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Abstract 

A projective parameter of a geodesic as solution of certain ODE is defined to be a parameter which is invariant 

under projective change of metric. Using projective parameter and Poincaré metric, an intrinsic projectively 

invariant pseudo-distance can be constructed. In the present work, solutions of the above ODE are characterized 

with respect to the sign of parallel Ricci tensor on a Finsler space. Moreover, the Ricci tensor is used to define a 

Finsler structure and it is shown that, the pseudo-distance is trivial on complete Finsler spaces of positive semi-

definite Ricci tensor and it is a distance on a Finsler space of parallel negative definite Ricci tensor.  
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1. Introduction 

If any geodesic of two Finsler spaces (M, F)and 

(M, F̅) coincide as a set of points, then Fand dF are 

said to be projectively related. It is well-known that 

two Finsler spaces are projectively related, if and 

only if there is a 1-homogeneous scalar field 

P(x, y) called the projective factor 

satisfying G̅i(x, y) = Gi(x, y) +  P(x, y)yi, where Gi 

and G̅iare the corresponding spray vector fields. In 

general the parameter "t" of a geodesic γ ≔ xi(t) 

on (M, F) does not remain invariant under 

projective change of metrics. A parameter which 

remains invariant under projective change of 

metrics is called projective parameter. The 

projective parameter is defined first for geodesics 

of general affine connection, (Thomas, 1925; 

Eisenhart, 1927; Berwald, 1937). In (Bidabad & 

Sepasi, 2015), this parameter is carefully spelled 

out for geodesics of Finsler spaces by the present 

authors as solutions of the following differential 

equation. 
 

{p, s} ≔
d3p

ds3

dp

ds

−
3

2
[

d2p

ds2

dp

ds

]

2

=

   
2

n−1
Ricjk (x(s),

dx

ds
)

dxj

ds

dxk

ds
,                                  (1) 
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where, {p, s} is known in the literature as 

Schwarzian derivative and "s" is the arc-length 

parameter of γ. The Schwarzian derivative is 

defined to be an operator which is invariant under 

all linear fractional transformations t →
at+b

cf+d
 where, 

ad − bc ≠ 0. That is 
 

{
af+b

cf+d
, t} = {f, t}.                                                    (2) 

 
By means of the equation (2), the projective 

parameter is unique up to all linear fractional 

transformations. In (Bidabad & Sepasi, 2015), the 

projective parameter and the Poincaré metric are 

used to define a projectively invariant pseudo-

distance denoted by dMand it is shown that in a 

complete Einstein-Finsler space with negative 

constant Ricci scalar, the projectively invariant 

pseudo-distance is a constant multiple of the 

Finslerian distance. Recall that two Finsler 

structures F and F̅ are said to be homothetic if there 

is a constant λ such that F = λF̅  ; as a corollary, the 

following results are obtained;  

 

Theorem A. Let (M, F) and (M, F̅) be two complete 

Einstein Finsler spaces with 

Ricij = −c2gij, and Ric̅̅ ̅̅
ij = −c̅2g̅ij, respectively, if 

F   and F̅  are projectively related then they are 

homothetic. 

 

Theorem B. Let (M, F)and (M, F̅) be two complete 

Finsler spaces of constant negative flag curvature, if 
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F and F̅ are projectively related then they are 

homothetic.  

The last result is also obtained by Shen (2001) 

using another technique of proof. 

In the present work, solutions of the differential 

equation (1) are characterized with respect to the 

parallel Ricci tensor in any of the Berwald, Chern 

or Cartan connections as follows. 

 

Theorem 1. Let (M, F) be a Finsler space of 

parallel Ricci tensor. Then the Ricci tensor is 

constant along geodesics, and solutions of  (1) are 

classified as follows. 

i) If  {p, s} = c2, with c > 0 , then 
 

p =
α cos(cs)+ β sin(cs)

γ cos(cs)+δ sin(cs)
.                                             (3) 

 
ii) If {p, s} = −c2with c > 0, then 
 

p =
αecs+βe−cs

γecs+δe−cs .                                                       (4) 

 
iii) If  {p, s} = 0, then 
 

p =
α+βs

γ+δs
 .                                                              (5)  

 
Next a new approach to the study of pseudo-

distances is established and the following results 

are obtained. 

 

Theorem 2. Let (M, F) be a connected complete 

Finsler space of positive semi-definite Ricci tensor. 

Then the intrinsic projectively invariant pseudo-

distance is trivial, that is, dM = 0. 

 

Theorem 3. Let (M, F) be a connected (complete) 

Finsler space of negative-definite parallel Ricci 

tensor with respect to the Berwald or Chern 

connection. Then the intrinsic projectively invariant 

pseudo-distancedM is a (complete) distance. 

These results are generalizations of Riemannian 

works (Kobayashi, 1978) and (Kobayashi & Sasaki, 

1978) and establish a new approach to the study of 

projective geometry in Finsler spaces. 

2. Preliminaries 

A (globally defined) Finsler structure on a 

differential manifold M is a function on the tangent 

bundle F: TM →  [0 , ∞) with the following 

properties, i) Regularity: F is C∞ on the entire slit 

tangent bundle TM0, ii) Positive 

homogeneity: F(x, λy)=λF(x, y) for all λ >
0, iii) Strong convexity: The Hessian matrix (gij) ∶

=  ([1/2F2]yiyj) is positive-definite onTM0 =

TM\0. The pair (M, F) is known as a Finsler space. 

Every Finsler structure F induces a spray 

G = yi ∂

∂xi − Gi(x, y)
∂

∂yi on TM, where 

 

Gi(x , y): =  
1

2
gil {[F2]

xkylyk − [F2]
xl} . 

 
G is a globally defined vector field on TM. The 

projection of a flow line of G on M is called a 

geodesic. The differential equation of a geodesic in 

the local coordinates is given by 
d2xi

ds2 +

Gi (x(s),
dx

ds
) = 0, where the parameter(t) =

 ∫ F(γ ,
dγ

dr
)dr

t

t0
is arc length parameter. Everywhere 

in this work, the differential manifold M is 

supposed to be connected. 

For a non-null, y ∈ TxM, the Riemann curvature 

Ry: TxM → TxM is defined by Ry(u) =  Rk
i uk ∂

∂xi, 

where Rk
i (y): =  

∂Gi

∂xk −
1

2

∂2Gi

∂yk ∂xj yj + Gj ∂2Gi

∂yk ∂yj −

1

2

∂Gi

∂yj

∂Gj

∂yk. The Ricci scalar is defined by Ric ∶=  Ri
i, 

see for instance (Akbar-Zadeh, 1988) or (Bao, 

Chern, & Shen, 2000). In the present work, we use 

the definition of Ricci tensor introduced by Akbar-

Zadeh as, Ricik ∶=  1/2(F2Ric)yiyk . Moreover, by 

homogeneity we have Riciklilk  =  Ric. 

Let us consider the sprayGi ∶= γjk
i yjyk, where 

γjk
i ≔

1

2
gis(

∂gsj

∂xk −
∂gjk

∂xs +  
∂gks

∂xj ),  

Ni
j ≔

1

2

∂Gi

∂yj , li ≔
yi

F
  and, l̂ ≔

δ

δxi = li (
∂

∂xi −

Nk
i

∂

∂yk),  (Bao, Chern and Shen 2000). 

3. Projective parameter on Ricci parallel Finsler 

spaces 

Let the Ricci tensor of (M, F) be parallel with 

respect to any of the Cartan, Berwald or Chern 

connections. We recall the Abel's identity in 

ordinary differential equations. 

Consider the second-order linear ordinary 

differential equation: 
 
ÿ + P(x)ẏ + Q(x)y = 0.                                       (6) 
 

Consider the two linearly independent solutions, 

y1(x) and y2(x). Then, the Wronskian of y1 and y2, 

w(y1, y2): = y1̇y2 − y1y2̇ satisfies 

ẇ +  Pw = 0, therefore,  
 

w = w0e− ∫ P(x)dx.                                                 (5) 

 

Proposition 1. If y1 and y2are linearly independent 

solutions of the ordinary differential equation 

 

ÿ + Q(s)y(s) = 0,                                                 (8) 
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where Q(s) =  
1

n−1
Ricjk (x(s),

dx

ds
)

dxj

ds

dxk

ds
, 

then the general solution of (1) is given by 
 

u(t) =  
αy1+ βy2

γy1+ δy2
,                                                    (9) 

 
where, αδ − βγ ≠ 0. 
 

Proof: According to (2), it suffices to show that 

y1/y2 is a solution of (1). The term P(x) in (7) is 

zero, hence the Wronskian w(y1, y2) is constant. 

We may assume that 

w(y1, y2) = 1. Then, u̇ = 1/y2
2, 

ü

u̇
= −2 

y2̇

y2
 and 

(
ü

u̇
)
̇

=
−2y2̈y2+  2 (y2̇)2

y2
2 = −2 

y2̈

y2
 2 (

y2̇

y2
)

2

,  thus 

u⃛u̇ − (ü)2

(u̇)2
= −2 

(−Q(s))y2(s)

y2(s)
+

1

2
(

ü

u̇
)

2

, 

u⃛

u̇
− (

ü

u̇
)

2

= 2 Q(s) +
1

2
(

ü

u̇
)

2

, 

u⃛

u̇
−

3

2
(

ü

u̇
)

2

= 2 Q(s). 

This completes proof of the proposition. 

 

Proof of Thoerem 1. Assume that the Ricci tensor 

is parallel with respect to the Cartan connection. 

Let us denote the horizontal and vertical Cartan 

covariant derivatives by ∇ δ

δxk

c  

and ∇ ∂

∂yk

c respectively. Hence 

 

∇ δ

δxk

c Ricij =
δRicij

δxk − RicirΓjk
r − RicjrΓik

r = 0,        (10) 

 

∇ ∂

∂yk

c Ricij =
∂Ricij

∂yk − Ricir

Ajk
r

F
− Ricjr

Aik
r

F
= 0,      (11) 

 

where, Γjk
i =

1

2
gis(

δgsj

δxk −
δgjk

δxs +  
δgks

δxj ) and Ajk
i ≔

gihAhjk = gih F

4

∂ghj

∂yk are the coefficients of Cartan 

tensor. Consider the geodesic, γ ∶=  xi(s), where"s" 

is the arc-length 

parameter. Contracting (10) by 
dxi

ds

dxj

ds

dxk

ds
(RicirΓjk

r ) 

gives 
 
dxi

ds

dxj

ds

dxk

ds
(

∂Ricij

∂xk − Nl
k

∂Ricij

∂yl ) −

dxi

ds

dxj

ds

dxk

ds
(RicirΓjk

r ) −
dxi

ds

dxj

ds

dxk

ds
(Ricjr Γik

r )  = 0. 
 

By means of (11) and, yjAjk
i = 0, we have 

dxi

ds

dxj

ds

dRicij

ds
−

dxi

ds

dxj

ds

dxk

ds
Nl

k (Ricir

Ajl
r

F

+ Ricjr

Ail
r

F
)

− 2
dxi

ds

dxj

ds

dxk

ds
RicjrΓik

r = 0. 

Therefore 
 

dRicij
dxi

ds

dxj

ds

ds
− 2Ricij

d2xi

ds

dxj

ds
− 0 + 2Ricij

d2xi

ds

dxj

ds
= 0. 

 
and we have 
 

Ricij
dxi

ds

dxj

ds
= constant.                                      (12) 

 
Following the method just used, we can prove 

that if the Ricci tensor is parallel with respect to the 

Berwald or Chern connection, then along the 

geodesic γ parameterized by arc-length, we have 

Ricij
dxi

ds

dxj

ds
= constant.  

Considering the above assertion and Lemma 1, 

the equation (1) reduces to a second order ODE 

with constant coefficients. Therefore, sign of Ricci 

tensor explicitly determines a projective parameter 

"p" as an elementary function of "s" given by (3), 

(4)and (5). This completes the proof of Theorem. 

 

4. Positive semi-definite Ricci tensor 

Let I =  (−1, 1) be an open interval with the 

Poincaré metric dsI
2 =

4du2

(1−u2)2. The Poincaré 

distance between two points a and b in I is given by 
 

ρ(a, b) = |ln
(1−a)(1+b)

(1−b)(1+a)
|,                                      (13) 

 
(Okada, 1983). A geodesic f ∶  I → M on the 

Finsler space (M, F) is said to be a projective map, 

if the natural parameter u on I is a projective 

parameter. We now come to the main step for 

defining the pseudo-distance dM on (M, F). We 

proceed in analogy with the treatment of Kobayashi 

in Riemannian geometry, (Kobayashi, 1978). 

Although he has confirmed that the construction of 

intrinsic pseudo-distance is valid for any manifold 

with an affine connection, or more generally a 

projective connection (Kobayashi, 1977), we 

restrict our consideration to the pseudo-distances 

induced by the Finsler structure F on a connected 

manifold M. Given any two points x and yin (M, F), 

we consider a chain αof geodesic segments joining 

these points. That is 

 a chain of points x =  x0, x1, … , xk = y 

on M; 

 pairs of points a1, b1, … , ak , bk in I; 
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 projective maps f1, … , fk,  fi ∶  I → M, such 

that 

fi(ai) =  xi−1,     fi(bi) = xi , where,  i =  1, … , k. 
By virtue of the Poincaré distance ρ(. , . )on I we 

define the length L(α) of the chain α by L(α) ∶=
∑ ρ(ai, bi)i , and we put 
 
dM(x, y): =  infL(α),                                           (14) 
 
where the infimum is taken over all chains αof 

geodesic segments from x to y. 

 

Proposition 2. Let (M, F) be a Finsler space. Then 

for any points x, y, and z in M, dM  satisfies 

i. dM(x, y)  =  dM(y, x). 
ii. dM(x, z) ≤ dM(x, y) +  dM(y, z).   
iii. If x =  y then dM(x, y) = 0, but the inverse is 

not always true. 

Traditionally, dM(x, y) is called the pseudo-

distance of any two points x and y on M. From the 

property (2) of Schwarzian derivative, and the fact 

that the projective parameter is invariant under 

fractional transformation, the pseudo-distance dM is 

projectively invariant. 

 

Proof of Theorem 2. In order to prove Theorem 2 

we need the following Lemmas. 

 

Lemma 3. Let (M, F) be a complete Finsler space. 

Consider two points x0and x1 on M. If there exists a 

geodesic x(u) with projective parameter u, 

−1 < u <  +1, such 

thatx0 =  x(u0) and x1  =  x(u1) for some u0 and 

u1 in ℝ then 
 

dM(x0, x1) = 0. 
 

Proof: Linear equation of the segment passing 

through the points (u0, −1/2)and (u1, 1/2) is 

given by û =
u

u1−u0
−

1

2

(u1+u0)

u1−u0
. Here, û is a linear 

transformation of u and is also a projective 

parameter. We have −
1

2
< û <

1

2
  whenever 

u0 < u < u1. 
Next, we consider the chain α of projective maps, 

an and bn where 

fn =  x(nû),      an  =  −
1

2n
,   bn =

1

2n
.   

Note that fn (−
1

2n
) = x (n (−

1

2
n)) = x (−

1

2
) =

x(u0) and ρ (−
1

2n
,

1

2n
) = |ln

(1+
1

2n
)(1+

1

2n
)

(1−
1

2n
)(1−

1

2n
)
|. 

Considering n sufficiently large, we have 

dM(x0, x1)  =  infL(α)  =  0. This completes the 

proof of Lemma 3. 

 

Lemma 4. Let (M, F) be a complete Finsler space 

and x(s) a geodesic with arc-length 

parameter  −∞ <  s < ∞. Assume that there exists 

a (finite or infinite) sequence of open intervals Ii  =
 (ai, bi), i =  0, ±1, ±2, … such that; 

i) ai+1  ≤  bi, limi→−∞ ai =  −∞, limi→+∞ bi =
 +∞ and ⋃ Ii̅ = (−∞, +∞)i ;  
ii) in each interval Ii  = (ai, bi), a projective 

parameter "u" moves from −∞ to +∞ whenever t 
moves from ai to bi. Then, for any pair of points x0 

and x1on this geodesic, we have 
 

dM(x0, x1) = 0. 
 

Proof: By means of Lemma1, the distance between 

any two points in the same interval Ii is zero. Two 

consecutive open intervals Ii and Ii+1 have either a 

point as a boundary point or an interval in common. 

In each case, given ϵ > 0, there exist the points 

Si and Si+1 in Ii and Ii+1 respectively such that 

dM(x(si), x(si+1)) < ϵ. This completes the proof of 

Lemma 4. 

The following Lemmas permit us to construct the 

open intervals Ii   in Lemma 3. The proofs are given 

in (Kobayashi & Sasaki, 1978). 

 

Lemma 5. In the ODE (8), if Q(s) =  0 for all 

s ∈  ℝ then every solution y(s) has 

at least one zero unless Q(s)  =  0 and y(s) is 

constant c ≠  0. 

In the sequel the Sturm's separation theorem 

which claims; given a homogeneous second order 

linear differential equation and two continuous 

linear independent is needed. 

Solutions v(x) and u(x) with x0 and x1 

successive roots of v(x), so u(x) has exactly one 

root in the open interval (x0, x1). 

 

Lemma 6. Let y1(s)and y2(s) be two linearly 

independent solutions of (8). If a and b are two 

consecutive zeros of y2 then u =  y1(s)/y2(s) or 

u =  −y1(s)/y2(s) is a projective parameter on the 

interval (a, b) which moves from −∞ to +∞ as s 

moves from a to b.  

The differential equation (8) is said to be 

oscillatory at s = ±∞ if the zeros 
 

… < a−2 < a−1 < a0 < a1 < a2 < ⋯ , 
 
of the solution y(s) have the property 

limh→−∞ ah = ∞ and limh→+∞ bh = +∞. Then 

the sequence of intervals Ii  =  (ai, bi) satisfies the 

condition of Lemma 3. This fact proves 

Theorem 2 in this case. 

Next, we consider the case that (8) is 

nonoscillatory at s = +∞. That is, y2(s) does not 

vanish for sufficiently large s. According to the 

Sturm's theorem, this condition is independent of 

choice of a particular solution y2(s). 
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Lemma 7. If the differential equation (8) is non-

oscillatory at s = +∞, then there is a solution y2(s) 

which is uniquely determined up to a constant 

factor satisfying 
 

lims→+∞
y2(s)

y1(s)
= 0,                                               (15) 

 
for any solution y1(s) linearly independent of 

y2(s). 

The solution y2(s) in Lemma 6 is called a 

principal solution. Here, we consider a weaker 

version of comparison Theorem of Sturm as 

follows. 

 

Lemma 8. Consider two differential equations 

(i)      ÿ(s) + Q1(s)y(s) = 0, 
(ii)     ÿ(s) + Q2(s)y(s) = 0, 
with Q1(s) > Q2(s). Let y1(s) and y2(s) be 

solutions of (i) and (ii) respectively such that 
 
ẏ1(a)

y1(a)
≤

ẏ2(a)

y2(a)
.                                                         (16) 

 
If y1(s) and y2(s) have no zero in the interval 

a <  s <  +∞, then for s >  a 
 
ẏ1(s)

y1(s)
≤

ẏ2(s)

y2(s)
.                                                        (17) 

 

If y2(a) = 0, then the term 
ẏ2(a)

y2(a)
 is considered to 

be ∞. 

One can refer to (Du and Kwnog, 1990) and 

(Kobayashi and Sasaki, 1978) for more details 

about this subject.  

 

Lemma 9. Assume that the differential equation 

(8) is nonoscillatory at s = +∞ and that Q(s)  ≥
0. Let y(s) be a principal solution as in Lemma 6. 

If a is the largest zero of y2(s) and if y1(s) is a 

solution linearly independent of y2(s), then y1(s) 

vanishes at some s >  a. 

We are now in a position to complete the proof of 

the theorem 2 where the differential equation (8) is 

nonoscillatory at s = +∞, or s = −∞.  

If (8) is non-oscillatory at s = +∞ but oscillatory 

at s = −∞, we take a principal solution y2(s) and 

another solution y1(s) linearly independent of 

y2(s). Let …<a−2 < a−1 < a0 < a1 < a2 < ⋯, be 

the zeros of y2(s). Then the sequence of intervals, 

Ii  =  (ai, bi), for i = ⋯ , −2, −1,0,1,2, … , k with 

ak+1 = +∞, equipped with a projective parameter 

u =  
y1

y2
 or u = − 

y1

y2
 satisfy the requirements of 

Lemma 3. We note that Lemma 8 implies that u is 

a projective parameter in the last intervalIk  =
 (ak, +∞). If (8) is nonoscillatory at s = −∞ but 

oscillatory at s = +∞, we replace Lemma 6 and 

Lemma 8 by the analogous Lemmas for s = −∞. 

Assume that (8) is nonoscillatory at ±∞. Let y2(s) 

be a principal solution for s =  +∞ and not for 

s = −∞. Let y1(s) be a principal solution for 

s = −∞. then y1(s) and y2(s) are linearly 

independent. We obtain a sequence of intervals Ii, 

i =  0, 1, … , k with a projective parameter u =

 
y1

y2
, u = − 

y1

y2
, u =  

y2

y1
 or u = − 

y2

y1
  satisfying the 

requirements of Lemma 

3. In this case, there are some overlaps among these 

intervals. 

If y2(s) is a principal solution for both s =  +∞ 

and s =  −∞ then we consider y1(s) as a solution 

linearly independent of y2(s). We obtain a 

sequence of intervals  Ii, i =  0, 1, … , k, with a 

projective parameter u =  or u = − 
y1

y2
  satisfying 

the requirements of Lemma 3. In this case, there are 

no overlaps of intervals. This completes the proof 

of Theorem2. 

5. Parallel negative-definite Ricci tensor 

We recall the following theorem which will be used 

in the sequel. 

 

Theorem A. Let (M, F) be a connected (complete) 

Finsler space for which the Ricci tensor satisfies, 

Ricij ≤ −c2gij, as matrices, for a positive constant 

c. Then dM is a (complete) distance. (Bidabad & 

Sepasi, 2015). 

 

Proof of Theorem 3. Let us consider the Finsler 

structure defined by means of the Ricci tensor as 

F̂(x, y) =  √−Ricij(x, y)yiyj. 

One can easily check that F̂ satisfies all properties 

of a Finsler structure on M. More precisely; 

i) by definition F̂ is C∞ on the entire slit tangent 

bundle TM0; 

ii) The Ricci tensor Ricij(x, y) is 0-homogeneous, 

hence F̂(x, λy) = λF̂(x, y)   for all  λ >  0; 

iii) again, according to the 0-homogeneity of 

Ricij(x, y), through straightforward calculation we 

get, ĝij = [
1

2
F̂2]

yiyj
= −Ricij(x, y). 

The Ricci tensor is supposed to be negative-

definite thus the Hessian matrix (ĝij) is positive-

definite. Next, we show that the spray coefficients 

of F̂ and F are equal, that is, Ĝi =  Gi, hence we 

have 
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Ĝi =
1

2
(−Ric)ih (

∂2F̂2

∂yh ∂xj
yj −

∂F̂2

∂xh
)

=
1

2
(−Ric)ih (

∂2(−Riclrylyr)

∂yh ∂xj
yj

−
∂(−Riclrylyr)

∂xh
)

=
1

2
(−Ric)ih (−2

∂(Richly
l)

∂xj
yj

+
∂(Riclr)

∂xh
ylyr) 

=   Ricih ∂(Richlyl)

∂xj yj −
1

2
 Ricih ∂(Riclr)

∂xh ylyr.         (18) 

 
Let Ricci tensor be parallel with respect to the 

Berwald connection ∇b. Similar arguments hold 

well for Chern connection. We have 
 

∇ δ

δxj

b Richl =
δRichl

δxj − RichrG  lj
r − RiclrG  hj

r = 0,

G  lj
r =

1

2

∂2Gr

∂yl ∂yj .                                                     (19) 

 

∇ ∂

∂yk

b Ricij =
∂Ricij

∂yk = 0.                                         (20) 

 

Contracting (19) with Ricihyjyl leads to 
 

Ricihyjyl
∂Richl

∂xj
− RicihRichaGa

−
1

2
RicihRicla

∂Ga

∂yh
yl = 0. 

Ricihyjyl ∂Richl

∂xj − Gi −
1

2
RicihRicla

∂Ga

∂yh yl = 0.  (21) 

 
On the other hand 

 

−
1

2
Ricihyryl

∂Riclr

∂xh
+

1

2
 RicihyrylRiclaG  rh

a

+
1

2
RicihyrylRicraG  lh

a = 0. 

−
1

2
Ricihyryl ∂Riclr

∂xh +
1

2
 RicihyrRicra

∂Ga

∂yh = 0.    (22) 

 
Considering, (18), (21) and (22) we have 

Ĝi =  Gi. As a consequence, we have Riĉij = Ricij. 

On the other hand, we just asserted that ĝij(x, y) =

−Ricij(x, y). Thus, we have ĝij(x, y) = −Riĉij(x, y). 

According to TheoremA, d̂Mis a (complete) 

distance. The two spaces (M, F) and (M, F̂) are 

affine and we have dM = d̂M. Hence, dM is a 

(complete) 

distance. 
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