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Abstract 

Simple harmonizable processes (SHP) introduced by Soltani and Parvardeh (2006) are a large class of 

nonstationary processes which includes stationary and periodically correlated (PC) processes. Detection and 

estimation of SHP structure are important problems when dealing with nonstationary data. In this paper, we study 

the spectral properties of simple processes and propose a method to detect and estimate SHP structure. As an 

example, we discuss the detection, estimation and prediction of periodically correlated processes. The 

performance of this method is investigated through extensive Monte Carlo simulations. This method is compatible 

with other method.  
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1. Introduction 

Research activities on nonstationary processes are 

growing. A large class of nonstationary processes is 

simple processes which were introduced and 

studied by Soltani and Parvardeh (2006). Simple 

harmonizable processes form a large class of 

harmonizable processes that includes stationary and 

harmonizable periodically correlated 

(cyclostationary) processes. Assume {𝐵1, … , 𝐵𝑚} 

are a partition for [0,2𝜋), and 𝑇𝑗: 𝐵1 → 𝐵𝑗 , 𝑗 =

1, … , 𝑚 are one-to-one and measurable mappings, 

𝑇1(𝑥) = 𝑥. Also assume 𝚿 = (Ψ1, … , Ψ𝑚) is an 

independently scattered multivariate random 

measure supported by 𝐵1. 

Then the simple random measure Φ is defined by 
 

Φ(𝑑𝑥) = 𝚿𝑜𝑇𝑗
−1(𝑑𝑥) , 𝑥 ∈ 𝐵𝑗  , 𝑗 = 1, … , 𝑚. 

 
A discrete time harmonizable simple process 

(DTHSP) is defined by 
 

𝑋(𝑡) = ∫ 𝑒𝑖𝑡𝑥Φ(𝑑𝑥)

2𝜋

0

  , 𝑡 ∈ ℤ, 

 
where ℤ is the set of integers and Φ is a simple 

random measure on [0,2𝜋). 
We assume the spectral density 𝐟(𝑥) =

𝐸(𝚿(𝑥)𝚿∗(𝑥)) is full rank with respect to lebesgue 

measure. (*Shows the conjugate transpose). 
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Let 

𝐵𝑗 = [
2𝜋(𝑗−1)

𝑇
,

2𝜋𝑗

𝑇
) , 𝑇𝑗(𝑥) =  𝛼𝑗 + 𝛽𝑗𝑥,  where 𝛼𝑗 =

2𝜋(𝑗−1)

𝑇
, and  𝛽𝑗 = 1, 𝑗 = 1, … , 𝑚. The resulted 

simple process is a periodically correlated process 

with period m (PC-m in short), and conversely each 

PC-m has the above representation (Soltani and 

Parvardeh (2006)).  

The theory of PC processes was introduced by 

Gladyshev (1961). These processes are applied in 

various areas of researches, such as climatology, 

hydrology, engineering, signal processing and 

economics (Gardner et al. (2006); Hurd and 

Miamee (2007)).  

We summarize the content of this paper as 

follows: In Section 2, notations and preliminaries 

are provided. We study simple random measures, 

simple processes and their spectral properties. In 

Section 3, we propose a procedure to detect and 

estimate SHP structure. Simulation study is 

provided in Section 4. 

2. Preliminaries 

Soltani and Parvardeh (2006) showed a simple 

random measure has the following spectral 

representation: 
 

Φ(𝐴) = ∫ ℎ(𝑥, 𝐴)Λ(𝑑𝑥)

2𝜋

0

 , 𝐴 ⊂ [0,2𝜋], 

 
where Λ is an independently scattered random 
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measure on [0,2𝜋), 𝐸|Λ(𝑑𝑥)|2 =
𝑑𝑥

2𝜋
 , and ℎ(𝑥, 𝐴) is 

given by 
 

∑ ∑ 𝑎𝑗𝑘(𝑇𝑘
−1(𝑥))𝐼(𝐴∩𝐵𝑗)(𝑇𝑗𝑇𝑘

−1(𝑥))𝐼𝐵𝑘
(𝑥)

𝑚

𝑗=1

𝑚

𝑘=1

, 

 

where 𝐒(𝑥) = [𝑎𝑗𝑘(𝑥)], 𝑥 ∈ 𝐵1, is square root of 

𝐟(𝑥), i. e.,  

𝐟(𝑥) = 𝐒(𝑥)𝐒∗(𝑥). 

The ℎ(𝑥, 𝐴) defines a kernel that for 𝑥 ∈ 𝐵𝑘 , 

ℎ(𝑥, . ) is supported by the atoms 𝑇𝑗𝑇𝑘
−1(𝑥), 𝑗 =

1, … , 𝑚, with corresponding masses 𝑎𝑗𝑘(𝑇𝑘
−1(𝑥)). 

We refer to ℎ(. , . ) as the spectral kernel of the 

simple random measure Φ. Assume the Cholesky 

decomposition for the density 𝐟, is given by 
 

𝑎𝑗𝑘(𝑥) = {
𝑎𝑗−𝑘 (𝑇𝑗(𝑥))         𝑗 > 𝑘

        0                     𝑗 ≤ 𝑘
, 

 
then the kernel ℎ(𝑥, 𝐴) will be given by 
 

∑ ∑ 𝑎𝑗−𝑘(𝑇𝑗𝑇𝑘
−1(𝑥))𝐼(𝐴∩𝐵𝑗)(𝑇𝑗𝑇𝑘

−1(𝑥))𝐼𝐵𝑘
(𝑥)

𝑚

𝑗=𝑘

𝑚

𝑘=1

, 

 
and for 𝑥 ∈ 𝐵𝑘 , ℎ(𝑥, . ) is supported by the atoms 

𝑇𝑗𝑇𝑘
−1(𝑥), 𝑗 = 𝑘, … , 𝑚, with corresponding masses 

𝑎𝑗−𝑘(𝑇𝑘
−1(𝑥)). 

Therefore a DTHSP has the following spectral 

representation, 
 

𝑋(𝑡) = ∫ ∫ 𝑒𝑖𝑡𝑦ℎ(𝑥, 𝑑𝑦)Λ(𝑑𝑥)

𝐷𝐷

 

         

= ∫ ∑ ∑ 𝑒𝑖𝑡𝑇𝑗𝑇𝑘
−1(𝑥)𝑎𝑗𝑘(𝑇𝑘

−1(𝑥))𝐼𝐵𝑘
(𝑥)

𝑚

𝑗=1

𝑚

𝑘=1

Λ(𝑑𝑥)

𝐷

 

         = ∑ ∫ ∑ 𝑒𝑖𝑡𝑇𝑗𝑇𝑘
−1(𝑥)𝑎𝑗𝑘(𝑇𝑘

−1(𝑥))

𝑚

𝑗=1

Λ(𝑑𝑥)

𝐵𝑘

.

𝑚

𝑘=1

 

 
In the next section, we apply a procedure to 

estimate the functions 𝑇𝑗(𝑥), 𝑗 = 2, … , 𝑚. 

3. Estimating Procedure 

Assume 𝑋(0), … , 𝑋(𝑁 − 1) are a path from 𝑋(𝑡).  

Let  

𝑑𝑋(𝜆) = 𝑁−1 2⁄ ∑ 𝑋𝑡𝑒𝑖𝑡𝜆

𝑁−1

𝑡=0

 , 𝜆 ∈ [0,2𝜋)      

 
be the discrete finite Fourier transform (FFT) of the 

finite sequence 𝑋(0), …, 
𝑋(𝑁 − 1). 

We apply the following procedure to estimate the 

functions 𝑇𝑗(𝑥), 𝑗 = 2, … , 𝑚. 

Since Xt is harmonizable, 𝑑𝑋(𝜆) estimates 

Φ(𝑑𝜆). Also, from SHP property (Soltani and 

Parvardeh (2006)),  

𝐸(Φ(𝑑𝜆)Φ(𝑑𝜆′)̅̅ ̅̅ ̅̅ ̅̅ ̅) = 0, for 𝜆′ ≠ 𝑇𝑗(𝜆), 𝜆 ∈ 𝐵1, 𝑗 =

2, … , 𝑚. 
Consider the joint spectral coherency as  
 

𝐶(𝜆, 𝜆′) =
|𝑔(𝜆, 𝜆′)|

√|𝑔(𝜆, 𝜆)𝑔(𝜆′, 𝜆′)|
, 𝜆, 𝜆′ ∈ [0,2𝜋), 

 

where 𝑔(𝜆, 𝜆′) = 𝐸(Φ(𝑑𝜆)Φ(𝑑𝜆′)̅̅ ̅̅ ̅̅ ̅̅ ̅). 
 
The joint spectral coherency can be estimated by 
 

𝐶̂(𝜆, 𝜆′) = 𝜌̂ = 𝐶𝑜𝑟𝑟(|𝑑𝑋(𝜆)|, |𝑑𝑋(𝜆′)|), 
 
where 𝜌̂ is the sample correlation. 

For PC processes (Hurd (1989)), 𝐶(𝜆, 𝜆′) = 0, for 

𝜆′ ≠ 𝑇𝑗(𝜆), 𝜆 ∈ 𝐵1, 𝑗 = 2, … , 𝑚. 

In application we will use the bootstrap 

estimation method to produce more samples for the 

finite Fourier transforms. For 𝜆∗ ∈ 𝐵𝑗 ,  the 

estimation for 𝑇𝑗(𝜆) is 𝜆 ∈ 𝐵1 so that 𝐶̂(𝜆, 𝜆′) 

attains its maximum on 𝐵1 × 𝐵𝑗  at (𝜆, 𝜆′). 

Outline of 𝑇𝑗
,s estimation: 

(i) The block bootstrap methodology is used to 

produce a sample of size n for 𝑑𝑋(𝜆), using 

𝑋(0), … , 𝑋(𝑁 − 1) for given 𝜆 ∈ [0,2𝜋). 

(ii) 𝐶̂(𝜆, 𝜆′) is calculated for 𝜆 ∈ 𝐵1 and 𝜆′ ∈ 𝐵𝑗 , 𝑗 =

2, … , 𝑚, using {𝑑1(𝜆), … , 𝑑𝑛(𝜆)} and 
{𝑑1(𝜆′), … , 𝑑𝑛(𝜆′)}. 

(iii) We fix 𝜆∗ ∈ 𝐵𝑗  and find 𝜆 ∈ 𝐵1 such that it 

maximizes 𝐶̂(𝜆, 𝜆′). 
(iv) Step (iii) is repeated to find 𝜆1, … , 𝜆𝐽 ∈ 𝐵1 

corresponding to 𝜆1
∗ , … , 𝜆𝐽

∗ ∈ 𝐵𝑗. 

(v) We let 𝜆𝑘
∗ = 𝑇̂𝑗(𝜆𝑘), 𝑘 = 1, … , 𝐽 ;that estimates 

𝑇𝑗 , 𝑗 = 2, … , 𝑚. 

4. Simulation study 

In this section, we report simulation results for the 

proposed procedure. In order to investigate the 

performance of the procedure, we generate 

𝑁 = 100, 200, 500 𝑎𝑛𝑑 1000 observations from 

first order periodic autoregressive (PAR(1)) process 

𝑋𝑡,  

𝑋(𝑡) = 𝜙(𝑡)𝑋(𝑡 − 1) + 𝜀(𝑡), 
 
where 𝜙(𝑡) = 0.6 + 0.4cos (2𝜋𝑡/𝑚), m is the 

period and 𝜀(𝑡) is standard normal white noise. The 

Monte Carlo simulations are based on 10000 

repetitions for different values of 𝑚 = 2, 3, 5. Also, 

Moving Blocks Bootstrap (MBB) method is used to 

generate more samples (B=10). Table 1 shows the 

results for the estimation procedure. The columns 

show real value (𝑇𝑗), mean estimated value (𝑇̂𝑗), 

mean absolute error (MAE) and mean square error 
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(MSE) of  𝑇̂𝑗 in second Fourier frequency (2𝜋/𝑁). 

As can be seen in Table 1, the estimated values 

are very close to real values. Also the values of 

MAE and MSE are very close to zero. These results 

show that the proposed method performs well in 

estimation procedure, especially as N grows. 
 

Table 1. Estimation results based on proposed method 
 
m  N Real 

Value 

Estimated 

Value 

MAE MSE 

 
 

2 

 
 

𝑇2 

100 3.20 3.19 0.00214 4.10079e-
05 

200 3.17 3.17 0.00162 2.64198e-

06 

500 3.15 3.15 0.00092 8.59883e-

07 

1000 3.14 3.14 0.00078 3.65745e-
07 

 

 

 

3 

 

𝑇2 

100 2.15 2.16 0.00234 6.16785e-

05 

200 2.12 2.13 0.00207 9.64198e-

06 

500 2.10        2.12 0.00198 8.98675e-
07 

1000 2.10 2.08 0.00106 5.65435e-

07 
 

 

𝑇3 

100 4.25 4.27 0.00546 7.22318e-

05 

200 4.22 4.20 0.00453 1.76567e-
05 

500 4.20 4.21 0.00298 6.98468e-

06 

1000 4.19 4.18 0.00187 3.23753e-

06 

 

 

 

 

 

 

 

 

5 

 

 

𝑇2 

100 1.31 1.27 0.00765 6.94543e-

05 

200 1.28 1.29 0.00546 9.97875e-
06 

500 1.26 1.27 0.00324 4.32675e-

06 

1000 1.26 1.26 0.00187 1.31234e-

06 

 

 

𝑇3 

100 2.57 2.54 0.00654 7.56435e-
05 

200 2.54 2.52 0.00534 3.09870e-

05 

500 2.52 2.51 0.00341 9.07776e-

06 

1000 2.51 2.52 0.00198 6.15466e-

06 

 

𝑇4 

100 3.83 3.79 0.00876 7.89876e-

05 

200 3.80 3.82 0.00657 5.45786e-

05 

500 3.78 3.80 0.00543 1.13465e-
05 

1000 3.77 3.79 0.00291 9.98234e-

06 

 

 

𝑇5 

100 5.08 5.07 0.01045 9.54324e-

05 

200 5.05 5.06 0.00891 7.76549e-
05 

500 5.03 5.04 0.00677 2.98512e-

05 

1000 5.03 5.03 0.00293 1.05609e-

05 
 
 
 

To compare of our method with the other method, 

we apply the proposed method to predict PC 

processes. Soltani and Parvardeh (2006) showed the 

best predictor of 𝑋̂(𝑡 + 𝜏), 𝜏 > 0 is given by  
 

𝑋̂(𝑡 + 𝜏) = ∑ 𝑋̂𝑘(𝑡 + 𝜏)

𝑚

𝑘=1

, 

where  
 

𝑋̂𝑘(𝑡) = ∑ (𝑔̂𝑡,𝑘)(𝑙)𝑍𝑘,𝑙

+∞

𝑙=−∞

, 

 

𝑔̂𝑡,𝑘(𝑥) = ∑ 𝑒𝑖𝑡𝑇𝑗(𝑥)𝑎𝑗𝑘(𝑥)

𝑚

𝑗=1

, 

 
and {𝑍𝑘,𝑙} , 𝑘 = 1, … , 𝑚 are orthogonal white noise 

series. 

We replace 𝑇𝑗 by 𝑇̂𝑗. Also 𝑎𝑗𝑘(𝑥) can be estimated 

as follows: 

Soltani and Azimmohseni (2007) defined the 

periodogram of the finite PC sequence 

𝑋(0), … , 𝑋(𝑁 − 1), as follows: 
 

𝑰𝑋
𝑇 (𝜆) = 𝒅𝑋

𝑇 (𝜆)𝒅𝑋
𝑇 ∗

(𝜆), 
 
where 𝒅𝑋

𝑇 (𝜆) is given by 
 

(𝑑𝑋(𝑇1(𝜆)), 𝑑𝑋(𝑇2(𝜆)) … , 𝑑𝑋(𝑇𝑚(𝜆)))
′

, 𝜆 ∈ 𝐵1

= [0,
2𝜋

𝑚
). 

 

They showed that 𝐟(λ) =
𝐈X

T(λ)

2π
, is an 

asymptotically unbiased estimator for 𝐟(λ), λ ∈ 𝐵1.  
Therefore we can estimate 𝐒(x) as the square root 

of 𝐟(x). 
We use these results to compute 𝑋̂(𝑁) based on 

{𝑋(1), … , 𝑋(𝑁 − 1)} and compare our method with 

the method that was introduced by Hurd (2005; 

2007). 

The results are summarized in Table 2. The first 

column shows the value of 𝑋(𝑁). Other columns 

present predicted value (𝑋̂(𝑁)), empirical 95% 

lower bound (LB), empirical 95% upper bound 

(UB), MAE and MSE, respectively. The results 

show the values of MAE and MSE for the proposed 

method is smaller than the other method, especially 

for large values of N. Also, the empirical 

confidence interval based on the proposed method 

has smaller length and it seems that the proposed 

method performs better than the other method. 
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Table 2. Prediction results based on proposed and Hurd methods 

 
M N Method 𝑋(𝑁) 𝑋̂(𝑁) LB UB MAE MSE 

 

 

 

 

 

2 

 

100 

Proposed 0.60 0.60 0.52 0.68 0.031 0.0015 

 

Hurd 0.60 0.60 0.52 0.68 0.031 0.0015 

 

200 

Proposed 0.60 0.60 0.53 0.67 0.028 0.0012 

 

Hurd 0.60 0.60 0.52 0.67 0.032 0.0016 

 

500 

Proposed 0.65 0.65 0.59 0.71 0.023 0.0008 

 

Hurd 0.65 0.65 0.57 0.73 0.031 0.0015 

 

1000 

Proposed 0.62 0.62 0.57 0.67 0.020 0.0006 

 

Hurd 0.62 0.62 0.54 0.70 0.034 0.0015 

 

 

 

 

 

 

3 

 

100 

Proposed 1.63 1.63 1.55 1.71 0.031 0.0015 

 

Hurd 1.63 1.63 1.55 1.71 0.031 0.0016 

 

200 

Proposed 1.60 1.60 1.53 1.67 0.027 0.0011 

 

Hurd 1.60 1.60 1.52 1.68 0.031 0.0015 

 

500 

Proposed 1.68 1.68 1.62 1.73 0.023 0.0008 

 

Hurd 1.68 1.68 1.60 1.75 0.031 0.0015 

 

1000 

Proposed 1.67 1.67 1.62 1.72 0.019 0.0006 

 

Hurd 1.67 1.67 1.60 1.75 0.031 0.0015 

 

 

 

 

 

 

5 

 

100 

Proposed 2.15 2.15 2.07 2.23 0.032 0.0016 

 

Hurd 2.15 2.15 2.07 2.23 0.032 0.0016 

 

200 

Proposed 2.15 2.15 2.08 2.22 0.027 0.0012 

 

Hurd 2.15 2.15 2.07 2.23 0.031 0.0016 

 

500 

Proposed 2.13 2.13 2.07 2.18 0.024 0.0009 

 

Hurd 2.13 2.13 2.05 2.20 0.032 0.0016 

 

1000 

Proposed 2.05 2.05 2.00 2.10 0.019 0.0006 

 

Hurd 2.05 2.05 1.97 2.13 0.031 0.0015 
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