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Abstract: In this paper, a closed form solution for bending and free vibration analyses of simply 

supported rectangular laminated composite plates is presented. The static and free vibration 

behavior of symmetric and antisymmetric laminates is investigated using a refined first-order shear 

deformation theory. The Winkler–Pasternak two-parameter model is employed to express the 

interaction between the laminated plates and the elastic foundation. The Hamilton’s principle is 

used to derive the governing equations of motion. The accuracy and efficiency of the theory are 

verified by comparing the developed results with those obtained using different laminate theories. 

The laminate theories including the classical plate theory, the classical first-order shear 

deformation theory, the higher order shear deformation theory and a three-dimensional layerwise 

theory are selected in order to perform a comprehensive comparison. The effects of the elastic 

foundation parameters, orthotropy ratio and width-to-thickness ratio on the bending deflection and 

fundamental frequency of laminates are investigated.          

 

Keywords: Bending analysis, Free vibration, Refined shear deformation theory, Two-parameter elastic foundation 

 

1. Introduction 

Laminated composites are widely used in aerospace, automotive, and marine industries due to their high 

strength-to-weight ratio. The static, dynamic and buckling analyses of such structures have been the focus 

of attention for mechanical and structural engineers. Meanwhile, different theories have been developed to 

predict the behavior of laminated plates. The most popular theory is equivalent to single-layer (ESL) 

theory according to the literature. The ESL theories are usually categorized in three main categories of the 

classical plate theory (CPT), first-order shear deformation theory (FSDT), and higher-order shear 

deformation theories (HSDTs).  

In this regard, Shojaee et al. [1] developed a free vibration and buckling analyses of symmetrically 

thin composites based on the classical plate theory. Reissner [2] developed the FSDT which takes into 

account the shear deformation effects. Unlike the FSDT, the HSDT satisfies the equilibrium conditions on 

the top and bottom surfaces without using shear correction factor. Also, Reddy [3] developed a third-order 

shear deformation theory (TSDT) using polynomial functions for displacement fields. However, most of 

the HSDTs are computationally expensive due to the additional unknowns which are introduced in the 

context of the theory. Recently, employing the refined form of the shear deformation theories has been the 

subject of many researches. Meanwhile, different forms of polynomial, trigonometric and exponential 

functions are implemented to investigate the mechanical behavior of one- and two-dimensional structures. 

For instance, Ferreira et al. [4] used sinusoidal functions for displacement fields. Soldatos [5] used 

hyperbolic functions to express the distribution of displacement components. Karama et al. [6] adopted 

exponential functions to study mechanical behavior of laminated composite beams. On the other hand, the 

FSDT may be inaccurate enough to predict the mechanical behavior of thick and moderately thick 
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laminated composites. Unlike the classical FSDTs, Thai and Choi [7-9] presented a refined theory which 

contains four unknowns. They exhibited that this refined FSDT can develop accurate results for static and 

vibration analyses of composite plates. 

The subject of plate and beam modeling resting on elastic foundations is important in analyzing 

structural problems. The two models of Winkler and Pasternak elastic foundations have been widely used 

in different studies. Although the Winkler model is simple and widely necessary, it is unable to takes into 

account the nonlinear behavior. Katsikadelis et al. [10] carried out the bending analysis of plates resting on 

elastic foundation using singular boundary integral equations. Dinev [11] obtained analytical solutions for 

beams on elastic foundations by singularity functions and using Pasternak foundation. An exact three-

dimensional solution of simply supported rectangular plates on Pasternak foundation was developed by 

Dehghany and Farajpour [12]. Akavci [13] analyzed the laminated composite plates on elastic foundation 

employing various plate theories. Lal et al. [14] presented an investigation of the stochastic bending static 

response of laminated composite plates resting on elastic foundation with uncertain system parameters 

subjected to the static distributed loading. Akavci et al. [15] studied bending deformation of symmetrically 

laminated plates resting on elastic foundation based on FSDT. Also, Akavci [16] examined buckling and 

free vibration analyses of simply supported symmetric and antisymmetric cross-ply thick composite plates 

on elastic foundation by a hyperbolic displacement model. Nedri et al. [17] presented free vibration 

analysis of laminated composite on elastic foundation using a refined hyperbolic shear deformation theory. 

A comprehensive static, free vibration and buckling analyses of laminated composite plates on distributed 

and point elastic supports using a three-dimensional layer-wise finite element method was developed by 

Setoodeh and Karami [18]. 

In this paper, a simple refined first-order shear deformation theory is implemented to predict the 

bending and free vibration behavior of simply supported rectangular laminated composites on elastic 

foundations. To the best of the authors’ knowledge, the influence of the Winkler-Pasternak two-parameter 

model on the bending deformation and natural frequencies of any laminate stacking sequence is 

investigated for the first time in the context of the refined FSDT. Furthermore, similar solutions are 

presented by reducing the refined theory to the CPT. The closed form solutions of cross-ply and angle-ply 

laminates on elastic foundation are developed and the results are successfully compared with the existing 

solutions.  

 

2. Theoretical Formulation 

Consider a rectangular composite plate with in-plane dimensions a and b in the x and y directions, 

respectively, and thickness h in the z direction as shown in Fig. 1. The reference Cartesian coordinate 

system (x, y, z) is located on the middle-plane of the plate. The plate is consisted of n orthotropic layers 

resting on elastic foundation. 

 
Fig. 1. Geometry of a laminated plate resting on elastic foundation. 
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The displacement field of the refined FSDT is given by: 
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where (u1, u2, u3) are respectively the components of the displacement vector and (u, v) denote the in-plane 

displacement components of the middle-plane in the x and y directions, respectively. Unlike the classical 

FSDT, the transverse displacement u3 is divided into the bending (wb) and shear (ws) parts.  

The nonzero in-plane strains (x, y, xy) and the transverse shear strains (xz, yz) are associated with 

the displacement field in Eq. (1) as: 
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                                              (2) 

Under the assumption that each layer possesses a plane of elastic symmetry parallel to the x–y plane, the 

constitutive equations for a layer can be written as: 
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Again, (x, y, xy) and (xz, yz) denote the in-plane and the transverse shear stresses, respectively. Here, 

for each layer 
ijQ  is given in terms of the Young’s modulus (E), the Poisson’s ratio () and the shear 

modulus (G) in different orthotropic directions as below:  
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The stress–strain relations in the laminate coordinates of the kth layer are given as: 
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where ijQ  are the transformed elastic stiffness coefficients, and are defined according to the following 

equations. 
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where  is the angle between the global x-axis and the longitudinal direction of fibers of each lamina. 

The Hamilton’s principle is used to derive the governing equations of motion as: 
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where U and T are respectively the strain energy and kinetic energy of the plate, UF denotes the strain 

energy of the elastic foundation, and V is the work done by external forces. The variation form of the 

strain energy is expressed as: 
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where the stress resultants are defined by: 
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By using Eqs. (2), (5) and (9), the stress resultants in terms of the displacements can be obtained: 
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where k is the shear correction factor. Also, the elements of the stiffness matrices A, B, D are defined as 

follows: 
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The variation of the work done by the transverse load q and the kinetic energy are calculated respectively 

by Eqs. (12) and (13).   
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The point above a variable denotes, as usual, a time derivative. The various inertias I0 and I2 are defined 

as: 

   
/2

2

0 2

/2

,  1, 

h

h

I I z dz


                                                                                                                              (14)                                                               

The variation of UF can be written as: 
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where fe is the density of reaction force of the foundation and is expressed as follows.  
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The coefficients k0 and k1 show the elastic stiffness of the Winkler and Pasternak foundations, 

respectively. 

By substituting Eqs. (8), (12), (13) and (15) into Eq. (7), doing some manipulations and collecting the 

coefficients of , , bu v w   and
sw , the governing equations are obtained as below: 

     

     

0

0

2 22
2 2

0 1 0 22 2

2

0 1 0

 : 

 : 

 :  2   
 

 :   

xyx

xy y

xy yx
b b s b s b s b

yx
s b s b s b s

NN
u I

x y

N N
v I

x y

M MM
w q k w w k w w I w w I w

x x y y

QQ
w q k w w k w w I w w

u

y

v

x










 

 

 
 

 

 
           

   


        

 

     (17) 

By using the stress resultants from Eq. (10), the governing equations can be expressed in terms of 

displacement components  ,  , , b su v w w  as: 
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3. Analytical Solution for Cross-Ply and Angle-Ply Laminates 

We can assume the solutions based on Navier approach, as below: 
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

 

 

 

 
 

1 1

       
, , cos sini t

mnm n

y
antisymmetric angle ply

v x y t V e x y



 
 

 


 

                               (19) 

where 1,     / ,     /i m a n b       . Also  ,  , , mn mn bmn smnU V W W  are the coefficients, and   is the 

frequency of the free vibration. The transverse load q is defined using the double Fourier sinusoidal series 

expansions as: 

 
1 1

, sin sinmn

m n

q x y Q x y 
 

 

                                                                                                             (20) 

The coefficient mnQ  for some typical loads is obtained as follows: 

 
0 

0

0 0 2

   
4

, sin sin 16
   

a b

mn

q for sinusoidal load

Q q x y x ydxdx q
ab for uniformload

mn

 






  



                                              (21) 

Finally, the matrices related to the analytical solutions are obtained by substituting Eqs. (19) and (20) into 

Eq. (18): 

011 12 13

012 22 23 2

013 23 33 34 0

34 44 0 0

0 0 00 0

0 0 00 0

0 0

0 0 0 0

mn

mn

bmn mn

smn mn

Is s s U

Is s s V

s s s s W QI I

s s W QI I



       
       

              
                  

                                                    (22) 

where, 

 

   

     

 

 

2 2 2 2

11 11 66 12 12 66 22 66 22

4 2 2 4 2 2

33 11 12 66 22 0 1

2 2 2 2 2 2

44 55 44 0 1 34 0 1

3 2

13 11 12 66

3 2

23 22 12 66

,   ,  

2 2

,  

2
         

2

s A A s A A s A A

s D D D D k k

s k A A k k s k k

s B B B
for antisymmetric

s B B B

    

     

     

 

  

     

      

       

   

   

 

3 2

13 26 16

3 2

23 16 26

2 2

0 0 2

3
         

3

  

cross ply

s B B
for antisymmetric angle ply

s B B

I I I

  

 

 



  


  

  

                                               (23) 

It is worth nothing that Eq. (22) is in general form and in the case of the static analysis, it is reduced as 

follows: 
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11 12 13

12 22 23

13 23 33 34

34 44

0 0

0 0

0 0

mn

mn

bmn mn

smn mn

s s s U

s s s V

s s s s W Q

s s W Q

    
    

        
 

   
 

      

                                                                                                  (24) 

 

4. Numerical Results 

In this section, different examples are demonstrated to indicate the accuracy and efficiency of the present 

formulation. The results are successfully compared with available solutions and those predicted by various 

laminate theories. To perform a comprehensive comparison, a separate computer code is prepared based 

on FSDT theory of Reddy [19] and an analytical solution is developed to generate comparable results. 

Similarly, the results based on the CPT are provided by setting 0sw   in the present theory. Afterwards, 

the influences of elastic foundation parameters and laminate stacking sequence on the bending behavior 

and natural frequencies are illustrated. The symmetric and antisymmetric arrangements of laminated 

composites are considered which exhibit the efficacy of the model. In static analysis, the plate is subjected 

to sinusoidal loading. The shear correction factor is considered to be 5 / 6k  . Also, the following 

material properties are assumed in the solutions. 

Material 1: 1 2 12 13 2 23 2 1225 ,   0.5 ,   0.2 ,   0.25E E G G E G E                                                           (25) 

Material 2: 1 2 12 13 2 23 2 12/ variable,   0.6 ,   0.5 ,   0.25E E G G E G E                                             (26) 

The following non-dimensional parameters are defined throughout the paper: 

   

4 2 3

0 1 2
0 13 3 4

2 2 0

2 2

2 2

0

2

0

2

,   , 100 , ,
2 2

, , ,   0, ,
2 2 2

x x xz xz

a

h

k b k b E h a b
K K w w

E h E h q a

h a b h b
z z z z

q a q a

E

   

 


 
    

 

 



 
    

   

  

 

4. 1.  Bending analysis 

Problem 1. Tables 1 and 2 demonstrate respectively the effects of the elastic foundation parameters on the 

dimensionless central deflections w  for (0,90,0,90) and (0,90,90,0) laminated plates. The results 

are presented for thin and thick plates with different width-to-thickness ratios (a/h). The present solutions 

are compared with those obtained using the HSDT [14], FSDT and CPT. It is found that the calculated 

analytical results agree well with the results of HSDT. It is also seen that the CPT provides acceptable 

results for the laminated plates with a/h≥ 20. As expected, the value of w  decreases with increasing the 

stiffness of the elastic foundation. By comparing the results reported in Tables 1 and 2, it can be concluded 

that the dimensionless transverse central deflection of symmetric laminates is smaller than those of 

antisymmetric laminates. This trend is clarified in Fig. 2. It is seen that the difference in bending 

deformation of the aforementioned laminates is decreased when the elastic foundation parameters are 

significantly increased. 

Problem 2. In this problem, a two-layer cross-ply square laminated composite plate is considered. The 

effects of Winkler and Pasternak elastic parameters on the dimensionless transverse deflection of 

laminates with different width-to-thickness ratios are investigated in Table 3. The developed results are 

compared with the solution presented in Ref. [18]. This comparison demonstrates clearly the effectiveness 

and accuracy of the present model as Setoodeh and Karami [18] used a three-dimensional layerwise theory 

(LW3D).  
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Table 1. Dimensionless transverse central deflection w  of (0,90,0,90)  

laminated square plates (material 1). 

a/h Theory K0=0,K1=0 K1=100,K1=0 K0=100,K1=10 

5 

CPT 0.5065 0.2301 0.1108 

FSDT 1.2013 - - 

Present 1.2013 0.5457 0.2627 

HSDT [14] 1.2455 0.4920 0.2561 

10 

CPT 0.5065 0.3015 0.1676 

FSDT 0.6802 - - 

Present 0.6802 0.4048 0.2250 

HSDT [14] 0.7551 0.4001 0.2559 

20 

CPT 0.5065 0.3268 0.1922 

FSDT 0.5500 - - 

Present 0.5500 0.3548 0.2087 

100 

CPT 0.5065 0.3358 0.2017 

FSDT 0.5083 - - 

Present 0.5083 0.3370 0.2023 

Problem 3. The static analysis of a square two-layer angle-ply  ,   laminate is firstly studied and 

then the resulted bending deformations are compared with those of similar cross-ply laminate as depicted 

in Fig. 3. Three different ply-orientation angles of (15,-15), (30,-30), and (45,-45) are considered for 

angle-ply laminates. The variations of the dimensionless central transverse deflection with respect to (a/h) 

ratio are presented. It is observed that the values of w  for all of the angle-ply laminates under 

consideration are smaller than the corresponding deflections predicted for the cross-ply arrangement.  

Table 2. Dimensionless transverse central deflection w  of (0,90,90,0)  

symmetric square laminates (material 1). 

a/h Theory K0=0,K1=0 K1=100,K1=0 K0=100,K1=10 

5 

CPT 0.4312 0.2028 0.0992 

FSDT 1.2801 - - 

Present 1.1260 0.5296 0.2589 

10 

CPT 0.4312 0.2687 0.1541 

FSDT 0.6627 - - 

Present 0.6049 0.3769 0.2161 

20 

CPT 0.4312 0.2924 0.1788 

FSDT 0.4912 - - 

Present 0.4747 0.3219 0.1968 

100 

CPT 0.4312 0.3009 0.1885 

FSDT 04337 - - 

Present 0.4330 0.3021 0.1893 
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Fig. 2. Variation of dimensionless central deflection w  of (0,90,90,0) symmetric (dash lines) and (0,90,0,90) 

antisymmetric (solid lines) laminates versus (a/h) ratio for different elastic foundation parameters (material 1). 

 

Table 3. Dimensionless transverse central deflection w of a two-layer  

cross-ply square laminate (material 1). 

a/h Theory K0=0,K1=0 K0=100,K1=0 K0=100,K1=10 

5 

CPT 1.0636 0.3855 0.1707 

FSDT 1.7583 - - 

Present 1.7583 0.6374 0.2822 

LW3D[18] 1.6671 0.6639 0.3374 

10 

CPT 1.0636 0.4754 0.2273 

FSDT 1.2373 - - 

Present 1.2373 0.5530 0.2644 

LW3D[18] 1.2162 0.5525 0.2679 

 

 
Fig. 3. Variations of dimensionless central deflection of two-layer cross-ply (0,90) and angle-ply  ,   laminates 

with three different ply-orientation angles versus (a/h) ratio (material 1). 

Problem 4. This problem is performed for bending analysis of four-layer angle-ply (45,-45,-45,45) 

symmetric and (45,-45,45,-45) antisymmetric square laminates with different (a/h) and  1 2  /  E E  

ratios. The non-dimensional transverse central deflections are determined for Winkler and Pasternak 
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elastic parameters as listed in Table 4. As mentioned before, similar solutions are developed employing 

the CPT and classical first-order shear deformation theory. The good agreement between the results of the 

present theory and those obtained by the classical FSDT is obvious. Furthermore, The CPT exhibits 

acceptable results only for thin laminated composite plates due to neglect of the shear deformation effect. 

Also, it is seen that the value of w  increases with decreasing the degree of orthotropy. 

Problem 5. In the next problem, a stress analysis is carried out for a square four-layer angle-ply laminate 

arranged as (0,90)2 with various  1 2  /  E E  ratios. The variations of the dimensionless normal and 

transverse stress components in the x-direction with respect to different values of the elastic foundation 

parameters are illustrated in Table 5. It is observed that 
x  decreases with increasing the elastic 

foundation stiffness or with decreasing the  1 2  /  E E  ratio.  

 

4.2. Free vibration analysis 

Problem 6. In this problem, free vibration analysis of square antisymmetric cross-ply laminated plates is 

investigated using Eq. (22) in the absence of external load. In Table 6, the dimensionless natural 

frequencies of laminates obtained by using different theories are shown for various values of  1 2  /  E E  

ratios. The present results are compared with those reported in Ref. [17] using the HSDT, and the three-

dimensional elasticity (3D) solutions given in Ref. [20]. It is observed that the present approach can 

provide accurate results in comparison with the three-dimensional elasticity solutions. It is found that the 

dimensionless fundamental frequency increases with increasing the orthotropy  1 2  /  E E  ratio.  

Problem 7. In the next problem, a square three-layer cross-ply laminate is considered. The obtained 

dimensionless fundamental frequencies for different elastic foundation parameters and width-to-thickness 

ratios (a/h) are demonstrated in Table 7. The present results are compared with those predicted using the 

HSDT [14], FSDT and CPT. It is observed that the present solution is in close agreement with the results 

reported in Ref. [16]. It can be also concluded that the frequencies of laminates increase with increasing 

the stiffness of the elastic foundation. 

Table 4. Dimensionless transverse central deflection w  of square four-layer angle-ply 

 laminates with various orientations (material 2). 

(E1/E2) 

ratio 
a/h Theory 

 ° ° ° °
45 ,-45 ,45 ,-45   ° ° ° °

45 ,-45 ,-45 ,45  

K0=0,K1=0 K0=100,K1=0 K0=100,K1=10 
K0=0, 

K1=0 
K0=100,K1=0 K0=100,K1=10 

40 

10 

CPT 0.1806 0.1399 0.0968 0.1500 0.1190 0.0845 

FSDT 0.2912 - - 0.2605 - - 

Present 0.2912 0.2255 0.1560 0.2605 0.2067 0.1468 

100 

CPT 0.1806 0.1529 0.1173 0.1500 0.1303 0.1035 

FSDT 0.1817 - - 0.1511 - - 

Present 0.1817 0.1538 0.1180 0.1511 0.1313 0.1042 

30 

10 

CPT 0.2372 0.1760 0.1166 0.1983 0.1515 0.1033 

FSDT 0.3477 - - 0.3088 - - 

Present 0.3477 0.2580 0.1709 0.3088 0.2359 0.1610 

100 

CPT 0.2372 0.1915 0.1388 0.1983 0.1653 0.1245 

FSDT 0.2383 - - 0.1994 - - 

Present 0.2383 0.1924 0.1395 0.1994 0.1662 0.1252 

10 

10 

CPT 0.6363 0.3643 0.1975 0.5565 0.3338 0.1865 

FSDT 0.7469 - - 0.6670 - - 

Present 0.7469 0.4275 0.2319 0.6670 0.4001 0.2235 

100 

CPT 0.6363 0.3886 0.2197 0.5565 0.3573 0.2093 

FSDT 0.6374 - - 0.5576 - - 

Present 0.6374 0.3893 0.2201 0.5576 0.3580 0.2098 
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Table 5. Dimensionless stress components of a square four-layer angle-ply laminate  

arranged as (0,90)2 with various  1 2  /  E E   ratios (material 2). 

 

Table 6. Dimensionless fundamental frequency  of square antisymmetric  

cross-ply laminates (material 2, a/h=5). 

lamination Theory E1/E2=10 E1/E2=20 E1/E2=40 

(0/90)1 

3D [20] 6.9845 7.6745 8.5625 

HSDT [17] 6.9839 7.8095 9.0610 

Present 6.9392 7.7060 8.8333 

(0/90)2 

3D [20] 8.1445 9.4055 10.6790 

HSDT [17] 8.1999 9.6353 11.1853 

Present 8.2246 9.6885 11.2708 

(0/90)3 

3D [20] 8.4143 9.8398 11.2720 

HSDT [17] 8.4069 9.9205 11.5019 

Present 8.4183 9.9427 11.5264 

(0/90)5 

3D [20] 8.5625 10.0843 11.6245 

HSDT [17] 8.5131 10.0670 11.6682 

Present 8.5132 10.0638 11.6444 

 

Table 7. Dimensionless fundamental frequency  of a square three-layer cross-ply  

laminate resting on elastic foundation (material 2, E1/E2=40). 

a/h Theory K0=0,K1=0 K1=100,K1=0 K0=100,K1=10 

5 

CPT 18.299 20.704 24.777 

HSDT [16] 10.265 14.246 19.880 

Present 11.707 15.364 20.769 

10 

CPT 18.738 21.201 25.371 

HSDT [16] 14.700 17.751 22.595 

Present 15.930 18.786 23.423 

20 

CPT 18.853 21.331 25.526 

HSDT [16] 17.481 20.131 24.535 

Present 17.993 20.578 24.902 

50 

CPT 18.885 21.368 25.570 

HSDT [16] 18.640 21.152 25.390 

Present 18.738 21.238 25.462 

 

5. Conclusion 

In this article, a refined shear deformation theory is employed for bending and free vibration analyses of 

simply supported rectangular laminated composite plates resting on elastic foundation. The Winkler–

Pasternak two-parameter foundation model is considered in the analysis and a closed form solution is 

developed. The effects of laminate stacking sequence, width-to-thickness ratio, elastic foundation 

parameters and orthotropy ratio on the bending deformation and natural frequencies of plates are 

investigated. Comparison studies are performed to verify the validity and efficacy of the present model. It 

is exhibited that the theory is capable of predicting reliable results for thick and moderately thick 

laminated composites with reducing the computational cost.  

(E1/E2) 

ratio 
x   xz  

K0=0, K1=0 K1=100,K1=0 K0=100,K1=10 K0=0, K1=0 K0=100,K1=0 K0=100,K1=10 

40
 

-0.5061 -0.3504 -0.2180 0.1736 0.1202 0.0748 

30
 

-0.4905 -0.3188 -0.1886 0.1736 0.1128 0.0667 

10
 

-0.3988 -0.1904 -0.0937 0.1736 0.0829 0.0408 
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