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Abstract– Recently, two of the authors have introduced the collapse capacity spectrum 
methodology, which allows the assessment of the collapse capacity of highly inelastic P-delta 
sensitive regular frame structures without performing non-linear time-history analyses. The main 
ingredient of this method is the collapse capacity spectrum, which represents the seismic collapse 
capacity of an inelastic non-deteriorating single-degree-of-freedom system vulnerable to the P-
delta effect as a function of its initial period, negative post-yield stiffness ratio, viscous damping 
coefficient, and the shape of the hysteretic loop. In the present study, multiple linear regression 
analyses are applied to provide enhanced analytical expressions of these spectra. The record-to-
record uncertainty of the collapse capacity is captured through median, 16th and 84th percentile 
spectra. For several test systems analytical collapse fragility functions based on these spectra are 
set in contrast with the corresponding sorted individual collapse capacities. These examples prove 
the superiority of the proposed analytical expressions compared to its original formulation.           
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1. INTRODUCTION 
 

A modern engineered building located in an earthquake environment must be provided with an adequate 
margin of safety against structural collapse during extreme earthquakes. This primary goal of earthquake 
engineering can be accomplished only if tools for predicting seismic collapse with sufficient confidence 
are well understood, readily available and easy to apply in engineering practice. Prediction of collapse 
includes appropriate specification of the seismic hazard, identification of possible modes of collapse, 
structural modeling, and application of reliable mathematical procedures within a probabilistic framework 
to capture both record-to-record and modeling uncertainties. Past catastrophic earthquakes have shown 
that for a building the predominant mode of collapse is sidesway collapse, which may be the consequence 
of successive reduction of the lateral load bearing capacity due to cyclic component deterioration. Highly 
inelastic flexible buildings subjected to second-order P-delta effects may exhibit a negative lateral post-
yield stiffness. In such a situation sidesway collapse is attained at a rapid rate if the ground motion is 
sufficiently severe to drive the structure into its inelastic branch of deformation [1]. However, in many 
buildings only the interaction of cyclic component deterioration and P-delta lead to sidesway collapse [2]. 

This paper discusses only one out of various aspects of this complex problem, i.e. prediction of the 
seismic (sidesway) collapse capacity of highly inelastic single-degree-of-freedom (SDOF) systems 
vulnerable to the destabilizing effect of gravity (P-delta effect) with simplified measures. Fundamental 
studies on seismic collapse of this type of systems can be found in [3-5]. Miranda and Akkar [6] provide 
an empirical equation to estimate the minimum lateral strength up to which P-delta induced collapse of 
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SDOF systems is prevented. Based on this study, Vamvatsikos et al. [7] study the dynamic instability of 
SDOF systems with nontrivial backbone curves. Asimakopoulos et al. [8] propose a simple formula for a 
yield displacement amplification factor as a function of the ductility and the stability coefficient. 
Villaverde [9] provides a thorough survey on studies dealing with collapse assessment of earthquake-
excited structures.  

Despite the fact that SDOF systems are the simplest systems of structural dynamics, they provide the 
basis for the practical seismic response analysis of first mode dominated multi-degree-of-freedom 
(MDOF) buildings. In this respect, equivalent SDOF systems in combination with elastic and inelastic 
spectra developed in various forms are the main tools of both strength-based and the displacement-based 
evaluation and design methodologies [10]. Borrowing this concept, Adam and Jäger [11] have recently 
developed the collapse capacity spectrum methodology for assessing the global sidesway collapse capacity 
of P-delta sensitive regular frame structures, based on bilinearized global pushover curves of the structure 
with and without considering gravity loads, an equivalent SDOF system, and a collapse capacity spectrum. 
This method allows a quick and yet accurate assessment of the collapse capacity avoiding computational 
expensive non-linear time-history analyses. For details refer to [12-14].  

The main ingredient of this methodology is the collapse capacity spectrum, where the relative 
collapse capacity of a non-degrading inelastic SDOF system is represented as a function of the initial 
structural period, the normalized negative post-yield stiffness, the viscous damping coefficient, and the 
assigned hysteretic cyclic behavior [12]. Capturing the record-to-record variability have derived collapse 
capacity spectra for various records of three different sets of ground motions, and subsequently evaluated 
them statistically [12] and [14]. As an outcome of the regression analyses analytical expressions for 
median, 16th and 84th percentile collapse capacity spectra – so-called design collapse capacity spectra – 
are now available. However, for very stiff as well as for very flexible structures these analytical collapse 
capacity spectra do not approximate with sufficient accuracy the actual collapse capacity. In particular, 
analytical 16th and 84th percentile spectra deviate from the underlying numerically derived statistical 
collapse capacity quantities. Furthermore, (although only of academic interest) for rigid systems, where 
the collapse capacity is a record-independent deterministic quantity depending only on structural 
parameters, these analytical expressions do not render the true collapse capacity. 

Thus, the objective of the present paper is to provide a set of refined analytical collapse capacity 
spectra, representing a “best-fit” of the underlying median, 16th, and 84th percentile collapse capacities. 
To meet this objective several multiple regression analyses are performed with the statistically evaluated 
collapse capacity as independent variable, and three regressors, i.e. the structural period of vibration, the 
damping coefficient, and the negative post-yield stiffness ratio. The improvement compared to the original 
formulation is assessed with an appropriate measure of error, which also gives information about the 
goodness of fit of the approximation [12]. 
 

2. COLLAPSE CAPACITY SPECTRA – STATE OF THE ART 

a) Collapse capacity of an inelastic SDOF system vulnerable to P-delta 

In the inelastic non-deteriorating SDOF system of Fig. 1a the gravity load generates a shear deformation 
of its hysteretic force-displacement relationship as shown in Fig. 1b. Characteristic displacements (such as 
the yield displacement) of this relationship remain unchanged, whereas the characteristic forces (such as 
the strength) are reduced. As a result, the slope of the curve is decreased in its elastic and post-elastic 
branch of deformation. The magnitude of this reduction can be expressed by means of the stability 
coefficient θ, which is, for the system of Fig. 1a, a function of the gravity load P, length h, and rotational 
stiffness  kr  [12], 
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θ = Ph

kr                                                          
                 (1) 

As a showcase Fig. 1b visualizes the P-delta effect on the non-dimensional hysteretic behavior of an 
SDOF system with non-deteriorating bilinear characteristics [5], where the restoring force f is normalized 
with respect to the yield strength  f y , and the tip displacement x is divided by the displacement at the 
onset of yield 

 
xy . In this example the post-yield stiffness is negative, because the stability coefficient θ is 
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Fig. 1. (a) Mechanical model of an SDOF system subjected to gravity and earthquake excitation.  
(b) Normalized bilinear cyclic structural behavior with and without the destabilizing  

effect of gravity loads [12] 

A negative slope of the post-tangential stiffness, expressed by the difference of the stability 
coefficient θ and the strength hardening coefficient α (i.e. θ−α), is the essential condition that the structure 
may collapse under severe earthquake excitation. In [13] it is proven that for given excitation collapse of 
inelastic non-deteriorating SDOF systems vulnerable to P-delta is governed by the following structural 
parameters: 

• The elastic structural period of vibration T, 
• the negative slope of the post-tangential stiffness θ−α  ( 0 ≤α ≤ 0.06  ,    T ≥ 0.1s  ), 
• the viscous damping coefficient ζ (usually taken as 5%), and 
• the shape of the hysteretic loop, i.e. the normalized force – displacement relation  f − µ . 

The collapse capacity - defined as the maximum ground motion intensity at which the structure still 
maintains dynamic stability [2] - of an inelastic SDOF system vulnerable to P-delta is a function of these 
structural parameters and the particular earthquake record, which excites this system to vibrations. Most 
generally, the collapse capacity is determined based on incremental dynamic analysis (IDA) [15]. 
Thereby, non-linear time-history analyses are performed for a specific earthquake record incrementing its 
intensity repeatedly up to collapse.  

In the study of [12], which serves as basis of the present investigation, the relative collapse capacity 
of a P-delta vulnerable SDOF system subjected to a ground motion record (denoted by index i) is based on 
the non-dimensional ratio of 5%-damped spectral acceleration at the structure’s fundamental period 

  Sa,i(T ,ζ = 0.05) / g  to the base shear coefficient γ , 
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CCi =
Sa,i
gγ

collapse

, γ =
f y

mg
                                                              (2) 

m the mass of the SDOF system, and g denotes the acceleration of gravity.  
The inherent record-to-record variability leads to different collapse capacity for each ground motion 

record. Thus, the collapse capacity is not only derived for one record but for a set of carefully compiled 
representative ground motions. The collapse fragility curve, which represents aleatory uncertainty due to 
record-to-record variability, is obtained by ordering the individual collapse capacities CCi [9]. Ibarra and 
Krawinkler [16, 17] provide good arguments that the individual collapse capacities are more or less log-
normally distributed. Since a log-normal distribution is characterized by the median and the 16th and 84th 
percentiles, the median (referred to as   CCP50 ), and the 16th and 84th percentiles (denoted as   CCP16  and 
  CCP84 , respectively) of the individual collapse capacities are determined. Then, the assumption of a log-
normal distribution allows a reasonable approximation of collapse fragility curves based only on these 
statistical quantities [16]. 

For rigid systems (i.e. systems with periods   T = 0 ) the collapse capacity is record independent, and 
given by the deterministic expression [14] 

  CC(T = 0) = 1−θ                                                                    (3) 

because the P-delta effect reduces the structural strength  f y  to   f y (1−θ ) . Eq. (3) is found from the 
geometrically linearized form of the equation of motion of the SDOF system (as specified in [12]) 
considering that the spectral acceleration  Sa  at period   T = 0  is equal to the PGA (peak ground 
acceleration 

   
max xg ). However, since the difference between the stability coefficient θ and the hardening 

coefficient α (i.e. θ −α ) is a governing collapse parameter for   T ≥ 0.1s  [13], in an engineering approach 
for rigid systems the collapse capacity is subsequently approximated by 

  CC(T = 0) ≈1− θ −α( ) = 1−θ +α , α ≤ 0.06                                       (4) 

Consequently, the structural parameters as specified above govern the collapse capacity in the entire 
period range. 

b) Collapse capacity spectra - definition 

The representation of the collapse capacity of an SDOF system with assigned damping parameter ζ , 
assigned negative post-yield stiffness ratio θ −α , and a particular hysteretic loop as a function of the 
initial structural period T is referred to as collapse capacity spectrum for a particular ground motion record 
[12].  

As an example, Fig. 2 shows, for bilinear cyclic behavior, the 44 individual collapse capacity spectra 
for the 44 earthquake records of FEMA P-695 far-field ground motion set (FEMA P-695 [18]) with 
assigned structural parameters θ −α  = 0.20 and  ζ = 0.05 . Additionally, the corresponding median, 16th 
and 84th percentile spectra are also displayed. Note that the records of the FEMA P-695 set originate from 
severe seismic events of magnitude between 6.5 and 7.6 and closest distance to the fault rupture larger 
than 10 km. Thereby, only strike-slip and reverse sources are considered. The 44 records of this set were 
recorded on NEHRP site classes C (soft rock) and D (stiff soil). For further details see FEMA P-695 [18]. 
Note that in [12] the FEMA P-695 ground motion set is referred to as ATC63-FF set. 
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Fig. 2. Individual record dependent collapse capacity spectra for each record of the FEMA P-695 set.  

Corresponding median, 16th and 84th percentile spectra for bilinear hysteretic loop.  
Structural properties as defined in the figure 

For the earthquake records of this set, in [12] collapse capacity spectra have been derived considering 
various damping coefficients, negative post-yield stiffness ratios, and hysteretic loops. In Fig. 3 each line 
with discrete circles represents graphically one median collapse capacity spectrum. The spectra of this 
figure were computed for 5% viscously damped SDOF systems with a bilinear cyclic behavior. Each 
graph of Fig. 3 refers to a specific negative slope of the post-tangent stiffness ratio θ −α . In particular, 
results for θ −α  = 0.04, 0.06, 0.10, 0.20, and 0.80 are depicted. Naturally, for a fixed structural period T 
the collapse capacity is smaller the larger the negative slope θ −α . Furthermore, it can be seen that the 
collapse capacity depends on the initial structural period T. A general trend to larger collapse capacities 
with growing period T is readily observed. The period dependency of the collapse capacity is more 
pronounced for smaller values of θ −α  [12]. 

0

2

4

6

8

10

0 1 2 3 4 5

0.80

0.20

0.10

0.06

0.04

period T [s]

ζ = 0.05
bilinear hysteretic loop

m
ed

ia
n 

co
lla

ps
e 

ca
pa

ci
ty θ − αmedian

CCb

CC

 
Fig. 3. Median collapse capacity spectra for various negative post-yield stiffness ratios θ −α  based on the 

 FEMA P-695 ground motion set, bilinear hysteretic loop, and 5% viscous damping (lines with  
discrete circles) and corresponding design collapse capacity spectra (solid lines) [12] 

The curves shown in Fig. 3 might create the misleading perception that in a real structure the collapse 
capacity increases with period. As discussed in [11] the opposite holds true. In a real structure in general 
the collapse capacity tends to decrease the longer the fundamental period is, or in other words, the more 
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flexible the structure is. Furthermore, in many tall (long period) buildings in the bottom stories of the 
structure the stability coefficient in the inelastic range is usually much larger than the elastic stability 
coefficient. Thus, when the collapse capacity spectra of Fig. 3 are applied one has to interpolate between 
the various presented curves as the period of the structure becomes longer because simultaneously the 
stability coefficient is increased. Moreover, a lower collapse capacity for long period structures does not 
necessarily result in a larger probability of failure because the seismic hazard decreases for such systems. 

c) Design collapse capacity spectra – original version 

In [12] analytical expressions for collapse capacity spectra of 5% viscously damped bilinear SDOF 
models have been derived via non-linear regression analyses. These spectra, which are based on the 
FEMA P-695 ground motion set, are referred to as “base case” design collapse capacity spectra (denoted 
as  CCb ). They read as 
 

  

CCb(T ,θ −α ) =
qT p

qT1
p + q pT1

( p−1) T −T1( )
⎧
⎨
⎪

⎩⎪
   

T ≤ T1
T > T1

                               

(5) 

 
with 
 

  
q(θ −α ) = 2

3
θ −α( )−2/3 , p(θ −α ) = 3

100
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10                                   
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(7) 

In Fig. 3 exemplarily solid lines depict a set of smooth base case median design collapse capacity spectra. 
In [12] the impact of parameters, which differ from the base case, such as viscous damping 

coefficients different from 5%, and/or pinching or peak-oriented cyclic behavior on  CCb  is considered via 
two independent multipliers, i.e. coefficient ψζ  for damping and coefficient  ψm  for the hysteretic loop, 

  CCd (T ,θ −α ,ζ , f − µ) =ψζψmCCb                                                       (8) 

For brevity, the expressions for the coefficients ψζ  and  ψm  are not repeated here.  
However, since in reality for some parameter combinations the impact of viscous damping and 

hysteretic material behavior different from the base case on the collapse capacity cannot be captured by 
these independent coefficients ψζ  and  ψm  appropriately, relation (8) leads to collapse capacity 
predictions that are far off the actual values derived via IDAs. Thus, the aim of the presented paper is to 
improve the analytical relations given in Eqs. (5) to (8) considering the interaction of damping and 
hysteretic behavior on the design collapse capacity. Thereby, new functional relations will be derived by 
means of regression analysis, without further use of the coefficients ψζ  and  ψm . The refined design 
collapse capacity spectra derived subsequently are denoted by   CC  to distinguish them from their 
“original” counterpart  CCd . 
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3. REFINED DESIGN COLLAPSE CAPACITY SPECTRA 

a) Underlying data for the multiple regression analysis 

In this paper multiple regression analyses were performed with one dependent variable, i.e. the collapse 
capacity, and three regressors, i.e. the structural period of vibration  T , the damping coefficient ζ  and the 
negative post-yield stiffness ratio θ −α . Specifically, median collapse capacities and the corresponding 
16th, and 84th percentiles for 52 discrete initial structural periods T, seven discrete post-yield stiffness 
ratios θ −α , and seven discrete damping coefficients ζ , i.e. 

•  Ti  = 0.01s, 0.05s, 0.1s, 0.2s, 0,3s, 0.4s,…, 5.0s  i =1,…,52 
•   (θ −α ) j  = 0.04, 0.06, 0.08, 0.1, 0.2, 0.4, 0.8         j =1,…,7 
•  ζk  = 0.05, 0.04, 0.03, 0.02, 0.01, 0.005, 0               k =1,…,7 

provide the basis for the refined analytical approximation of the collapse capacity (denoted as   CC ). In 
total these are  52 ⋅7 ⋅7 = 2548  discrete values of   CCP50 ,   CCP16  and   CCP84  each, both for bilinear and 
peak oriented hysteretic cyclic behavior. 

Note that not all investigated parameter combinations may be present in realistic physical systems. 
For example, it is very unlikely that stiff systems with periods T up to (at least) 0.2s are vulnerable to P-
delta induced collapse.  On the other hand, a well-designed structure would never exhibit a negative post-
yield stiffness ratio of θ −α = 0.8. It is, however, of scientific interest to understand the collapse capacity 
for these extreme cases at the parameter boundaries.  

b) Shape function for the multiple regression analysis 

The multiple linear regression analyses are based on the non-linear shape function 

   
CC = A+ BT + De−c1T + 1− θ −α( )− A− D⎡⎣ ⎤⎦e−c2 T

                                  
(9) 

identified from upfront inspection of the underlying discrete raw data and the procedure described in the 
subsequent subsection 3.c of this paper. Coefficients A, B and D are themselves shape functions, 
depending on the negative post-yield stiffness ratio θ −α  and damping coefficient ζ : 

  A = A1 + A2ζ  ,     B = B1 + B2ζ                                                   (10) 

  D = D1 + D2ζ + D3 θ −α( ) + D4ζ θ −α( )                                           (11) 

  D1 ,   D2 ,   D3  and   D4  are constants, whereas   A1 ,   A2 ,   B1  and   B2  are power functions with respect to 
θ −α : 

  A1 = A11 + A12 θ −α( )g1 + A13 θ −α( )g2  ,     A2 = A21 + A22 θ −α( )h1 + A23 θ −α( )h2             (12) 

   B1 = B11 + B12 θ −α( ) j1  ,     B2 = B21 + B22 θ −α( )k1 + B23 θ −α( )k2

                             (13) 

The computation of the coefficients and exponents in Eqs. (10) to (13) is an elaborate task that is 
explained in detail in the following subsection 3.c. 

c) Mathematical procedure of the multiple regression analysis 

The regression analyses are performed in several steps. Thereby, the a priori unknown coefficients of 
Eq. (9) are adjusted to meet the constraint 

   CC = 1− θ −α( )  for   T = 0 , compared with Eq. (4). Due to this 
constraint the applied regressions are with fixed intercept.  



S. Tsantaki et al. 
 

IJST, Transactions of Civil Engineering, Volume 39, Number C2                                                                                August 2015 

260 

At the beginning of the analysis a shape function, which is already anticipated in Eq. (9), must be 
found. Thereby, in a first step the collapse capacity is approximated by a linear function with respect to the 
period T in the range   0.5s ≤ T ≤ 5s : 

  CC = a + bT                                                                          (14) 

Coefficients a and b are computed for each discrete collapse capacity based on   (θ −α ) j  (j = 1,…, 7) and 

 ζk  (k = 1,…,7) by linear regression with respect to the period T, resulting in the 49 discrete coefficients 
denoted by  jk a  and  jk b . Then, for each parameter   (θ −α ) j  these discrete quantities are approximated 
by a linear function with respect to ζ , leading to the coefficients  j a  and  j b : 

  j a = j a1 + j a2ζ , j b = j b1 + j b2ζ                                                    (15) 

These coefficients are continuous with respect to ζ , however, still discrete with respect to   (θ −α ) j . In 
Fig. 4 for   (θ −α ) j=5 = 0.20  discrete coefficients   j=5,k a ,   j=5,k b , and their discrete/continuous 
counterparts   j=5a ,   j=5b  are depicted for the regression analysis applied to the median collapse capacity 
of an SDOF system with bilinear cyclic behavior.  

Subsequently, another linear regression analysis is applied to determine sub-coefficients   j a1 ,   j a2 , 

  j b1  and   j b2 . These sub-coefficients are approximated by continuous power functions with respect to 
θ −α , denoted as   a1 ,   a2 ,   b1  and   b2 , 

  a1 = a11 + a12 θ −α( )g1 + a13 θ −α( )g2  ,     a2 = a21 + a22 θ −α( )h1 + a23 θ −α( )h2

         (16) 

  b1 = b11 + b12 θ −α( ) j1  ,     b2 = b21 + b22 θ −α( )k1 + b23 θ −α( )k2

                      (17) 

The exponents of Eqs. (16) and (17), i.e.   g1 ,   g2 ,   h1 ,   h2 ,   j1 ,   k1 ,   k2 , as well as sub-sub-coefficients   ars , 

 brs  (  r = 1,2 ;  s = 1,2,3 ) are determined by non-linear curve fitting of the discrete data. As an example, 
Fig. 5 shows, additionally, the discrete quantities   j a1 ,   j a2 ,   j b1  and   j b2 , also the continuous 
counterparts, i.e. Eqs. (16) and (17), for approximating the median collapse capacity of SDOF systems 
with bilinear constitutive behavior.  
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Fig. 4. Regression coefficients a and b exemplarily for the median collapse capacity of an SDOF system with  

bilinear hysteretic behavior and  θ −α = 0.20 , plotted against the viscous damping  
coefficient ζ . Discrete values and corresponding regression line  

 



Refined analytical collapse capability spectra 
 

August 2015                                                                                IJST, Transactions of Civil Engineering, Volume 39, Number C2      

261 

-2

0

2

4

0 0.4 0.8

ja1

a1

θ − α 

a 1

1a1

2a1

7a1

(a)

bilinear
   CC P50 -13

0

13

0 0.4 0.8

ja2

a2

1a2

2a2

7a2

(b)

θ − α 

a 2

bilinear
   CC P50

0

0.5

1

1.5

0 0.4 0.8

jb1

b1

θ − α 

b 1

1b1

6b1 7b1

(c)

bilinear
   CC P50

(θ − α)7(θ − α)6(θ − α)5(θ − α)1

5b1

0

8

16

0 0.4 0.8

jb2

b2

b 2

θ − α 

2b2

3b2 7b2

(d)

bilinear
   CC P50

 
Fig. 5. Regression coefficients   a1,a2,b1,b2  exemplarily for the median collapse capacity of an SDOF system with 

bilinear hysteretic behavior, plotted as function of the post-yield stiffness ratio θ −α .  
Discrete values and corresponding regression line  

In a further step, two exponential functions are added to   CC  in order to obtain a better fit for the low 
period range   0 ≤ T ≤ 0.5s , leading to the expression of the non-linear shape function Eq. (9). Constants   c1  
and   c2  are the outcome of non-linear curve fitting as well.  

In conclusion, the result of the intermediate regression analyses so far is the shape function Eq. (9), 
and the exponents   g1 ,   g2 ,   h1 ,   h2 ,   j1 ,   k1 ,   k2 ,   c1  and   c2 .  

Having thus determined the shape function, unknown constants  Dl  (l = 1,…, 4) and coefficients  Ars , 

 Brs  (  r = 1,2 ;  s = 1,2,3 ), which show up in Eqs (11) to (13), are computed based on a final global linear 
regression applied to Eq. (9). The regression is performed employing the method of weighted least 
squares, minimizing the following sum of squares of the errors (SSE): 

   
SSE = wijk CC(Ti ,(θ −α ) j ,ζk )−CC(Ti ,(θ −α ) j ,ζk )( )2 = min

k=1

7
∑

j=1

7
∑

i=1

52
∑

             

(18) 

The weights  wijk  are selected to account for the importance of the accuracy in different ranges of T, 
θ −α  and ζ .  

The resulting regression coefficients   D1 ,   D2 ,   D3 ,   D4 ,  Ars ,  Brs  (  r = 1,2 ;  s = 1,2,3 ) and exponents 

  c1 ,   c2 ,   g1 ,   g2 … are listed in Table A1 of the Appendix. They are specified for the median, 16th and 
84th collapse capacity spectra, both for bilinear and peak-oriented hysteretic behavior. 

Inserting these coefficients into Eq. (9) defines fully enhanced analytical expressions of the collapse 
capacity spectra. As an example, Fig. 6 shows the median collapse capacity spectrum for a bilinear SDOF 
system with 2% damping and a negative post-yield stiffness ratio of θ −α . A detailed evaluation of these 
spectra is provided in section d. 
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Fig. 6. Different domains of refined design collapse capacity spectra 

d) Domains of analytical collapse capacity spectra 

The analytical collapse capacity spectra are composed of four domains, as shown exemplarily in 
Fig. 6: 
 
• Rigid system (  T = 0 ): For rigid systems the collapse capacity is given by the deterministic expression 

Eq. (4), i.e. record independent, and thus, the record-to-record dispersion of the collapse capacity is 
zero. 

• The valley: The graph of   CC  exhibits, for large negative stiffness ratios θ −α , a valley for short 
period systems with approximately   T = 0.05s  (see Fig. 5). These combinations of the structural 
parameters that lead to the valley are, however, unlikely for real structures. The shape of the valley is 
primarily governed by coefficient D in Eq. (9). This valley is more pronounced if the damping 
coefficient ζ  is small.  

• The exponential-linear domain: For short to medium period systems   0.1s ≤ T ≤1.0s  the first 
exponential term in Eq. (9) turns out to be negligibly small. Thus, the collapse capacity can be 
expressed by 

   CC ≈ A+ BT + 1− (θ −α )− A− D⎡⎣ ⎤⎦e−c2 T . 
• The “linear” domain: The collapse capacity of medium to long period systems, i.e.   1.0s ≤ T ≤ 5.0s , is 

almost linear with respect to the period T:   CC ≈ A+ BT . In this case the contribution of exponential 
terms is very small. 

 
4. EVALUATION OF REFINED DESIGN COLLAPSE CAPACITY SPECTRA 

As a result, analytical design collapse capacity spectra for two different hysteretic models (bilinear and a 
peak-oriented hysteretic model), and three representative statistical quantities of the collapse capacity, i.e. 
its median, 16th and 84th percentile, based on different values of the characteristic structural parameters of 
SDOF systems are now available. 

Subsequently, the proposed regression model   CC  is set in contrast to the original regression model 

 CCd , Eq. (8), presented in [12], and the improvement is quantified. Since the regression is with fixed 
intercept, the coefficient of determination   R2  cannot be used as a measure of goodness of fit [19]. Rather, 
in this study the mean square error MSE is employed for the considered design spectrum for each discrete 
value   (θ −α ) j  and  ζk , 

   
MSE = 1

52
CC(Ti ,(θ −α ) j ,ζk )−CC(Ti ,(θ −α ) j ,ζk )⎡
⎣

⎤
⎦

2

i=1

52
∑

                          
(19) 
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as recommended by Montgomery et al. [20]. This measure quantifies the average squared deviation of the 
actual collapse capacities from those obtained from the regression analysis. The 

  
MSECC  values based on 

the new analytical expressions are compared with the  MSECCd
 values that correspond to the existing 

analytical equations, both derived according to Eq. (19). Furthermore, a relative improvement index I is 
defined: 

   
I = 1−

MSECC

MSECCd                                                                  
(20) 

Note that the closer index I to unity the better is the relative improvement. 
Exemplarily, Fig. 7 shows the enhanced (solid lines) and the original (dashed lines) analytical design 

median, 16th and 84th percentile spectra, respectively, and the corresponding outcomes from IDAs 
(circles) for both considered hysteretic models, for selected assigned post-yield stiffness ratios 
θ −α  = 0.10, 0.20 and 0.40, and viscous damping ζ  = 0.05. In general, SDOF systems with peak-
oriented hysteretic loop proved to be less vulnerable to the collapse due to P-delta than those with a 
bilinear hysteretic model [16]. This observation is also consistent with pinching material behavior 
compared to the bilinear one [12]. The improvement of the proposed relations can already be observed 
visually. In particular, in the short period range all refined spectra lead to a more appropriate 
approximation of the outcomes from IDAs. The refined 84th percentile spectra show a better performance 
for both material models. 
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Fig. 7. Median, 16th and 84th percentile collapse capacity spectra for (a), (c), (d) bilinear and (b) peak-oriented 

hysteretic behavior based on the FEMA P-695 ground motion set. 5% damping. (a), (b)  θ −α = 0.20 ;  
(c)  θ −α = 0.10 , (d)  θ −α = 0.40 . Lines with discrete circles: outcomes from IDAs.  

Solid lines: refined design spectra. Dashed lines: original design spectra 
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In Tables 1 and 2 improvement index I is specified for several example problems. In all examples of 
Table 1 damping is 5%, in those of Table 2 damping is 2%. For clarification, in these tables the MSE 
values are also listed, because index I is a relative measure of improvement only. The outcomes for the 
collapse spectra depicted in Fig. 7 are shown in the third, fourth and fifth block of Table 1. It can be seen 
that for these structural configurations the MSE of most statistical quantities drops significantly, and thus 
the improvement index is quite large. For some other structural configurations index I is relatively small 
(i.e. close to zero). However, this is only the case if the MSE of the original spectrum is already small, and 
thus no further significant improvement can be gained. It is readily observed that in most cases the MSE 
values for peak-oriented systems are larger than those for bilinear ones. This is a result of the conducted 
regression procedure, where initially the shape functions were adjusted to the data of the bilinear systems. 
Then, in an effort to provide a uniform representation of collapse capacity spectra, for peak-oriented 
systems the same shape functions were used, however, determining the coefficients and exponents based 
on the data for peak-oriented systems. The results of Tables 1 and 2 provide evidence of the substantial 
improvement of the proposed relation, Eq. (9), compared to the original one, Eq. (8). 

Table 1. Mean square error values for the existing relations 
 
MSECCd  and the proposed 

  
MSECC  

. 
Corresponding improvement index I for several specified 

 structural configurations. Damping  ζ = 0.05  

 Bilinear hysteretic loop Peak-oriented hysteretic loop 

  
MSECCd  

  
MSECC   I  

 
MSECCd  

  
MSECC   I  

 θ −α = 0.04  
P16 0.858 0.130 0.848 0.907 0.290 0.680 
P50 2.269 1.978 0.128 0.800 0.722 0.098 
P84 2.206 1.005 0.544 3.980 1.768 0.556 

 θ −α = 0.06  
P16 0.109 0.047 0.569 0.138 0.088 0.362 
P50 0.162 0.101 0.377 0.446 0.418 0.063 
P84 1.120 0.474 0.577 1.445 1.326 0.082 
 θ −α = 0.10  

P16 0.029 0.025 0.138 0.038 0.038 0.000 
P50 0.078 0.017 0.782 0.174 0.110 0.368 
P84 0.363 0.148 0.592 0.488 0.201 0.588 

 θ −α = 0.20  
P16 0.024 0.009 0.625 0.019 0.010 0.474 
P50 0.026 0.011 0.577 0.055 0.021 0.618 
P84 0.304 0.067 0.780 0.406 0.141 0.653 

 θ −α = 0.40  
P16 0.010 0.004 0.574 0.010 0.005 0.521 
P50 0.009 0.007 0.215 0.009 0.008 0.063 
P84 0.110 0.034 0.691 0.102 0.063 0.379 

 θ −α = 0.80  
P16 0.017 0.005 0.706 0.019 0.010 0.474 
P50 0.044 0.021 0.523 0.046 0.009 0.804 
P84 0.063 0.045 0.286 0.062 0.032 0.484 

 



Refined analytical collapse capability spectra 
 

August 2015                                                                                IJST, Transactions of Civil Engineering, Volume 39, Number C2      

265 

Table 2. Mean square error values for the existing relations 
 
MSECCd  and the proposed  

  
MSECC  

. Corresponding improvement index I for several specified  

structural configurations. Damping  ζ = 0.02  

 Bilinear hysteretic loop Peak-oriented hysteretic loop 

  
MSECCd  

  
MSECC   I  

 
MSECCd  

  
MSECC   I  

 θ −α = 0.04  
P16 0.257 0.158 0.386 0.203 0.148 0.269 
P50 1.243 0.824 0.337 1.020 0.663 0.350 
P84 1.717 0.749 0.564 4.472 1.615 0.639 
 θ −α = 0.06  
P16 0.065 0.056 0.133 0.067 0.047 0.301 
P50 0.104 0.077 0.265 0.396 0.383 0.034 
P84 0.684 0.345 0.496 0.921 0.864 0.063 
 θ −α = 0.10  
P16 0.017 0.014 0.163 0.035 0.017 0.504 
P50 0.097 0.014 0.861 0.213 0.082 0.614 
P84 0.501 0.100 0.801 0.707 0.210 0.703 
 θ −α = 0.20  
P16 0.011 0.006 0.449 0.013 0.008 0.379 
P50 0.023 0.007 0.683 0.040 0.020 0.500 
P84 0.318 0.065 0.794 0.317 0.128 0.597 
 θ −α = 0.40  
P16 0.004 0.004 0.145 0.006 0.004 0.321 
P50 0.007 0.005 0.241 0.009 0.008 0.144 
P84 0.075 0.026 0.653 0.073 0.051 0.304 
 θ −α = 0.80  
P16 0.013 0.005 0.603 0.014 0.006 0.539 
P50 0.033 0.024 0.276 0.033 0.017 0.496 
P84 0.087 0.062 0.290 0.085 0.056 0.344 

Figure 8 visualizes a set of the median, 16th and 84th collapse capacity spectra for discrete values of 
θ −α  equal to 0.04, 0.06, 0.10, 0.20 and 0.80. Damping is fixed at ζ  = 0.05, bilinear cyclic behavior is 
considered. The MSE and the index I for these cases is also listed in Table 1. In this Fig. improved design 
collapse capacity spectra, as well as the underlying data from IDAs are depicted. 

From the three subplots some mainstreams can be observed. Firstly, as the slope of negative stiffness 
becomes steeper (i.e. θ −α  becomes larger), the SDOF system is more vulnerable to collapse. The 
collapse capacity decreases, and therefore, the structure should be designed stronger in order to avoid 
collapse. In particular, for extreme values of θ −α  the structure should be designed not to deform beyond 
the elastic region. Furthermore, it can be seen that the collapse capacity depends on the initial structural 
period T [12]. The period dependence of collapse capacity CC for mild θ −α  is more pronounced. 

In earthquake engineering the prediction of the structural response is usually based on a viscous 
damping coefficient of ζ  = 0.05. However, for some structures such as slightly damped steel towers 
smaller values of damping are more meaningful. Therefore, in Fig. 9 the effect of different damping 
coefficients (ζ  = 0.00, 0.02, 0.05) for both hysteretic models and the two regression lines   CC ,  CCd  are 
depicted. The considered post-yield stiffness ratios θ −α  are 0.10, 0.20 and 0.40, respectively. Naturally, 
systems with lower values of viscous damping coefficients ζ  exhibit larger deformation, resulting in 
smaller collapse capacities. The enhanced linear regression model provides improved regression lines with 
a rate of improvement I of the MSE of 50% and more in most of the cases, apart from the peak-oriented 
model with ζ  = 0.05. In the cases, where I is smaller, the mean square error of the original regression 
model is already very small, compared with Tables 1 and 2. 



S. Tsantaki et al. 
 

IJST, Transactions of Civil Engineering, Volume 39, Number C2                                                                                August 2015 

266 

0

2

4

6

8

10

12

14

0 1 2 3 4 5

0.80

0.20

0.10

0.06

0.04

θ − α

ζ = 0.05

median

(a)

bilinear

period T [s]

C
C

  

CC
CCd

CC

0

2

4

6

8

0 1 2 3 4 5

0.80

0.20

0.10

0.06

0.04

(b)

θ − α

period T [s]

C
C

  

CC
CCd

CC

ζ = 0.05

16th percentile
bilinear

0

5

10

15

20

0 1 2 3 4 5

0.80

0.20

0.10

0.06

0.04

(c)

θ − α

period T [s]

C
C

  

CC
CCd

CC

ζ = 0.05

84th percentile
bilinear

 
Fig. 8. Sets of (a) median, (b) 16th percentile, and (c) 84th percentile collapse capacity spectra for  

bilinear hysteretic loop,  ζ = 0.05 , based on the FEMA P-695 ground motion set. Various  
negative post-yield ratios . Lines with discrete circles: outcomes from IDAs.  

Solid lines: refined design spectra. Dashed lines: original design spectra 
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Fig. 9. Median collapse capacity spectra for (a), (c), (d) bilinear and (b) peak-oriented hysteretic loop based on the 

FEMA P-695 ground motion set. Three different viscous damping values ζ . (a), (b) θ −α  = 0.20;  
(c) θ −α  = 0.10; (d) θ −α  = 0.40. Lines with discrete circles: outcomes from IDAs. Solid lines: 

 refined design spectra. Dashed lines: original design spectra 

Table 3 illustrates, for both hysteretic models and damping coefficients ζ  of 0.05 and 0.02, the mean 
improvement index (denoted as  I ) for the 16th, 50th and 84th percentiles derived from all considered 
post-yield stiffness ratios θ −α  ( 0.04 ≤θ −α ≤ 0.80 ) and from the “most common” ones θ −α  
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 (0.08 ≤θ −α ≤ 0.40) . Also these results provide evidence of significant improvement of the proposed 
relations. 

Table 3. Mean improvement index  I  of the mean square error 

Bilinear hysteretic loop 
 ζ  = 0.05 ζ = 0.02 
 

 0.04 ≤ (θ −α ) ≤ 0.8   0.08 ≤ (θ −α ) ≤ 0.4   0.04 ≤ (θ −α ) ≤ 0.8   0.08 ≤ (θ −α ) ≤ 0.4  

  I P16  0.50 0.34 0.31 0.26 

  I P50  0.47 0.57 0.50 0.66 

  I P84  0.56 0.63 0.62 0.75 
Peak-oriented hysteretic loop 
 ζ  = 0.05 ζ = 0.02 

  I P16  0.40 0.31 0.42 0.46 

  I P50  0.32 0.31 0.33 0.37 

  I P84  0.42 0.46 0.40 0.44 

Collapse fragility curves that incorporate aleatory uncertainty due to record-to-record variability can be 
obtained by ordering the collapse capacities for FEMA P-695 record set, as shown exemplarily in Fig. 10. 
A reduced dispersion in case of bilinear SDOF models is readily observed for all considered examples 
with periods T = 0.1s, 1s, 2s, 4s, assigned post-yield stiffness ratio of θ −α  = 0.20, and assigned damping 
of ζ  = 0.05 and ζ  = 0.02, respectively. This reduction is a general trend for the entire range of T and 
θ −α . It is readily observed that the proposed enhanced regression model (solid lines) leads to a 
pronounced better fitting of the sorted collapse fragility curves (stepped line) for all the given periods in 
comparison with the original regression model (dashed lines). 
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Fig. 10. Collapse fragility curves for (a), (c) bilinear and (b), (d) peak-oriented hysteretic loop based on 

 the FEMA P-695 ground motion set. Various values of fundamental periods T. θ −α  = 0.20. (a), 
 (b) ζ = 0.05; (c), (d) ζ =0.02. Stepped lines: sorted collapse capacity from IDAs. Solid lines: 

 refined regression analysis. Dashed lines: original regression analysis 
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6. CONCLUSION 

Refined design median, 16th and 84th percentile collapse capacity spectra for both bilinear and peak-
oriented hysteretic constitutive model and their analytical expressions were derived via a set of multiple 
linear regression analyses. Thereby, the median, 16th and 84th percentile, respectively, collapse capacity 
of single-degree-of-freedom systems served as the dependent variable, and the structural period of 
vibration, the viscous damping coefficient, and the post negative stiffness ratio as the three regressors. The 
proposed regression model is compared with an existing one from a previous study. It is shown that the 
improvement index I increases up to 85%, and the absolute values of mean square error are reduced 
significantly in most of the cases. The refined regression model improves the already existing collapse 
capacity spectra with large mean squared values, provides a better fit for short and large period systems, 
and leads to a more appropriate prediction of the 16th and 84th percentile collapse capacity spectra. 

Refined design collapse capacity spectra are a useful, easily applicable and accurate tool for the 
prediction of the collapse capacity and their record-to-record uncertainties, with sufficient confidence, and 
the establishment of an adequate margin of safety against second-order effects. 
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APPENDIX 

In Table A1 the regression coefficients are specified, which are the outcome of the applied multiple regression 
analyses. 
 

Table A1. Regression coefficients for analytical median, 16th and 84th percentile collapse  
capacity spectra, both for bilinear and hysteretic behavior 

Bilinear hysteretic loop Peak-oriented hysteretic loop 
 

P50 P16 P84 P50 P16 P50 

  A11  -1.5581 -0.5606 -1.2929 -3.5486 -1.6703 -1.4442 

  A12  1.7272 0.6478 1.9835 3.6432 1.6884 2.3505 

  A13  0 -0.0527 0 0 0 0 

  A21  9.2175 14.4753 8.6889 16.8869 9.1459 6.9235 

  A22  0.0863 -12.1523 0.1434 -0.4240 -0.0059 1.0436 

  A23  -0.0042 0 -0.0056 -13.3478 -6.4376 0.0001 

  B11  0.0959 0.0592 0.0549 0.0952 0.0532 -0.0424 

  B12  0.0034 0.0108 0.0097 0.0025 0.0065 0.0355 

  B21  -0.8232 -1.7801 -0.7455 -8.1363 -0.3062 -0.1885 

  B22  0.0003 0.0071 0.0420 0.9482 0.0006 0.0019 

  B23  0 2.0493 0 10.1838 0 0 

  D1  0.6048 0.2416 0.6855 0.9284 0.4424 1.0770 

  D2  -10.1506 -2.5458 -3.6266 -1.5098 -3.0968 -2.3823 

  D3  -0.2564 0.0298 0.1121 -0.7373 -0.3145 -0.1078 

  D4  8.6182 0.2894 -3.2410 -0.1670 1.6512 0.1966 

  c1  15 30 10 10 20 8 

  c2  3 3 3 3 3 3 

  g1  -1/3 -1/2 -1/3 -1/4 -1/3 -1/3 

  g2  0 1 0 0 0 0 

  h1  -2 1 -2 -1 -2 -1 

  h2  -3 0 -3 1 1 -3 

  j1  -1.8 -1.2 -1.7 -2 -1.5 -7/5 

  k1  -3.5 -2 -2 -1 -3 -3 

  k2  0 1 0 1 0 0 

 
 
  


