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Abstract 

The energy loss of a 3-dimensional harmonic oscillator due to the quadrupole radiation in quadratic (R)f  gravity 

is calculated.  
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1. Introduction 

The f(R) gravity, has gained much interest in recent 

years, because of its potential ability to explain several 

phenomena at the cosmological scale, like dark matter, 

dark energy and inflation (De Felice and Tsujikawa, 

2010; Sotiriou and Faraoni, 2010). For example, the 

model with modified Lagrangian 
2

1 2(R) af R a R    leads to the inflating 

models of the universe (Starobinsky, 1980). Looking 

for more direct observational consequences of the 

(R)f  models, authors in (Laurentis and Capozziello, 

2011; De Laurentis and De Martino, 2011; De 

Laurentis, De Martino, 2013; Naf and Jetzer, 2011) 

have considered the energy loss of a binary system of 

pulsars in 
2

1 2(R) af R a R  model and 

compared the results with the Einstein gravity. 

Bearing in mind that the energy loss of binary pulsars 

due to the gravitational radiation is one of the 

successful predictions of Einstein gravity, it seems 

quite reasonable to study the problem of gravitational 

radiation in such modified theories of gravity. In this 

work, we consider a classical 3D harmonic oscillator 

and calculate its energy loss due to the gravitational 

radiation in 
2

1 2(R) af R a R   model. After a 

short review of quadrupole radiation in (R)f  gravity, 

in the next section, we derive the energy loss of a 3D 

(3-dimensional) harmonic oscillator in section 3. 
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2. Quadrupole Radiation In (R)f Gravity 

The Lagrangian density of quadratic (R)f gravity 

plus the matter, Lagrangian has the form (Laurentis 

and Capozziello, 2011) 
 

2

1 2(R) a 16 Mf R a R G               (1)  

 
The metric is assumed to be expanded around the 

Minkowski metric   as g h    . A 

lengthy calculation leads to the energy-momentum 

pseudo-tensor of the gravitational field as 
 

2

1 2 ( h )t a k k h h a k k 
           (2) 

 
Therefore, the rate of energy loss of a matter system 

coupled to gravity becomes (Laurentis and 

Capozziello, 2011) 
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where the time average for a periodic motion with 

period T is defined via 
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and the mass moment tensor of a particle with mass 

m has the form 
ij i jQ mx x .       

3. Gravitational Radiation by a Harmonic 

Oscillator  

A 3D harmonic oscillator can be modeled by means 

of the six identical spring lying along the axis 

(Fowles, 1985) (Fig. 1). For small vibrations of the 

particle around the origin of the system of 

coordinates, the equation of motion of is 
 

 
 

Fig. 1. Model of a 3D harmonic osillator 
 

2 0 x x                                                         (5)  (0.1) 
 
which admits the solution 
 

sin cost t  x A B                                  (6) 

 
The particle orbit lies on the plane common to the 

vectors A and B (Fowles, 1985). One immediately 

obtains 
 

2x x                                                          (7a) 
 

4x x                                                            (7b) 
 
Now let us look at (3). For the time derivatives of 

the mass moment we obtain 
 

( 3 3 )ij i j i j i j i jQ m x x x x x x x x     (8a) 
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Q m x x x x x x
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            (8b) 

 
By the help of (7) we get 
 

24 ( )ij i j i jQ m x x x x                         (9a) 

 
2 28 ( )ij i j i jQ m x x x x                        (9b) 

 
which, after taking the time average yields 
 

2 432ij

ijQ Q m         x xx x x xx x (10a) 
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From the definition of time average, Eq (4), one 

easily obtains 
 

4 4 3
sin cos

8
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2 2 1
sin cos

8
t t                                     (11b) 

 
3 3sin cos sin cos 0t t t t       (11c) 

 
Then, by means of the above relations, we find 
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0  x xx x                                                 (12e) 

 
Thus, equations (10a) and (10b) take the form 
 

 6 22 2 28ij

ijQ Q m  A B                   (13a) 

 

 
22 2 2832ij

ijQ Q m  A B                (13b) 

 
Therefore, from the equations (3), (13a) and (13b), 

one obtains the energy loss of a 3D oscillator as 
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For a motion along the straight line (1D oscillator), 

setting either 𝐀 = 0 or 𝐁 = 0, the loss rate reduces to 
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We observe that for 2 0a  , the energy loss has 

the well-known form based on the Einstein gravity, 
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i.e. (De Sabbata and Gasperini, 1985) 
 

2 6 4m
dE

A G
dt

                                    (16) 

 
Another interesting case is a circular motion, which 

implies A B  and . 0AB . Thus the rate of 

energy loss becomes  
 

 62 4 2

1 28
8

15

dE
Am G a a

dt
         (17) 

Acknowledgments 

This work has been supported in part by Iranian 

Space Agency. The authors would like to thank 

Tabriz Branch, Islamic Azad University for the 

financial support of this research, which is based on 

a research project contact.  

References 

Felice, D., & Tsujikawa, S. (2010). f(R) theories. Living 

Rev. Rel. 133. 

Fowles, G. (1985). Analytical mechanics. World 

Scientific, Singapore. 

Laurentis, M. D., & Capozziello, S. (2011). Quadrupolar 

gravitational radia- tion as a test-bed for f(R)-gravity. 

arXiv:1104.1942v1[gr-qc]. 

Laurentis, M. D. & Martino, I. D. (2011). Probing f(R)-

gravity by PSR J0348 + 0432. arXiv:1310.0711v1. 

Laurentis, M. D., & Martino, I. D. (2013). Testing f (R) 

theories using the first time derivative of the orbital 

period of the binary pulsars. arXiv: 1302.0220v [gr-

qc]. 

Naf, J., & P. Jetzer. (2011). On Gravitational Radiation in 

Quadratic f(R) Gravity. Phys. Rev. D84 024027 

arXiv:1104.2200 [gr-qc]. 

Sabbata, V. D., & Gasperini, M. (1985). Introduction to 

gravitation, World Scientific, Singapore. ‎ 

Starobinsky, A. A. (1980). The Inflationary Universe. 

Phys. Lett. B91 99. 
Thomas, P. Sotiriou, & Faraoni, V. (2010). f(R) theories of 

gravity. Rev. Mod. Phys. 82, 451. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


