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Abstract

In this paper, the quintic B-spline collocation scheme is employed to approximate numerical solution of the KdV-
like Rosenau equation. This scheme is based on the Crank-Nicolson formulation for time integration and quintic
B-spline functions for space integration. The unconditional stability of the present method is proved using Von-
Neumann approach. Since we do not know the exact solution of the nonlinear KdV-like Rosenau equation, a
comparison between the numerical solutions on a coarse mesh and those on a refine mesh is made to show the

efficiency of discussed method.
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1. Introduction

In 1895, Dutch physicist Diederick Korteweg and
his student Gustav de Vries (Korteweg, D. J. et al
1895), derived the famous equation, namely KdV
equation, to study the propagation of waves in one
dimension on the surface of water. The KdV
equation is a balance  between  time
evolution, nonlinearity and dispersion of waves in
one dimension on the surface of water. This
equation is one of the famous nonlinear equations
for solitary waves, and is one of the simplest and
most useful nonlinear model equations to study the
dynamics of dense discrete systems (Rosenau,
1986, Rosenau, 1988). In the study of the dynamics
of dense discrete systems, specially the cases of
wave-wave and wave-wall, interactions cannot be
described using the well-known KDV equation. To
overcome this shortcoming of the KDV
equation, Rosenau (Rosenau, 1986, Rosenau, 1988)
proposed the so-called Rosenau equation:

U, +U,.. +U, +uu, =0, xeQ te(0T] @

XXXXt

with the boundary conditions

ux,t)=u, (x,t)=0, xed te(@T], @

and an initial condition

u(x,0)=u,(x), xeQ, 3)
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where UO(X) is sufficiently smooth and satisfies
the compatibility ~condition, (=(0,1) and
0<T <+oo. For further physical significance of the
Rosenau equation (1), we refer to papers (Rosenau,
1986) and the references given therein.

The global existence and the uniqueness of the
solution for Eq. (1) was proved by Park (Park,
1990). But it is difficult to find the analytical
solution for Eq. (1). Since then, much work has
been done by using some different numerical
methods to approximate solution of Eq. (1) (Chung,
1998, Chung, et al. 2001, Manickam, et al. 1998,
Kim, et al. 1998) and also the references therein.

In this paper, the quintic B-spline collocation
scheme is employed to approximate numerical
solution of the KdV-like Rosenau equation (1). This
scheme is based on the Crank-Nicolson
formulation for time integration and quintic B-
spline functions for space integration. The present
scheme will be used first to construct a numerical
model for the KdV-like Rosenau equation (1) and
then its results will implement to approximate the
numerical solution of (1).

The quintic B-spline basis has been used to build
up the approximation solutions for some nonlinear
differential equations. For instance, numerical
solution of the Burger equation has been found by
quintic  B-spline  collocation  method in
(Sepehrian, et al. 2008). An algorithm based on
quintic B-spline Galerkin method was set up to
obtain the solutions of the RLW equation in
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(Dag, et al. 2006). Collocation of quintic B-spline
interpolation functions over finite elements was
described to approximate the numerical solution of
the Korteweg-de Vries (KdV) equation and KdV-
Burgers equation in (Zaki et al. 2000, Gardner et al.
1990, Lee, et al. 1997), respectively.

The organization of this paper is as follows. In
Section 2, quintic B-spline collocation scheme is
explained. In Sections 3 the method is applied to
the KdV-like Rosenau equation (1). In Section
4, the stability analysis of the method is
discussed. In Section 5, one examples is
presented. Also the global relative error at different
time is obtained for the example. An overall
summary of the present work is given at the end of
the paper in Section 6.

2. Description of the quintic B-spline method

The solution domain 0 < X <1 is partitioned in to

a mesh of uniform length N =X, —X, by knots
X; where 1=012,---,N such  that
0=Xy<X; <-+-<X,, <X\ =L Our

numerical treatment for Rosenau equation using the
collocation method with quintic B-spline is to find

an approximate solution Uy (X,t) to the exact
solution U(X,t) in the form:

N +2

Uy (x,t)= > 6 (1)B; (x), )

i=-2

where O, (t) are time-dependent quantities to be

determined from the boundary conditions and
collocation form of the differential equations, and

Bi (X) are the quintic B-spline basis functions at
knots, given by

(X =X 5)°, X €[X;_3,X;,)
(x _Xi—3)5_6(x —X; )’ X €[X; 5% 4)
1 (X =X;5)° =6(X =X; ,)° +15(x —X;,)°, X €[X;4,X;)
B; (x) :F (Xi5=%)° =6(X;,, =X)° +15(X; ; —X)*, X €[X;,X;,,) )

(Xi+3_x)5_6(xi+2_x)5’ X €[X.1,X.,)

(Xi s —X)°, X €[Xi,2,Xi )

0, otherwise

B,_,(X)=1-56+10&° ~10£° +5&° - &,

where  {B2,B4,B0,B,,By1o Byt ok B 2(x) = 26506+ 20&% + 206~ 20&* +58°
forms a basis over the region 0<X<1. Each mern e . '
quintic B-spline covers six elements so that an B,, (x) =66-605°+305" ~10¢, @)
element is covered by six quintic B-splines. Over Bm+1(x):26+505+20§2—2053—20§4 .|_10§5,
the element [X.,X..] the variation of the B, (x)=1+5£+102% +1068° +58* 52,

function U (X,t) is formed from

m+3

Ux.t)= 2 & )B;x), (6)
j=m-2
In terms of a local coordinate system & given by
hé=x-X,, where h=X,—X, and
0< £ <1, expressions for the element splines are
[10]

Using approximate function (4) and quintic
spline (5), the approximate values at the knots of

U(X) and its derivatives up to fourth order are

determined in terms of the time parameters O, as

O g 2604 +660, +266,, , +0,

Um = m+2 m+1 m-21
hU;, =5(6;,.,+106,,, =106, , =6, )
thr,n’ = 20(é‘m+2 +2§m+1 _6§m +2§m—l +§m—2)’ 8

hu r;1”: 60(5m+2 _25m+1 +25m—1 _5"”-2)’
hAUé]iV) :120(§m+2 =45 +65m _45m71+§m—2)'

m+1

where dashes represent differentiation with respect
to space variable.
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3. Solution of Rosenau equation

The Rosenau equation can be rewritten as
(+u,,, ), +uu, +u, =0, ©)
with the boundary conditions

u(0,t)=u(1,t)=0,

U, O1)=U,, (L) =0, o
and initial condition
u(x,0) =uy(x), (12)

where (X,t) €[0,1]x(0,T] we discrete the
time derivative of Eq. (9) by a first order accurate
forward difference formula and apply the 6-
weighted  scheme, (0<@<1), to the

space derivative at two adjacent time levels to
obtain the equation

(U n+1+(Uxxxx )n+1)_(U " +(Uxxxx )n)
k

+0{(UUX )n+l +(UX )n+l}
HL-0){UU,)" +U, )} =0, (12)

where K is time step and the superscripts N and

N +1 are successive time levels. In this work we

take .9:%,. Hence, Eq. (12) takes the form

(U i +(Uxxxx )n+1)_(U " +(Uxxxx )n)
k

+(UUX)””2+(UUX)n +(Ux)”“er(Ux)n -0

The nonlinear term in Eq. (13) is approximated
by the following formula based on Taylor series:

(UUX )n+1 :U n+1(UX )n -I-U n (Ux )n+1 —(UUX )n’ (14)
Putting values from Eq. (14) in Eq. (13) we get,

(13)

(U nJr1+(Uxxxx )n+1)_(U " +(Uxxxx )n)

k
n+l n n n+l
RACHELAR )
n+l n
L))

2

Rearranging the terms and simplifying we get,
U e +(lJXXXX
+kE{U n+1(UX)n +U n(UX)n+1+(UX)n+1} (16)

n n k n
=U +(Uxxxx) _E(Ux) )

)n+1

Substituting the approximate solution U for U

and putting the values of the nodal values U , its
derivatives using Egs. (8) at the knots in Eq. (16)
yields the following difference equation with the

variables ; and for m=0,1,2,...N:
C25n+1

m+2

=C,0"

m+2

+C, 0 +C o0 +C o +C Lo

_ _ — a7
+C 15rrr]]+1 +C 053 +C _15an1 +C -25&2,

where

120 k k5
C,=1+—+-U'+—=U"+]),
120 k n kb5 0
Cl=26—4F+E(26UX)+EH(1(1J +10),

18
CO=66+61hZ?+l;(66UX”), 18)

120 k n k5 ;
C‘1:26_4F+§(26UX)_§H(MJ +10),
120 k,,» k5,,
C’2:1+F+§UX_§H(U +1),

and
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c, :1+@_£§’ 0, +260, +6606,+260 ,+0, =0, 0
h* 2h 0,+206,—606,+20 ,+5,=0,

Ci=26-4120 10k 5

h 2h then
C. =664+ 61:—9 | (19) 0, =-36,-0, 1)
~ 120 ., k5 0, =120, =0y,
C1=26-4—+10-—,

h ) 2h Similarly at Xy =1, putting m=N in (8) we
— 120 5
C—Z :1+F+EF, ge':’

The system (17) consists of (N +1) linear
equations in (N +5) unknowns
(0.5:0.4165,01, ey Oy 10O S 101 1)

To obtain a unique solution to the system (17),
four additional constraints are required. These are
obtained from the boundary  conditions
(10). Imposition of the boundary conditions enables

us to eliminate the parameters O ,,0, and
Ona11Onsp from the system. In order to eliminate
the parameters & ,,0; and Oy,q,Oy,, from the
system (17), we have used the boundary conditions
u(x,,t)=u(x,,t)=0,
U (Xo,t) =U, (X ) =0,
Expanding U in terms of approximate quintic B-

spline formula from (8) at X, = 0, and putting
M =20 in (8) we get,

1¢c ,-_,+C, C,-C, C,-C,
c,-x, C,-C, C,

o C_,0 C,

0 o o

A= 0 0 g
0 0 o

0 0 0

0 0 0

where C,,C,,C,,C; and C, are given

8.y +260,,,+660, +268, ,+5,_,=0,

5. +25, ., ~65, 425, ,+6,,=0, &
which leads to
Syt =36, ~8, .,

N +1 N N -1 (23)

5N 2= 125N _5N -2

Eliminating parameters §,,5, and s, ,6,,, the

system (17) is reduced to a penta-diagonal system
of (N +1) linear equations with (N +1)

unknowns, given by AX  ; =AX  where
X = 00,0000 L0
Xy =(35,001 8 s Oy 1,0%)

and T stands for transpose. The coefficient matrix
A is given by

0 0 0
0 0 0
C, 0 0
C, C, 0
g 0 0
Co C, C,
C—l C0 _Cz Cl_a:z
c,-C, C,-C, C,-3,+1x,

in (18), and the coefficient matrix K is
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12C ;- 1+Co C1-Co C.-C-> O 0 0 0
Co-Xo- Co—C- Ci (oF: 0 0 0
C- Cu Co C: C. 0 0
- 0 C- C. Co of C. 0 (25)
A= 0 0 -, . ' . 0
0 0 C- C. Co C: C.
0 0 0 C2 Ci Co-C, C.-C»
0 0 0 C,-C, Co-C:i Co-X.:+12X,

where 6_2,6_1,60,61 and (_:2 are also given in

(18). This penta-diagonal system can be solved by a
modified form of Thomas algorithm. The time

evolution of the approximate solution Uy (X,t)
is determined by the time evolution of the vector
X,'\] which is found repeatedly by solving the

. . 0
recurrence relation, once the initial vectors Xy

have been computed from the initial and boundary
conditions.

3.1. The initial state

The initial vector X,(\)I can be determined from
the initial condition U(X,0)=U,(X) which gives

(N +1) equation in (N +5) unknowns. For the

determination of the unknowns relations at the knot
the boundary conditions are used (10). The initial
vector is then determined as the solution of

the matrix equation AJX 5 =U, (X ), where

5 60 6 0 0 0 O
WIS 9 0 o0
i 2 4
1 26 6 26 1 0 0
wo|0 1 2% 68 2% 1 0
N — . . . 1
0 0 0
0 0 1 26 6 26 1
0 o o 1 151510
P2 4
0 0 0 0 6 60 54

and

Xy = (05,0003, 1 00)

UO(X) = (UO(XO)’UO(Xl)'"'1u0(XN—1)’uO(XN ))T )
where Uy(X;),1 =0,1,2,...N can be obtained
by initial condition (11).

4. Stability of the proposed scheme

Von-Neumann stability method is used for the
stability of scheme developed in the previous
section. To apply this method, we have linearized

the non-linear term UU, by considering U as
a constant in (14), therefore U, ,U,,...= 0. Now
substitute, O =&" exp(ipmh) into linearized

form of (14), where O and h are the
mode number and element size, respectively, and

i =v/—1, Eq. (17) leads to

L +Ce"" +C,+C g7 +C 27"} 5)
:EzGZiph +51e‘pwh -I-Eo +64e“ph +6726_2iph,
Here C; and Cj, for j=—2,-1,0,1,2 have

their predefined definition given in (18). Set

120 K K5
X =222 v =Xy z2=%2y" 4
he 2 X 2 h a

:Eg Simplifying Eq. (26), we get
on plitying Eq. » We g

a—ib

&=—4, @7)
a+ib,

where
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8.=(2+2X)cos(2ph) +(52-8X )cos(ph) both infinite norm and L*-norm R = 1 3 R,
+66+6X , el

b, = 2W sin(2ph)+20W sin(ph), (28)
b, =2(Z W )sin(2ph)+20(Z +W )sin(ph),

From (28), we get

b, =b, +2Z sin(2ph)+20Z sin(ph),

therefore @’ +b12 <a’ +b22. This  implies
|€] <1, which is the condition for scheme to be
unconditionally stable.

5. Numerical computations

Consider the Rosenau equation

U +u,,, ) +uu, +u, =0, (29)

XXXX

where (X,t) €[0,1]x[O,T ],with the boundary
conditions

u(0,t)=u(Lt) =0,

te[0T], (3o
0, O1)=u, (Ly=0, " SOTh €O

and initial condition

u(x,0)=x*(1-x*, x€[01], (31)

We discredits the equations (29)-(31) using
Quintic B-spline collocation method (6) with

1 111 .
k=—, and h==,—,—,— . Since we do
20 510 20 40
not know the exact solution of (29)-(31), a
comparison between the numerical solutions on a
coarse mesh and those on a refined mesh is made

[13]. Since the numerical solution Um of Quintic

B-spline collocation method (8) is zero at
boundaries X=0,1, we compute ratios of
convergence at each time step N,

us-Up a0 -up)
Rn: 2 2
h y

U -Upl+a,00-up)
2 4 2

4

n n n
Vi, = v,
h2

The average ratio of convergence Rr? , based on

where AV =

on 0<Xx<1and O0<t<1 are given in Tables 1
and 2. Here Ur? is a numerical solution of (31) at

t, = Nk with step size h, which is shown in the
Figs. 1, 2, 3 and Fig. 4.

Table 1. The ratios of convergence Rr? , based on

infinite norm when | = 1
20

Ry
1 1 1 1
n h= = h= o h =% h= 0
1 4.0966 4.0189 4.0042 4.0010
2 4.0966 4.0189 4.0042 4.0010
3 4.0982 4.0202 4.0050 4.0017
4 4.0997 4.0215 4.0058 4.0024
5 4.1012 4.0228 4.0066 4.0031
6 4.1027 4.0241 4.0073 4.0037
7 4.1042 4.0254 4.0081 4.0044
8 4.1057 4.0267 4.0089 4.0051
9 4.1072 4.0279 4.0097 4.0058
10 4.1088 4.0292 4.0104 4.0065
11 4.1103 4.0305 40112 4.0072
12 41118 4.0318 4.0120 4.0079
13 41133 4.0331 40128 4.0085
14 4.1148 4.0344 4.0136 4.0092
15 4.1163 4.0357 4.0143 4.0099
16 4.1178 4.0370 4.0151 4.0106
17 4.1193 4.0383 4.0159 40113
18 4.1208 4.0396 40167 4.0120
19 41223 4.0409 4.0175 4.0127
20 4.1239 4.0422 4,0182 4.0134
21 4.1254 4.0435 4.0190 4.0141
R 4.1103 4.0306 40113 4.0072

o
<

. n |_2
Table 2. The ratios of convergence Rh , based on

normwhen = 1

20
Ry

1 1 1 1
n h 5 10 " 20 h 40
1 4.1041 4.0221 4.0052 4.0013
2 4.1041 4.0221 4.0052 4.0013
3 4.1059 4.0235 4.0057 4.0016
4 4.1077 4.0248 4.0062 4.0019
5 4.1095 4.0261 4.0068 4.0022
6 41113 4.0274 4.0073 4.0026
7 41131 4.0288 4.0078 4.0029
8 4.1149 4.0301 4.0083 4.0032
9 4.1167 4.0314 4.0089 4.0036
10 4.1185 4.0328 4.0094 4.0039
11 4.1203 4.0341 4.0099 4.0042
12 4.1220 4.0354 4.0105 4.0046

13 4.1238 4.0368 4.0110 4.0049
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14 4.1256 4.0381 4.0115 4.0052
15 41274 4.039%4 4.0120 4.0056
16 4.1292 4.0408 4.0126 4.0059
17 4.1310 4.0421 4.0131 4.0062
18 4.1328 4.0434 4.0136 4.0066
19 4.1345 4.0448 4.0142 4.0069
20 4.1363 4.0461 4.0147 4.0072
21 41381 4.0475 4.0152 4.0076
R., 41203  4.0342  4.0100  4.0043
03 0
0.25 \
o5 s Fig. 3. The concentration numerical solution U (x,t), for

Fig. 1. The concentration numerical solution U (X,t),

for het and k:i plotted as a function of x=0:h:1
5 20

and t=0:k:10

Fig. 2. The concentration numerical solution U(x,t), for

h=L and | _ 1 plotted as a function of x=0:h:1
10 20

and t=0:k:10

_ 1 and, _ 1 plotted as a function of x=0:h:1 and

h_zo 20
t=0:k:10

TN
i\

107
1
55557
s
s ll':""’;" 224
222252224502
e s,

Fig. 4. The concentration numerical solution U (x,t), for

ho Ll and - 1 plotted as a function of X=0:h:1
40 20

and t=0:k:10

6. Conclusions

In this paper, a numerical method for the nonlinear
KdV-like Rosenau equation is proposed. This
scheme is based on the Crank-Nicolson formulation
for time integration and quintic B-spline functions
for space integration. The structure, application and
results of the employed method shows that the
quintic B-spline method considered in this work is
simple and straightforward. The employed method
can be applied for a large class of linear and
nonlinear problems. The obtained solution is
presented graphically at various time steps which
show the same characteristics as those given in the
literature. Since we do not know the exact solution
of the nonlinear KdV-like Rosenau equation, a
comparison between the numerical solutions on a
coarse mesh and those on a refined mesh is made.

According to the ratios of convergence Rr? ,
mentioned in the Tables 1 and 2, based on infinite
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norm and LZ-norm respectively, it can be
concluded that the quintic B-spline collocation
methods is both efficient and reliable for obtaining
the numerical solutions of the partial differential

equations.
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