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Abstract 

In this paper, the quintic B-spline collocation scheme is employed to approximate numerical solution of the KdV-

like Rosenau equation. This scheme is based on the Crank-Nicolson formulation for time integration and quintic 

B-spline functions for space integration. The unconditional stability of the present method is proved using Von-

Neumann approach. Since we do not know the exact solution of the nonlinear KdV-like Rosenau equation, a 

comparison between the numerical solutions on a coarse mesh and those on a refine mesh is made to show the 

efficiency of discussed method.  
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1. Introduction 

In 1895, Dutch physicist Diederick Korteweg and 

his student Gustav de Vries (Korteweg, D. J. et al 

1895), derived the famous equation, namely KdV 

equation, to study the propagation of waves in one 

dimension on the surface of water. The KdV 

equation is a balance between time 

evolution, nonlinearity and dispersion of waves in 

one dimension on the surface of water. This 

equation is one of the famous nonlinear equations 

for solitary waves, and is one of the simplest and 

most useful nonlinear model equations to study the 

dynamics of dense discrete systems (Rosenau, 

1986, Rosenau, 1988). In the study of the dynamics 

of dense discrete systems, specially the cases of 

wave-wave and wave-wall, interactions cannot be 

described using the well-known KDV equation. To 

overcome this shortcoming of the KDV 

equation, Rosenau (Rosenau, 1986, Rosenau, 1988) 

proposed the so-called Rosenau equation:  
 

= 0, , (0, ],t xxxxt x xu u u uu x t T        (1) 

 
with the boundary conditions  
 

( , ) = ( , ) = 0, , (0, ],xxu x t u x t x t T        (2) 

and an initial condition  
 

0( ,0) = ( ), ,u x u x x                                    (3) 
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where )(0 xu  is sufficiently smooth and satisfies 

the compatibility condition, (0,1)=  and 

<<0 T . For further physical significance of the 

Rosenau equation (1), we refer to papers (Rosenau, 

1986) and the references given therein.  

The global existence and the uniqueness of the 

solution for Eq. (1) was proved by Park (Park, 

1990). But it is difficult to find the analytical 

solution for Eq. (1). Since then, much work has 

been done by using some different numerical 

methods to approximate solution of Eq. (1) (Chung, 

1998, Chung, et al. 2001, Manickam, et al. 1998, 

Kim, et al. 1998) and also the references therein.  

In this paper, the quintic B-spline collocation 

scheme is employed to approximate numerical 

solution of the KdV-like Rosenau equation (1). This 

scheme is based on the Crank-Nicolson 

formulation for time integration and quintic B-

spline functions for space integration. The present 

scheme will be used first to construct a numerical 

model for the KdV-like Rosenau equation (1) and 

then its results will implement to approximate the 

numerical solution of (1).  

The quintic B-spline basis has been used to build 

up the approximation solutions for some nonlinear 

differential equations. For instance, numerical 

solution of the Burger equation has been found by 

quintic B-spline collocation method in 

(Sepehrian, et al. 2008). An algorithm based on 

quintic B-spline Galerkin method was set up to 

obtain the solutions of the RLW equation in 

http://ijsts.shirazu.ac.ir/
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(Dag, et al. 2006). Collocation of quintic B-spline 

interpolation functions over finite elements was 

described to approximate the numerical solution of 

the Korteweg-de Vries (KdV) equation and KdV-

Burgers equation in (Zaki et al. 2000, Gardner et al. 

1990, Lee, et al. 1997), respectively.  

The organization of this paper is as follows. In 

Section 2, quintic B-spline collocation scheme is 

explained. In Sections 3 the method is applied to 

the KdV-like Rosenau equation (1). In Section 

4, the stability analysis of the method is 

discussed. In Section 5, one examples si 

presented. Also the global relative error at different 

time is obtained for the example. An overall 

summary of the present work is given at the end of 

the paper in Section 6.  

2. Description of the quintic B-spline method 

The solution domain 10  x  is partitioned in to 

a mesh of uniform length ii xxh 1= , by knots

ix where = 0,1,2, ,i N  such that 

0 1 10 = < < < < =1n Nx x x x . Our 

numerical treatment for Rosenau equation using the 

collocation method with quintic B-spline is to find 

an approximate solution  ),( txUN  to the exact 

solution ),( txu  in the form:  

 
2

= 2

( , ) = ( ) ( ),
N

N i i
i

U x t t B x




                           (4) 

 

where )(ti  are time-dependent quantities to be 

determined from the boundary conditions and 

collocation form of the differential equations, and 

)(xBi  are the quintic B-spline basis functions at 

knots, given by 
 

5
3 3 2

5 5
3 2 2 1

5 5 5
3 2 1 1

5 5 5
5 3 2 1 1

5 5
3 2 1 2

5
3

( ) , [ , )

( ) 6( ) , [ , )

( ) 6( ) 15( ) , [ , )
1

( ) = ( ) 6( ) 15( ) , [ , )

( ) 6( ) , [ , )

( ) ,

i i i

i i i i

i i i i i

i i i i i i

i i i i

i

x x x x x

x x x x x x x

x x x x x x x x x

B x x x x x x x x x x
h

x x x x x x x

x x x

  

   

   

   

   



 

   

     

     

   

  2 3

,

[ , )

0, otherwise

i ix x 













(5) 

 

where },,...,,,,,{ 2121012  NN BBBBBBB  

forms a basis over the region 10  x . Each 

quintic B-spline covers six elements so that an 

element is covered by six quintic B-splines. Over 

the element ],[ 1mm xx  the variation of the 

function ),( txU  is formed from  

 
3

= 2

( , ) = ( ) ( ),
m

j j
j m

U x t t B x




                           (6) 

 

In terms of a local coordinate system   given by 

mxxh = , where mm xxh 1=  and 

10  , expressions for the element splines are 

[10]  
 

2 3 4 5
2

2 3 4 5
1

2 4 5

2 3 4 5
1

2 3 4 5
2

5
3

( ) =1 5 10 10 5 ,

( ) = 26 50 20 20 20 5 ,

( ) = 66 60 30 10 ,

( ) = 26 50 20 20 20 10 ,

( ) =1 5 10 10 5 5 ,

( ) = .

m

m

m

m

m

m

B x

B x

B x

B x

B x

B x

    

    

  

    

    













    

    

  

    

    

      (7) 

 
Using approximate function (4) and quintic 

spline (5), the approximate values at the knots of 

)(xU  and its derivatives up to fourth order are 

determined in terms of the time parameters m  as  

 

2 1 1 2

2 1 1 2

2
2 1 1 2

3
2 1 1 2

4 ( )
2 1 1 2

= 26 66 26 ,

= 5( 10 10 ),

= 20( 2 6 2 ),

= 60( 2 2 ),

=120( 4 6 4 ),

m m m m m m

m m m m m

m m m m m m

m m m m m

iv
m m m m m m

U

hU

h U

h U

h U

    

   

    

   

    

   

   

   

   

   

   

   

    

   

   

 (8) 

 
where dashes represent differentiation with respect 

to space variable.  
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3. Solution of Rosenau equation 

The Rosenau equation can be rewritten as  
 

( ) = 0,xxxx t x xu u uu u                                  (9) 

 
with the boundary conditions  
 

(0, ) = (1, ) = 0,

(0, ) = (1, ) = 0,xx xx

u t u t

u t u t
                                  (10) 

 
and initial condition  
 

0( ,0) = ( ),u x u x                                              (11) 

 

where ( , ) [0,1] (0, ].x t T   We discrete the 

time derivative of Eq. (9) by a first order accurate 

forward difference formula and apply the  -

weighted scheme,  1)(0  , to the 

space derivative at two adjacent time levels to 

obtain the equation  
 

   

 

 

1 1

1 1

( ) ( )

( ) ( )

(1 ) ( ) ( ) = 0,

n n n n
xxxx xxxx

n n
x x

n n
x x

U U U U

k

UU U

UU U





 

 

  

 

                  (12) 

 

where k  is time step and the superscripts n  and 

1n  are successive time levels. In this work we 

take 
1

= ,
2

 . Hence, Eq. (12) takes the form  

 

   1 1

1 1

( ) ( )

( ) ( ) ( ) ( )
= 0,

2 2

n n n n
xxxx xxxx

n n n n
x x x x

U U U U

k

UU UU U U

 

 

  

 
 

   (13) 

 
The nonlinear term in Eq. (13) is approximated 

by the following formula based on Taylor series:  
 

1 1 1( ) = ( ) ( ) ( ) ,n n n n n n
x x x xUU U U U U UU        (14) 

 
Putting values from Eq. (14) in Eq. (13) we get,  

 

   1 1

1 1

1

( ) ( )

( ) ( )

2

( ) ( )
= 0,

2

n n n n
xxxx xxxx

n n n n

x x

n n

x x

U U U U

k

U U U U

U U

 

 



  







               (15) 

 
Rearranging the terms and simplifying we get,  

 

 

1 1

1 1 1

( )

( ) ( ) ( )
2

= ( ) ( ) ,
2

n n
xxxx

n n n n n
x x x

n n n
xxxx x

U U

k
U U U U U

k
U U U

 

  



  

 

        (16) 

 

Substituting the approximate solution U  for u  

and putting the values of the nodal values U , its 

derivatives using Eqs. (8) at the knots in Eq. (16) 

yields the following difference equation with the 

variables i  and for  Nm 0,1,2,...,= : 

 
1 1 1 1 1

2 2 1 1 0 1 1 2 2

2 1 0 1 22 1 1 2= ,

n n n n n
m m m m m

n n n n n
m m m m m

C C C C C

C C C C C

    

    

    
     

    

   

   
  (17) 

 
where  

2 4

1 4

0 4

1 4

2 4

120 5
=1 ( 1),

2 2

120 5
= 26 4 (26 ) (10 10),

2 2

120
= 66 6 (66 ),

2

120 5
= 26 4 (26 ) (10 10),

2 2

120 5
=1 ( 1),

2 2

n n
x

n n
x

n
x

n n
x

n n
x

k k
C U U

h h

k k
C U U

h h

k
C U

h

k k
C U U

h h

k k
C U U

h h





   

   

 

   

   

(18) 

 
and  
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2 4

1 4

0 4

1 4

2 4

120 5
=1 ,

2

120 5
= 26 4 10 ,

2

120
= 66 6 ,

120 5
= 26 4 10 ,

2

120 5
=1 ,

2

k
C

h h

k
C

h h

C
h

k
C

h h

k
C

h h





 

 



 

 

                             (19) 

 

The system (17) consists of ( 1)N   linear 

equations in ( 5)N   unknowns  

2 1 0 1 2 1 1 2( , , , , ,..., , , , ) ,T
N N N N              

To obtain a unique solution to the system (17), 

four additional constraints are required. These are 

obtained from the boundary conditions 

(10). Imposition of the boundary conditions enables 

us to eliminate the parameters  12,    and 

21,  NN   from the system. In order to eliminate 

the parameters 12,    and  21,  NN   from the 

system (17), we have used the boundary conditions  
 

0

0

( , ) = ( , ) = 0,

( , ) = ( , ) = 0,

N

xx xx N

u x t u x t

u x t u x t
 

 
Expanding u  in terms of approximate quintic B-

spline formula from (8) at 0,=0x  and putting 

0=m  in (8) we get,  

 

2 1 0 1 2

2 1 0 1 2

26 66 26 = 0,

2 6 2 = 0,

    

    
 

 

   

   
           (20) 

 
then  
 

1 0 1

2 0 2

= 3 ,

=12 ,

  

  




 


                                              (21) 

 

Similarly at 1,=Nx  putting Nm =  in (8) we 

get,  
 

2 1 1 2

2 1 1 2

26 66 26 = 0,

2 6 2 = 0,

N N N N N

N N N N N

    

    
   

   

   

   
    (22) 

 
which leads to  
 

1 1

2 2

= 3 ,

=12 ,

N N N

N N N

  

  
 

 

 


                                     (23) 

 
Eliminating parameters 

12,    and 
21,  NN   the 

system (17) is reduced to a penta-diagonal system 

of ( 1)N   linear equations with ( 1)N   

unknowns, given by 1 =n nAX AX  where  

 
1 1 1 1 1

1 0 1 2 1

0 1 2 1

= ( , , ,..., , ) ,

= ( , , ,..., , ) ,

n n n n n T
n N N

n n n n n T
n N N

X

X

    

    

    
 



 

 

and T  stands for transpose. The coefficient matrix 

A  is given by 

 

2 1 0 1 0 2 2

0 2 0 2 1 2

2 1 0 1 2

2 1 0 1 2

2 1 0 1 2

2 1 0 2 1 2

2 2 0 1 0 1 2

12 3 0 0 0 0

3 0 0 0

0 0 0

0 0

= 0 0 0

0 0

0 0 0 3

0 0 0 0 3 12

C C C C C C C

C C C C C C

C C C C C

C C C C C

A

C C C C C

C C C C C C

C C C C C C C

  

 

 

 

 

 



    
 

  
 
 
 
 
 
 
  
 

    
 
 

(24) 



where 2 1 0 1, , ,C C C C   and 2C  are given in (18), and the coefficient matrix A , is  

 



 

 

 
285                      IJST (2015) 39A3: 281-288 

 

 

2 1 0 1 0 2 2

0 2 0 2 1 2

2 1 0 1 2

2 1 0 1 2

2 1 0 1 2

2 1 0 2 1 2

2 2 0 1 0 1 2

12 3 0 0 0 0

3 0 0 0

0 0

0 0

= 0 0 0

0 0

0 0 0 3

0 0 0 0 3 12

C C C C C C C

C C C C C C

C C C C C

C C C C C

A

C C C C C

C C C C C C

C C C C C C C

  

 

 

 

 

 



    
 

  
 
 
 
 
 
 
 
 

  
    
  
 

(25) 


 

where 2 1 0 1, , ,C C C C   and  2C  are also given in 

(18). This penta-diagonal system can be solved by a 

modified form of Thomas algorithm. The time 

evolution of the approximate solution ),( txUN  

is determined by the time evolution of the vector 
n
NX  which is found repeatedly by solving the 

recurrence relation, once the initial vectors 
0
NX  

have been computed from the initial and boundary 

conditions.  

3.1. The initial state 

The initial vector 
0
NX  can be determined from 

the initial condition )(=,0)( 0 xuxu  which gives 

( 1)N   equation in ( 5)N   unknowns. For the 

determination of the unknowns relations at the knot 

the boundary conditions are used (10). The initial 

vector is then determined as the solution of 

the matrix equation 
0 0

0( ),N NA X u x where 

 

0

54 60 6 0 0 0 0

101 135 105
1 0 0 0

4 2 4

1 26 66 26 1 0 0

0 1 26 66 26 1 0
= ,

0 0 0

0 0 1 26 66 26 1

105 135 101
0 0 0 1

4 2 4

0 0 0 0 6 60 54

NA

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
and  

0 0 0 0 0 0
0 1 2 1

0 0 0 0 1 0 1 0

= ( , , , , , ) ,

( ) = ( ( ), ( ), , ( ), ( )) ,

T
N N N

T
N N

X

u x u x u x u x u x

    



 

where 0( ), = 0,1,2,....iu x i N  can be obtained 

by initial condition (11).  

4. Stability of the proposed scheme 

Von-Neumann stability method is used for the 

stability of scheme developed in the previous 

section. To apply this method, we have linearized 

the non-linear term xUU  by considering U  as 

a constant in (14), therefore 0.=,..., xxx UU  Now 

substitute,  )(exp= mhinn
m   into linearized 

form of (14), where   and h  are the 

mode number and element size, respectively, and 

1= i , Eq. (17) leads to  
 

2 2
2 1 0 1 2

2 ýý 2
2 1 0 1 2

{ }

= ,

i h i h i h i h

i h i h i h i h

C e C e C C e C e

C e C e C C e C e

   

   

  
 

 
 

   

   
(26) 

 

Here jC  and jC , for 1,0,1,22,= j  have 

their predefined definition given in (18). Set 

4

120
= ,X

h
= ,

2

n
x

k
Y U

5
=

2

nk
Z U

h
 and 

h

k
W

5

2
= . Simplifying Eq. (26), we get  

 

1

2

= ,
a ib

a ib





                                                    (27) 

 
where  
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1

2

= (2 2 )cos(2 ) (52 8 )cos( )

66 6 ,

= 2 sin(2 ) 20 sin( ),

= 2( )sin(2 ) 20( )sin( ),

a X h X h

X

b W h W h

b Z W h Z W h

 

 

 

  

 



  

 (28) 

 
From (28), we get  

2 1= 2 sin(2 ) 20 sin( ),b b Z h Z h    (30) 

therefore 
2
2

22
1

2 baba  . This implies 

1  , which is the condition for scheme to be 

unconditionally stable.  

5. Numerical computations 

Consider the Rosenau equation  
 

( ) = 0,xxxx t x xu u uu u                            (29) 

 

where ( , ) [0,1] [0, ],x t T  with the boundary 

conditions  
 

(0, ) = (1, ) = 0,
[0, ],

(0, ) = (1, ) = 0,xx xx

u t u t
t T

u t u t
       (30) 

 
and initial condition  
 

4 4( ,0) = (1 ), [0,1],u x x x x              (31) 

 
We discredits the equations (29)-(31) using 

Quintic B-spline collocation method (6) with 

,
20

1
=k  and 

40

1
,

20

1
,

10

1
,

5

1
=h . Since we do 

not know the exact solution of (29)-(31), a 

comparison between the numerical solutions on a 

coarse mesh and those on a refined mesh is made 

[13]. Since the numerical solution mU  of Quintic 

B-spline collocation method (8) is zero at 

boundaries 0,1=x , we compute ratios of 

convergence at each time step n ,  
 

2 2

2 4 2 4

( )

= ,

( )

n n n n
h h h h h

n
h

n n n n
h h h h h

U U U U

R

U U U U

   

   

 

 

where  1 1

2

2
= .

n n n
n i i i

h i

v v v
v

h
  

  

The average ratio of convergence 
n
hR , based on 

both infinite norm and 
2L -norm 

10

=1

1
= ,

21
av n

n

R R

on 10  x  and 10  t  are given in Tables 1 

and 2. Here 
n
hU  is a numerical solution of (31) at 

nktn =  with step size h , which is shown in the 

Figs. 1, 2, 3 and Fig. 4.   
 

Table 1. The ratios of convergence 
n
hR , based on 

infinite norm when 
20

1
=k   

 


n
hR  

n  
5

1
=h

 

10

1
=h

 1
=

20
h

 
40

1
=h

 

1 4.0966 4.0189 4.0042 4.0010 

2 4.0966 4.0189 4.0042 4.0010 

3 4.0982 4.0202 4.0050 4.0017 

4 4.0997 4.0215 4.0058 4.0024 

5 4.1012 4.0228 4.0066 4.0031 

6 4.1027 4.0241 4.0073 4.0037 

7 4.1042 4.0254 4.0081 4.0044 

8 4.1057 4.0267 4.0089 4.0051 

9 4.1072 4.0279 4.0097 4.0058 

10 4.1088 4.0292 4.0104 4.0065 

11 4.1103 4.0305 4.0112 4.0072 

12 4.1118 4.0318 4.0120 4.0079 

13 4.1133 4.0331 4.0128 4.0085 

14 4.1148 4.0344 4.0136 4.0092 

15 4.1163 4.0357 4.0143 4.0099 

16 4.1178 4.0370 4.0151 4.0106 

17 4.1193 4.0383 4.0159 4.0113 

18 4.1208 4.0396 4.0167 4.0120 

19 4.1223 4.0409 4.0175 4.0127 

20 4.1239 4.0422 4.0182 4.0134 

21 4.1254 4.0435 4.0190 4.0141 


avR  4.1103 4.0306 4.0113 4.0072 

 

Table 2. The ratios of convergence 
n
hR , based on 

2L -

norm when 
20

1
=k   

 

 n
hR  

n  
5

1
=h  

10

1
=h  1

=
20

h
 

40

1
=h  

1  4.1041 4.0221 4.0052 4.0013 

2  4.1041 4.0221 4.0052 4.0013 

3  4.1059 4.0235 4.0057 4.0016 

4  4.1077 4.0248 4.0062 4.0019 

5  4.1095 4.0261 4.0068 4.0022 

6  4.1113 4.0274 4.0073 4.0026 

7  4.1131 4.0288 4.0078 4.0029 

8  4.1149 4.0301 4.0083 4.0032 

9  4.1167 4.0314 4.0089 4.0036 

10  4.1185 4.0328 4.0094 4.0039 

11  4.1203 4.0341 4.0099 4.0042 

12  4.1220 4.0354 4.0105 4.0046 

13  4.1238 4.0368 4.0110 4.0049 
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14  4.1256 4.0381 4.0115 4.0052 

15  4.1274 4.0394 4.0120 4.0056 

16  4.1292 4.0408 4.0126 4.0059 

17  4.1310 4.0421 4.0131 4.0062 

18  4.1328 4.0434 4.0136 4.0066 

19  4.1345 4.0448 4.0142 4.0069 

20  4.1363 4.0461 4.0147 4.0072 

21  4.1381 4.0475 4.0152 4.0076 


avR  4.1203 4.0342 4.0100 4.0043 

 

 
 
Fig. 1. The concentration numerical solution ,),( txU 

for 

5

1
=h

 and 

20

1
=k  plotted as a function of 1::0= hx

and 10::0= kt    
 

 
 
Fig. 2. The concentration numerical solution ),( txU , for 

10

1
=h  and 

20

1
=k  plotted as a function of 1::0= hx

 and 10::0= kt  
   
 

 
 
Fig. 3. The concentration numerical solution ),( txU , for 

20

1
=h

 and 

20

1
=k

 plotted as a function of 1::0= hx  and 

10::0= kt   
 

 
 
Fig. 4. The concentration numerical solution ),( txU , for 

40

1
=h

 and 

20

1
=k  plotted as a function of 1::0= hx

 and 10::0= kt  

6. Conclusions 

In this paper, a numerical method for the nonlinear 

KdV-like Rosenau equation is proposed. This 

scheme is based on the Crank-Nicolson formulation 

for time integration and quintic B-spline functions 

for space integration. The structure, application and 

results of the employed method shows that the 

quintic B-spline method considered in this work is 

simple and straightforward. The employed method 

can be applied for a large class of linear and 

nonlinear problems. The obtained solution is 

presented graphically at various time steps which 

show the same characteristics as those given in the 

literature. Since we do not know the exact solution 

of the nonlinear KdV-like Rosenau equation, a 

comparison between the numerical solutions on a 

coarse mesh and those on a refined mesh is made. 

According to the ratios of convergence 
n
hR , 

mentioned in the Tables 1 and 2, based on infinite 
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norm and 
2L -norm respectively, it can be 

concluded that the quintic B-spline collocation 

methods is both efficient and reliable for obtaining 

the numerical solutions of the partial differential 

equations. 
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