eq. (17) becomes 

      02 2

0 1 0 1 0 1 12 2 ni T

n n n n n n nD w vD w v P w D A i X vX i X A e cc NST
              

 
  (18) 

where NST  represents non-secular terms. Thus, the solution of Eq. (18) is as follows [19]:  

     0

1 0 1 1 0 1, , , , ,ni T

nw x T T x T e W x T T cc
   .                                (19) 

The first term represents secular terms and the latter term is related to non-secular terms. Substituting Eq. 

(19) into Eq. (18), 
n  provides 

     2 2

0 12 2n n n n n n n n n n n nP v iv D A i X vX i X A


                               (20) 

   0 1 0n n   .                                                     (20-a) 

The solvability condition requires [21] 

1 0 0n nD A k A                                                         (21) 

where 

 
1

0
0 1 1

0 0

2

n n n

n n n n n

i X X dx

k

i X X dx v X X dx


 




 

 
 



 

.                                       (22) 

Then, the amplitude solution is 

  0 1

1 0

k T

nA T A e


                                                     (23) 

where 0A  is constant. 0k  is a complex number where 0 0 0

R Ik k i k  . The real part of 0k  is always 

positive. Substituting the solution (23) into Eq. (14), then the approximate solution is obtained as  

 
 

0 0

0 0

R I
nk i k t

nw w A e X x cc
   
   

  
                                (24) 

The relation (24) shows that the system is always stable in this case and the natural frequency may be 

changed slowly due to fractional order. 
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In Fig. 1, the effects of fractional order on the displacement-time curves are clearly shown. It is seen 

that the damping accelerates as the value   increases. The displacement-time curves for the variation of 

0P  are observed afterwards. It is concluded that the frequency increases by growth of the value 
0P . 
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(a)                                                                                        (b) 

Fig. 1. Displacement-time curves for 0.1  and 0.5x   (a) 0 0.9, 0.8, 1.5P v  
 

 (b) 0.5, 0.5, 0.8v   
 

 

Case 2: Ω Close to 0  

For this case, the nearness of fluctuation frequency to zero can be expressed as 

n                                                                   (25) 

where n  is a detuning parameter. Then, Eq. (16) becomes 

     

0

2 2

0 1 0 1 0 1 1 1 12 2 cos

n

n n n n n n n n n n

i T

D w vD w v P w D A i X vX P A X T i A X

e cc NST





              
 

 

 (26) 

From the solvability condition, we obtain 

 1 1 1 0cos 0n n n nD A k T A k A                                           (27) 

where 

1

1

0
1 1 1

0 0

2

n n

n n n n n

P X X dx

k

i X X dx v X X dx




 

 
 



 

.                                     (28) 

The solution of Eq. (27) is 

 
 1

1 0 1sin

1 0

n
n

k
T k T

nA T A e





 .                                             (29) 

Since 11 sin 1n T   , it is concluded that there is no instability. 
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Case 3:   Close to 2 n  

Let us consider the principal parametric resonance as 

2 n n    .                                                        (30) 

Thus, Eq. (17) turns into 

   

 

1

0

2 2 1
0 1 0 1 0 1 12 [ 2

2

]

n

n

i T

n n n n n n

i T

n n n

P
D w vD w v P w D A i X vX A X e

i A X e cc NST



 



 

         

  

                (31) 

The solvability condition for this case is 

1

1 1 0

1
0

2
ni T

n n nD A k A e k A


   .                                            (32) 

Expressing the solution of Eq. (32) in the polar form 

    1 /2

1 1
ni T

n nA T B T e


 ,     1 /2

1 1
ni T

n nA T B T e


 .                          (33) 

Substituting Eq. (33) into Eq. (32) yields 

1
1 0 0

2 2

n
n n n n

k
D B i B B k B


                                             (34) 

where complex amplitudes are 

  1

1

T

n nB T b e


 ,   1

1

T

n nB T b e


                                            (35) 

and 
R I

n n nb b ib  , 
0 0 0

R Ik k ik   and 
1 1 1

R Ik k ik   such that R and I denote real and imaginary parts, 

respectively. If we substitute Eq. (35) into Eq. (34) and separate real and imaginary parts, then the matrix 

equation may be represented as 

1 1
0 0

1 1
0 0

02 2 2

0

2 2 2

R I
R In

R

n

I
I R

nI Rn

k k
k k

b

bk k
k k







  
                    

    
 

.                              (36) 

For non-trivial solution, the determinant of the coefficient matrix must be zero. Then, 

     
2 2 2

0 1 1 0

1
2

2

R R I I

nk k k k       .                                  (37) 

On the other hand, the steady-state solution requires 0  . Thus, the stability boundaries are written as  

     
2 2 2

0 1 1 02 2I R I R

n k k k k      .                                      (38) 

The variation of unstable region is depicted for some value   and   in Fig. 2. The stability region moves 

to the left side of the graph in Fig. 2a. as the value of   is increasing. This feature comes from the 

fractional derivation. It is observed that the stability boundary moves to upward as the fractional order   

increases. 
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(a)                                                                                              (b) 

Fig. 2. Stability boundaries (a) for various fractional order-   0 2.0, 1.0, 0.5P v    

(b) for different values   0 2.0, 1.0, 1.0P v    

 

5. CONCLUSION 

In this paper, the dynamic response of an axially moving tensioned string is investigated. It is obviously 

known that the string has fractional damping. In addition, the method of multiple scales is applied directly 

to solve the equation of motion. The case of the parametric resonance is investigated in detail. Besides, the 

stability boundaries are analytically determined and also natural frequencies are calculated for different 

fractional order. Finally, it is found that instabilities occur when the variation frequency is close to two 

times the natural frequencies and observed that the order fractional derivative has a meaningful effect on 

stability boundaries and natural frequencies.  
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