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Abstract 

This paper aims to study a generalized double sinh-Gordon equation, which appears in several physical 

phenomena such as integrable quantum field theory, kink dynamics and fluid dynamics. Lie symmetry analysis 

together with the simplest equation method is used to obtain exact solutions for this equation. Moreover, we derive 

conservation laws for the equation by using two different approaches, namely, the direct method and the new 

conservation theorem due to Ibragimov.‎  

 

Keywords: Generalized double sinh-Gordon equation; Lie symmetry analysis; simplest equation method; 

conservation laws 

 
1. Introduction 

Physical phenomena in physics and other fields are 

often described by nonlinear partial differential 

equations (NLPDEs). Finding exact solutions of 

NLPDEs is one of the most important task, since 

they provide a better understanding of the physical 

phenomena. During the past several decades 

researchers have developed numerous methods to 

find exact solutions of NLPDEs. Some of the 

methods found in the literature are the Hirota 

bilinear method (Hirota, 2004; Ma et al., 2012; 

Zhang and Khalique, 2014), the dynamical system 

method (Li, 2013: Zhang et al., 2013; Zhang and 

Chen, 2009), the F -expansion method (Wang and 

Li, 2005), the homogeneous balance method (Wang 

et al., 1996), the )/( GG -expansion method (Wang 

et al., 2008), the Weierstrass elliptic function 

expansion method (Chen and Yan, 2006), the 

exponential function method (He and Wu, 2006), 

the tanh function method (Wazwaz, 2004), the 

extended tanh function method (Wazwaz, 2007), 

the simplest equation method (Kudryashov, 2005; 

Vitanov, 2010) and the Lie group analysis method 

(Bluman and Kumei, 1989; Olver, 1993; 

Ibragimov, 1994‒1996). 

In this paper we study the generalized double 

sinh-Gordon equation  
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1,0,=)(2sinh)(sinh2  nnunukuu xxtt    (1) 

 
where k ,   and   are non-zero real constants, 

which appear in several physical phenomena such 

as integrable quantum field theory, kink dynamics 

and fluid dynamics. It should be noted that when 

1,== kn  1/2=  and 0= , (1) reduces to the 

sinh-Gordon equation (Wazwaz, 2005). 

Furthermore, if ak = , /2= b  and 0= , (1) 

becomes the generalized sinh-Gordon equation 

(Wazwaz, 2006). Various methods have been used 

to study (1). In (Wazwaz, 2005) the tanh method 

and variable separable ODE method were employed 

to find the exact solutions of (1). The authors of 

Tang and Huang (2007) studied the existence of 

periodic wave, solitary wave, kink and anti-kink 

wave and unbounded wave solutions of (1) by using 

the method of bifurcation theory of dynamical 

systems. The solitary and periodic wave solutions 

of (1) were obtained in (Kheiri and Jabrari, 2010) 

by employing )/( GG -expansion method. In 

addition, it was shown that the solutions obtained in 

(Kheiri and Jabrari, 2010) are more general than 

those obtained in (Wazwaz, 2005). Recently, in 

(Magalakwe and Khalique, 2013) new exact 

solutions of (1) were found by employing 

exponential function method. 

The purpose of this paper is twofold. Firstly, we 

use the Lie group analysis along with the simplest 
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equation method to obtain exact solutions of the 

generalized double sinh-Gordon equation (1). 

Secondly, we derive conservation laws for the 

equation by using two different techniques, namely, 

the direct method and the new conservation 

theorem due to Ibragimov. 

The Lie symmetry method is based on symmetry 

and invariance principles and is a systematic 

method for solving differential equations 

analytically. It was first developed by Sophus Lie 

(1842-1899) and since then has become an essential 

mathematical tool for anyone investigating 

mathematical models of physical, engineering and 

natural problems. The Lie group analysis methods 

are presented in many books, see for example 

(Bluman and Kumei, 1989; Olver, 1993; 

Ibragimov, 1994‒1996). 

It is well known that conservation laws play a 

vital role in the solution process of differential 

equations (DEs). There is no doubt that the 

existence of a large number of conservation laws of 

a system of partial differential equations (PDEs) is 

an indication of its integrability (Bluman and 

Kumei, 1989). Comparison of different approaches 

to conservation laws for some partial differential 

equations in fluid mechanics is given in (Naz et al., 

2008). 

The organization of the paper is as follows. In 

Section 2, we obtain symmetry reductions of the 

generalized double sinh-Gordon equation (1) using 

Lie group analysis based on the optimal systems of 

one-dimensional subalgebras of (1). Exact solutions 

are also obtained using the simplest equation 

method. In Section 3 we first recall some 

definitions and theorems on conservation laws. We 

then construct conservation laws for (1) using two 

approaches; the direct method and the new 

conservation theorem due to Ibragimov. Finally 

concluding remarks are presented in Section 4. 

2. Symmetry reductions and exact solutions of (1) 

We assume that the vector field of the form

u
uxt

x
uxt

t
uxtX














),,(),,(),,(=   

will generate the symmetry group of (1). Applying 

the second prolongation 
[2]X  to (1) we obtain an 

overdetermined system of eight linear partial 

differential equations, namely 
 

0,=0,=0,=0,= xtuuuu k   

0,=20,=20,= xuxxtttuxxttxt kkk  
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Solving the above equations one obtains the 

following three Lie point symmetries:  
 

.=,=,= 321
t

x
x

ktX
t

X
x

X
















 

2.1. One-dimensional optimal system of 

subalgebras 

In this subsection we first obtain the optimal system 

of one-dimensional subalgebras of (1). Thereafter 

the optimal system will be used to obtain the 

optimal system of group-invariant solutions of (1). 

For this purpose we invoke the method given in 

(Olver, 1993). Recall that the commutator of iX  

and jX , denoted by ],[ ji XX , is given by   

 

ijjiji XXXXXX =],[  

 
and the adjoint transformations are given by   
 

.]],[,[
2

1

],[=))((A

2 



jii

jijji

XXX

XXXXXexpd





 

 
The commutator table of the Lie point 

symmetries of (1) and the adjoint representations of 

the symmetry group of (1) on its Lie algebra are 

presented in Table 1 and Table 2, respectively.  
 

Table 1. Commutator table of the Lie  

algebra of system (1) 
  

[ ji XX , ] 1X   2X   3X   

1X
  

0   0  2X
  

2X
  

0   0  1kX
  

3X
  2X

  1kX
 

0   

 
Table 2. Adjoint table of the Lie algebra of system (1) 

 

Ad 1X  2X  3X  

1X  1X  2X  23 XX   

2X  1X  2X  13 XkX 

 

 

3X  
2

1
2 1)

2

1
(

X

Xk






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2
2

1

1)
2

1
( Xk

kX









 

3X  

 
Thus, from Tables 1 and 2 and following the 

method given in (Olver, 1993) one can conclude 

that an optimal system of one-dimensional 

subalgebras of (1) is given by },,{ 3221 XXXcX  , 

where c  is a non-zero constant. 
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2.2. Symmetry reductions of (1) 

Here the optimal system of one-dimensional 

subalgebras constructed above will be used to 

obtain symmetry reductions. Thereafter, we will 

obtain the exact solutions of (1). 

 

Case 1. 21 XcX   

The symmetry generator 21 XcX   gives rise to the 

group-invariant solution   
 

),(= zWu                                                              (2) 

 
where ctxz =  is an invariant of the symmetry 

21 XcX   and W  is an arbitrary function of z . 

The insertion of (2) into (1) yields the ODE  
 

    0.=)(2sinh)(sinh2)()( 2 znWznWzWkc    (3) 

 
Using the transformation  

 

))((ln
1

=)( zH
n

zW                                                (4) 

 
on (3) we obtain the nonlinear second-order 

ordinary differential equation 
 

0.=)()(2

)(2)()2()()()2(

4

3222

nznHznH

znHzHkczHzHkc








(5) 

 
The integration of the above equation and 

reverting back to original variables, yields  
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)(exp)](2exp))(4exp
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where 1c  and 2c  are constants of integration. 

 

Case 2. 2X  

The symmetry operator 2X  results in the group-

invariant solution of the form   
 

),(= zWu                                                              (6) 

 

where xz =  is an invariant of 2X  and W  is an 

arbitrary function satisfying the ODE  
 

    0.=)(2sinh)(sinh2)( znWznWzWk      (7) 

 
Again using the transformation (4), equation (7) 

becomes  
 

0,=)(

)(2)(2)(2)()(2

4

32
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znHznHzHkzHzkH







     (8) 

 
whose solution is 
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)(exp)](2exp))(4exp
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where 1c  and 2c  are constants of integration and 

we obtain a steady state solution of (1). 

 

Case 3. 3X  

 

The symmetry 3X  gives rise to the group-

invariant solution 
 

),(= zWu                                                          (9) 

 

where 22= ktxz   is an invariant of 3X  and W  

satisfies the ODE  
 

 
  0.=)(2sinh

)(sinh2)(2)(4

znW

znWzWkzWkz








 

2.3. Exact solutions of (1) using simplest equation 

method 

In this subsection we invoke the simplest equation 

method (Kudryashov, 2005; Vitanov, 2010) to 

solve the highly nonlinear ODE (5). This will then 

give us the exact solution for the generalized double 

sinh-Gordon equation (1). The simplest equations 

that we will use are the Bernoulli and Riccati 

equations. For details, see for example (Adem and 

Khalique, 2013). 

2.3.1. Solutions of (1) using the Bernoulli equation 

as the simplest equation 

The balancing procedure (Vitanov, 2010) yields 

1=M  so the solutions of (5) take the form  
 

,=)( 10 GAAzH                                                 (10) 

 
where G satisfies the Bernoulli equation (Adem and 

Khalique, 2013). Inserting (10) into (5) and using 

the Bernoulli equation (Adem and Khalique, 2013) 

and thereafter, equating the coefficients of powers 

of iG  to zero, we obtain an algebraic system of 

five equations in terms of 10, AA , namely 
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Solving the above system of algebraic equations, 

with the aid of Maple, one possible solution is  
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Thus, reverting back to the original variables, a 

solution of (1) is (Adem and Khalique, 2013) 
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       (11) 

 
where ctxz =  and C  is an arbitrary constant of 

integration. 

2.3.2. Solutions of (1) using the Riccati equation as 

the simplest equation 

In this case the balancing procedure yields 1=M . 

So the solutions of (5) take the form  
 

,=)( 10 GAAzH                                                 (12) 

 
where G satisfies the Riccati equation (Adem and 

Khalique, 2013). Substituting (12) into (5) and 

making use of the Riccati equation (Adem and 

Khalique, 2013), we obtain an algebraic system of 

equations in terms of 10, AA  by equating the 

coefficients powers of iG  to zero. The resulting 

algebraic equations are  
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Solving the above equations, we get  
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and consequently, the solutions of (1) are (Adem 

and Khalique, 2013) 
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and  
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where ctxz =  and C  is an arbitrary constant of 

integration. 

3. Conservation laws of (1) 

In this section conservation laws will be derived for 

(1). However, first we briefly present some 

notations, definitions and theorems that will be 

utilized later. For details the reader is referred to 

(Ibragimov, 2007). 

3.1. Preliminaries 

We consider a k th-order system of PDEs  
 

,,1,=   0,=),,,,( )((1) muuuxE k                (15) 

 

of n  independent variables ),,,(= 21 nxxxx   and 

m  dependent variables ),,,(= 21 muuuu  . Let 

)((2)(1) ,,, kuuu   denote the collections of all first, 

second, , k th-order partial derivatives. This 

means that, ),(=),(=  uDDuuDu ijijii , 

respectively, where the  total derivative operator 

with respect to ix  is given by 
 

.,1,=   ,///= niuuuuxD jiji
i

i     (16) 

 
Now consider the system of adjoint equations to 

the system of k th-order differential equations (15), 
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which is defined by (Ibragimov, 2007) 
 

,,1,=   0,=),,,,,( )()(
* mvuvuxE kk                (17) 

 
where   

)(= ,,1,=
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and ),,,(= 21 mvvvv   are new dependent 

variables. 

The system (15) is said to be self-adjoint if the 

substitution of uv =  into the system of adjoint 

equations (17) yields the same system (15). 
 
If the system (15) admits the symmetry operator 
 

 uxX ii  //=                                     (19) 

 
then the system of adjoint equations (17) admits the 

operator 
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where the operator (20) is an extension of (19) to 

the variable v  and 
  are obtainable from   

 

.=)( 

  EEX                                                   (21) 

 

Theorem 3.1. (Ibragimov, 2007) Every Lie point, 

Lie-Bäcklund and nonlocal symmetry (19) admitted 

by the system (15) gives rise to a conservation law 

for the system consisting of the equation (15) and 

the adjoint equation (17), where the components 
iT  

of the conserved vector ),,(= 1 nTTT   are 

determined by 
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with Lagrangian given by   
 

).,,,(= )(kuuxEvL 
                                      (23) 

 
The differentiation of L  in (22) up to second-

order derivative, yields 
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3.2. Construction of conservation laws of (1) 

In this section conservation laws will be 

constructed for (1) by two different methods, 

namely the direct method and the new conservation 

theorem. 

We recall that the equation (1) admits the 

following three Lie point symmetry generators:  
 

.=,=,= 321
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3.2.1. Application of the direct method 

It is well-known that there exists a fundamental 

relationship between the point symmetries admitted 

by a given equation and the conservation laws of 

that equation. Following (Khalique and Mahomed, 

2009), we see that the conservation law  
 

0,=21 TDTD xt                                                (25) 

 
which must be evaluated on the partial differential 

equation, can be considered together with the 

following requirements: 
 

0,=)()()( 211][  xx
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0=)()()( 122][  tt
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in which 
][nX  is the nth  prolongation of a point 

symmetry of the original equation. The order of the 

extension is equal to the order of the highest 

derivative in 
1T  and 

2T . Consequently, for the 

given X , (25)-(27) can be solved to obtain the 

conserved vectors or tuple ),(= 21 TTT . 

The condition (25) on the equation (1) gives  
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Since 
1T  and 

2T  are independent of the second 

derivatives of u , it implies that the coefficients of 

txtt uu ,  and xxu  must be zero. Hence,  
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We now construct the conservation laws for (1) 

using the three admitted Lie point symmetries. 

We start with the translation symmetry 

,/=1 tX   which is already in its extended form. 

The symmetry conditions (26)-(27) yield  
 

0,=0,=
21

t

T

t

T








                                          (31) 

 
respectively. Therefore from (28)-(30) and (31) the 

components of the conserved vector of (1) 

associated with the symmetry 1X  are given by  

 

,)(]
2

)(2cosh

)(cosh2
[

2
=

6

4
5

2
4

2
41

cxj
n

nu

n

nu

k

c
ucuc

k

uc
T xx

t









 

,2= 754
2 cucuucT txt   

 

where 654 ,, ccc  and 7c  are arbitrary constants and 

)(xj  is an arbitrary function of x . 

Continuing in the same manner using 2X  and 

3X  we obtain the components of the conserved 

vector for equation (1) as  
 

8

4
5

2
4

2
41

]
2

)(2cosh

)(cosh2
[

2
=

c
n

nu

n

nu

k

c
ucuc

k

uc
T xx

t









 

),(2= 54
2 tpucuucT txt   

 
and  
 

,= 65
1 xcucT x   

,= 65
2 ktcucT t   

 

respectively, where 654 ,, ccc  and 8c  are constants 

and )(tp  is an arbitrary function of t . However, 

we note that the symmetry 3X  gives a trivial 

conserved vector. 

3.2.2. Application of the new conservation theorem 

In this subsection we use the new conservation 

theorem given in (Ibragimov, 2007) and construct 

conservation laws for (1). For applications of this 

theorem, see for example (Tracina et al., 2014; 

Gandarias and Khalique, 2014; da Silva and Freire, 

2014). The adjoint equation of (1), by invoking 

(18), is 
 

0,=)]nu(2sinh)nu(sinh2kuu(v[
u

=)v,u,,v,u,x,t(E

xxtt

xxxx
*







   (32) 

 
where ),(= xtvv  is a new dependent variable. Thus 

from (32) we have 
 

0.=)](2cosh)(cosh[2 nununvkvv xxtt     (33) 

 
It is clear from the adjoint equation (33) that 

equation (1) is not self-adjoint. By recalling (23), 

we obtain the Lagrangian for the system of 

equations (1) and (33) as 
 

)].(2sinh)(sinh2[= nunukuuvL xxtt    (34) 

 
(i) We first consider the Lie point symmetry 

generator tX /=1 . It can easily be seen from (20) 

that the operator 1Y  is the same as 1X  and that the 

Lie characteristic function tuW = . Thus, by using  

(24), the components 1,2= , iT i , of the conserved 

vector ),(= 21 TTT  are given by

.=

,))(2sinh)(sinh2(=

2

1

txxt

ttxx

kvuvkuT

vununukuvT



 

 

Remark: The conserved vector T  contains the 

arbitrary solution v  of the adjoint equation (33) 

and hence gives an infinite number of conservation 

laws. This remark also applies to the two cases 

given below. 

(ii) For the symmetry xX /=2 , we have 

.= xuW   Thus, by using (24), the symmetry 

generator 2X  gives rise to the following 

components of the conserved vector:   

.))(2sinh)(sinh2(=

,=

2

1

xxtt

txxt

ukvnunuuvT

vuuvT






 

(iii) The symmetry xkttxX  //=3  has the Lie 

characteristic function xt ktuxuW = . Thus, 

invoking (24), we obtain the conserved vector T , 

given by 
 

,

))(2sinh)(sinh2(=1

txxxt

ttxx

ktvukvuuktv

uxvnunukuxvT



 
 

.

))(2sinh)(sinh2(=

2

2

txtxx

txtt

kxvukvuutvk

ukxvnunuuktvT



 
 

4. Concluding remarks 

We have studied the generalized double sinh-

Gordon equation (1) using the Lie symmetry 

analysis. Symmetry reductions based on the optimal 
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systems of one-dimensional subalgebras of (1) and 

exact solutions with the help of simplest equation 

method were obtained. These exact solutions 

obtained here are different from the ones obtained 

in (Wazwaz, 2005; Wazwaz, 2006; Wazwaz, 2005; 

Tang and Huang, 2007; Kheiri and Jabrari, 2010; 

Magalakwe and Khalique, 2013). Also, the 

correctness of the solutions obtained here has been 

verified by substituting them back into (1). Finally, 

conservation laws for (1) were derived by 

employing two different methods; the direct method 

and the new conservation theorem. The usefulness 

of conservation laws was discussed in the 

introduction. 
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