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Abstract 

The present study is an attempt to investigate some features of Radial Basis Functions (RBFs) approximation 

methods related to variational problems. Thereby authors applied some properties of RBFs to develop a direct 

method which reduces constrained variational problem to a static optimization problem. To assess the applicability 

and effectiveness of the method, some examples are examined. Dynamic investment problem with free endpoint in 

unbounded domain is solved, accordingly the effectiveness of the proposed method is verified. To improve the 

accuracy and stability of the method we have used various shape parameter strategies with equally spaced and 

scattered centers. Finally, two new shape parameter strategies are proposed and then it is shown that the proposed 

strategies increase the accuracy and stability of the method.  
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1. Introduction 

In the previous decades, some computational 

aspects of global RBF and local RBF interpolation 

have been considered by engineers, scientists and 

mathematicians in different fields such as neural 

networks, solving ODEs, PDEs and integral 

equations (IEs). For instance, Franke and Schaback 

(1998) used RBFs for solving PDEs, Golbabai and 

Seifollahi (2006) used RBFs to solve the second 

kind of IEs and Golbabai and Saeedi (2014) applied 

RBF method to solve national saving model. 

Indeed, for smooth problems, RBFs create 

exponential convergence rate (Cheney, 2000). 

(Schaback, 1995 and 2005; Madych, 1992; Madych 

and Nelson, 1992) have collaborated in finding 

error bounds of some RBFs. The implementation of 

RBF based approaches to solve functional equation 

is straightforward and the accuracy and efficiency 

of these methods have made them popular. 

Though the calculus of variations and its variant's 

studies began over 300 years ago, scientists are still 

interested in it. Its various applications are abundant 

in fields including geometry, differential equations 

and in diverse areas such as mechanics, economics 

and, renewable resources. It is evident that to 
analytically find optimal solutions for many problems 
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is impossible. Thus numerical techniques are an 

indispensable tool for solving many variational 

problems. 

Special attention has been given to applications of 

Walsh functions (Chen and Hsiao, 1975), Block-

pulse functions (Hwang and Shih, 1985) , Legendre 

polynomials (Chang and Wang, 1983), Chebyshev 

polynomials (Horng and Chou, 1985), Triangular 

orthogonal functions (Babolian et. al, 2007) and 

Walsh-Wavelets (Glabisz, 2004) for solving a 

variational problem. 

In order to attain a more comprehensive and 

deeper insight into RBF features, the use of RBF 

approximation method for solving constrained 

variational problems with fixed and free boundaries 

is examined in the current research.  

The present paper tries to develop a new method 

that facilitates reduction of variational problem into 

a system of algebraic equations via expanding the 

candidate functions as a linear combination of 

RBFs with unknown coefficients. 

The paper is organized as follows: In section 2, 

some fundamental properties of few RBFs are 

described. Besides some existing shape parameter 

strategies are described including variable shape 

parameter (VSP) and constant shape parameter, 

which have previously been utilized in interpolation 

and solving some PDEs, as well as two new VSPs, 

introduced in this work to perform the efficiency of 

the method. Then in sec. 3 the variational problem 

and its variants are described. 

http://ijsts.shirazu.ac.ir/
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Section 4 deals with the RBF method for 

constrained variational problem and well-

definedness of the reduced static optimization 

problem. In section 5, the previously described 

method is applied to some test problems as well as 

dynamic investment problem and it is verified that 

the RBF direct method provides a more accurate 

and more stable solution for the problems.  

2. RBF approximation 

Given a set of centers 
d

N RinXX ,...,1 , the 

RBF interpolation takes the form 
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Common choices of RBFs are Gaussian (GA), 

)exp()( 2crr   Multiquadric (MQ),

22)( rcr   and Inverse Multiquadric 

(IMQ), 
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 . The coefficients   

are chosen  

by enforcing the interpolation condition 
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at a set of grid points that typically coincide with 

the centers. Applying the interpolation conditions at 

N centers leads to a NN   linear system: 
 

fW                                                               (3) 

 
to be solved for expansion coefficients   where 

the entries of the interpolation matrix W are given 

by NjicXXXW jiijij ,...,1,),,()(
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It is obvious that the interpolation problem (2) 

will be well posed if and only if the matrix W is 

nonsingular. 

In the RBF literature for example Fasshuar (2007) 

there has been enough discussion around the 

positive definite and conditionally positive definite 

functions which leads to positive definite matrix W 

that guarantees well posedness of interpolation 

problem (2). 

For positive definite radial basis functions an 

extension of Bochner's theorem guarantees the 

invertibility of the matrix W, for any set of distinct 

grid points (also non-uniformly spaced and in 

.1, dRd
 Characterization of positive definite 

functions in terms of Fourier transforms was 

established by Bochner (Fasshuar, 2007). 

 

Theorem 2.1. A (complex valued ) function Φ ∈ 

C(R
d
) is positive definite on R

d 
if and only if it is 

the Fourier transform of finite non-negative Borel 

measure µ on R
d
, i.e. 
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Following theorem enables us to obtain a 

criterion for checking conditional positive 

definiteness of radial functions. 

 

Theorem 2.2. (Cheney, 2000) Let ϕ ∈ C[0, ∞] ∩ 

C∞(0, ∞). Then the function Φ = ϕ(∥.∥
2
) is 

conditionally positive definite radial functions on 

R
d
 for all d if and only if (−1)

m
ϕ

(m)
 is completely 

monotone on (0, ∞). 

Also, for GA-RBFs using (1) it is easy to obtain 

the following properties that facilitate computing 

via RBFs: 
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where 
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It is easy to see  
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and A = diag{−2c1(x − x1), −2c2(x − x2), ..., −2cN(x 

− xN)}. 
2))(( xyN

can be written as a quadratic from 
 

 Bxy TN 2))((                                         (7) 

 

where )( ijij xB  , B is a symmetric matrix. 

Also,  
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)()())((4 2 xxxxxxcS jijiij  , S is a 

symmetric matrix. 
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One can use relations (5), (6) to obtain  
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where TT AD   and ).()()(2 xxxxcD jijij 
 

It is possible to provide a similar discussion with 

MQ-RBF and IMQ-RBF. 

2.1. Choosing the shape parameter 

Many RBFs are defined by a constant called the 

shape parameter. The choice of shape parameter has 

a significant effect on the accuracy and stability of 

an RBF method. It has been shown that interpolants 

by RBF in R
d
 with finite smoothness of even order 

converge to a polynomial spline interpolant as the 

scalar parameter of the RBFs goes to zero, i.e., the 

radial basis functions becomes increasingly flat. 

There are some methods for choosing shape 

parameter. The most typical is calculating the errors 

with different shape parameters and choosing the 

best one (trial and error procedure). This strategy 

can be used if we know the function f, so the job of 

finding interpolant for f may be to some extent 

pointless. If f is not known, then to decide what 

"best" means becomes somewhat difficult. 

Fasshuar (2007) suggests a criterion based on 

"trade-off principle", i.e. the fact that the error and 

condition number cannot both be kept small. So he 

suggests to define "best" as "to be the smallest c for 

which MATLAB does not report a close to singular 

warning". linsolve(W,b) in MATLAB solves a 

linear system Wx=b using LU factorization with 

partial pivoting when W is square and QR 

factorization with column pivoting otherwise. 

Indeed, it returns a warning if W is square and ill-

conditioned or if it is rank efficient and non-square. 

For any matrix W the quantity  
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is called l2-condition number where minmax ,
are respectively the largest and smallest singular 

values of W that in positive definite matrices, it is 

equal to ratio of largest and smallest eigenvalues. 

Also, it is possible to use p-norm condition number

),...,2,1( p  that produces results comparable to 

l2--condition number due to equivalency of p-norms 

property. 

For distinct center points if a constant shape 

parameter is used, the system matrix (3) for MQ-

RBF, GA-RBF and IMQ-RBF is known to be 

nonsingular (Sarra and Sturgill, 2009) whereas for 

the variable shape parameter case it notable 

theoretical progress has not been enough to 

establish invertibility of the system. 

Using a variable shape parameter rather than 

constant shape parameter is strategy that facilitates 

producing different entries in the RBF matrices 

which may result in a more well-conditioned 

system. 

The formula 
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gives an exponentially varying shape parameter that 

was suggested to produce a distinct value shape 

parameter. Linearly varying shape parameter is 

another strategy: 
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also the random shape strategy 
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The command rand(1,N) is the MATLAB 

function that returns N uniformly distributed 

pseudo random numbers on the unit interval (Sarra 

and Sturgill, 2009; Golbabai and Rabiei, 2012) 

proposed sinusoidal shape parameter (SSP) that 

produces N shape parameters in the interval [cmin, 

cmax] 
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In this paper we propose Cubic Root (CR) shape 

parameter strategy as: 
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and a Square Root (SR) shape parameter strategy: 
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that are increasing and convex functions, aid 

generating different entries in the RBF matrices 

together with a decrease in the condition number of 

matrices, however, because of cubic root property, 

shape parameters produced by CR have smaller 
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range than SR so different effect of them on the 

solutions is expected. In our experiments the results 

are compared over a range of average shape 

parameters which will be denoted by 

.
2

maxmin cc
cavg


  

3. Constrained variational problem 

In this work we concentrate on the problem of 

finding the extremum of the functional 

 
,),,()( 
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where u ∈ Lip[xa, xb] is the class of Lipschitz 

functions mapping [xa, xb] to R
N
, then each 

component of y is an absolutely continuous 

function. 
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which two points A0 and B0 in R
N
 are given. 

There is great variety of variational problems: 

1. Boundary conditions: In certain variational 

problems the boundary conditions of the competing 

functions or its derivative are not fully described. In 

these situations transversality conditions may be 

helpful. 

2. Isoperimetric problem: requiring competing 

functions to comply with restrictions of the type 
 

,)(),(,( DdxxuxuxG                               (18)  

 

where G: Ω × R × R
N
→ R

d
, D ∈ R

d
 are known; 

some of the constraints could come in the form of 

inequalities.  

3. Pointwise constraints: establishing that feasible 

functions must respect the condition 
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for all x ∈ Ω where E is a known function as above, 

and we could also have some inequalities. This case 

will be treated with the same strategy as the 

previous case. 

 

Theorem 3.1. (Tonelli’s theorem) (Clarke, 2013) 

If the Lagrangian L(x, u, v) satisfies the following 

assumptions: 

1. Coercivity of rank r > 1 for certain constants α > 

0 and β, we have 

L(t, x, v) ≥ α∥v∥
r
+ β,  ∀(t, x, v) ∈ [a, b] × R

N
× R

N
 

2. Convexity in v: Lvv is positive semidefinite 

(Lvv≥0) everywhere, there exists a solution of the 

basic problem (15) relative to the class of 

absolutely continuous (A.C.) functions. 

Coercivity condition could be replaced by some 

certain weakened conditions while existence of a 

solution to problem (15) is establishable. Under the 

hypothesis of Tonelli’s theorem, if in addition the 

Lagrangian is autonomous, then any solution y∗, of 

the problem (15) is Lipschitz on [xa, xb]. The 

problem or its Lagrangian is said to be autonomous 

when L has no dependence on the t variable. 

4. RBF direct method 

Using relations (5)-(9) the dynamic optimization 

problem (16)-(19) will be reduced to the following 

constrained static optimization problem  
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where 
Mxx ,...,1

are collocation points in the 

domain selected to enforce new condition. 

Comparing the various integration rules (Newton-

cotes formulas, extrapolating methods, Gaussian 

integration), computational efforts being equal, 

Gaussian integration yields the most accurate 

results (Stoer, 2002). So using an approximate 

Guassian quadrature with m nodes on the problem 

(20)-(24) yield: 

min 
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 , zks and wks 

are nodes and coefficients of Gaussian quadrature 

and RBF centers xi, i=1, ...N are nodes which are 

selected in a specific way. 

To solve the optimization problem (25)-(29) our 

choice is to use Lagrange multipliers method, so we 

establish Lagrangian 
 

   

   












m

k

kT
k

T
kk

ab

b
T

a
T

D
dx

xd
xxGw

xx

BxAxJJ

1

0201
*

,)),,(
2

(

)()()()(






 




M

s xx

T
s

T
ss

s
dx

d
xxE

1

)),(,(         (30) 

 
then we should calculate coefficients 

MN
T  ,...,,,,,],...,[ 1211 

 
by 

solving the following algebraic system  
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Equation (31), (33), (34) are linear if corresponding 

operators ),,(),,,(),,,( uuxEuuxGuuxL   be 

quadratic. If L, G, E are instead non-quadratic, then 

the system (31)-(34) will be a nonlinear system which 

needs to be solved using some appropriate iterative 

techniques to evaluate the RBF approximation. 

A general formulation for the minimizing 

functions subject to constraints on the variables is: 

 

)(min xf                                                   (35) 

 
subject to 
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where f and the functions ci are all smooth, real 

valued functions on a subset of R
n
, and I and H are 

two finite sets of indices. We define the feasible set 

Ω: 
 

Ω = {x|pi(x) = 0, i ∈ H ; pi(x) ≥ 0, i ∈ I}. 

 

Definition 2.1. Given the point x*and the active set 

A(x*) = H ∪ {i ∈ I|pi(x) = 0} we say that the linear 

independence constraint qualification (LICQ) holds 

if the set of active constraint gradients {∇pi(x∗), i ∈ 

A(x*)} is linearly independent. 

 

Theorem 3.2. (Hoy et. Al., 2001) In a constrained 

optimization problem  
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where x ∈ R
n
, if the objective function f is quasi-

convex and the constraint functions g1, ..., gm are all 

quasi-concave, then any local optimal solution to 

the problem is also globally optimal. 

 

Theorem 3.3. (Nocedal and Wright, 1999) Suppose 

that x* is a local solution of (35) and the LICQ 

holds at x∗. Then there is a Lagrange multiplier 

vector λ∗, with components λ∗i, i ∈ H ∪ I such that 

the following conditions are satisfied at (x*, λ*) 
 

,0*)*,(  xLx                                             (38) 

 

Hiallforxci  ,0)(                       (39) 

 

Iiallforxci  ,0)(                         (40) 

 

Iiallfor  ,0*                         (41) 

 

IHiallforxcii  ,0*)(*              (42) 

 
These conditions are often known as the Karush-

Kuhn-Tucker conditions, or KKT conditions for 

short. 

 

Theorem 3.4. (Nocedal and Wright, 1999) Suppose 

that for some feasible point x*∈ R
n 

there is a 

Lagrange multiplier vector λ* such that the KKT 

conditions are satisfied. Suppose also that 
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Then x* is a strict local solution for (35). 

Define w ∈ F(λ*) if and only if  
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Theorem 3.5. Let the Lagrangian L(x, u, v) fulfills 

the assumptions coercivity of rank 1r and 

convexity in (y, v). Then the operator (16) satisfies 

the following properties: 

1. I(u) is a convex operator, 

2. If we assume )()()(
1
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where si '  are positive definite RBFs described 

previously, then constrained optimization problem  
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admits a solution, so the problem (47)-(48) is well-

defined. 
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so I is a convex operator.  

As discussed in (Sec.2) interpolation of function 

u(x) by positive definite RBFs is a well defined 

problem and ϕis, i = 1, ..., N are independent 

functions. The convexity of I(u) yields  
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so J(α) is a multivariate convex function in R
N
. 

Since the equations (48) are linear they 

are quasi-concave functions and according to 

theorem 3.2 the problem (47)-(48) is a well-defined 

problem and has unique solution.   

 

Remark: If we assume the quasi-concavity of 

operators G and E, using theorems 3.2 – 3.4 the 

theorem 3.5 is establishable for the problem (25)-

(29) (Note that quasi-convexity of G yields quasi-

concavity of −G). 

5. Numerical Experiments 

Example 1. Dynamic Investment model (Hoy et. 

al., 2001) 

Suppose that a firm’s output depends on the amount 

of capital it employs. Let Q =q(K) where Q is the 

firm’s output level, q is the production function and 

K is the amount of capital employed. 

Authors suppose that the firm should purchase its 

own capital. Once purchased, the capital lasts for a 

long time. Let I(t) be the amount of capital 

purchased (investment) at time t and c[I(t)] be a 

function that gives the cost of purchasing 

(investing) the amount I(t) of capital at time t; then 

profit at time t is 
 

    )),(()()(),( tIctKpqtItK              (49) 

 
If the firm’s objective is to choose K and I to 

maximize discounted sum of profits over an interval 

of time running from the present time (t = 0) to a 

given time horizon, T, this is given by the 

functional  
 




T
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where ρ is the firm’s discount rate and 
te 
 is the 

continuous-time discounting factor. 

Assume that capital depreciates at the rate δ. The 

amount (stock) of capital owned by the firm at time 

t is K(t) and changes according to the differential 

equation 
 

),()()( tKtItK                                       (51) 

 
which says that, at each point in time, the firm’s 

capital stock increases by the amount of investment 

and decreases by the amount of depreciation. 

The problem facing the firm at each point in time 

is to decide how much capital to purchase. This is a 

truly dynamic problem because the present 

investment affects current profit, and it is a current 

expense, additionally it affects future profits, for it 

affects the amount of capital available for future 

production. 

Assume in the investment model the firm’s 
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production function is given by 

0,)](),([ 22  aIaKKtItK  and the 

price of the firm’s output is a constant 1$, the cost 

of investment is equal to I
2
$, then the firm’s profit 

at a point in time is π = K(t) − aK(t)
2
− I(t)

2 
So we 

are faced with the following constrained variational 

problem 
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subject to 
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If we assume K(0) = 1, using RBF direct method 

with constant shape parameter c= 2.5 and N= 100 

equally spaced centers, the solution will be obtained 

as in Fig. 1. It illustrates the better accuracy of MQ 

case in comparison with GA case. The authors used 

the change of variable τ=f(t) where f is a 

differnetiable, strictly increasing the function of t 

which maps the infinite interval [0,+ ∞) onto finite 

interval [−1,1). An example is 
t

t
tf






1

1
)( , other 

possibilities could be found in (Garg et. al., 2011). 

Using the described procedure in Sec. 4 the 

problem (52)-(54) will be reduced to an algebraic 

linear system which was solved by MATLAB 

software. 

Figure 1 displays the optimal path of investment 

for the case in which K0< K. Along the optimal 

path, investment declines, with increasing time, 

investment converges to a constant amount so that 

in the long run the firm’s investment is just a 

replacement of depreciation. 

It is shown in Fig. 2 that based on Root Mean 

Square criterion: 

 

.))()((
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The CR-VSP and SR-VSP produce a 

considerably more stable solution over most of the 

average shape parameter range in comparison to the 

other methods and the CR-VSP is considerably 

more accurate than other shape parameter 

strategies. The results are presented in Fig. 2. 

Results of numerical experiments over a range of 

the distance s =c max− cmin have reported that taking 

s > 1 upgraded the accuracy and reduced fluctuation 

of the graph in comparison to small s. 

 

 

Example 2. Constrained variational problem 

Consider the functional 

 

,)(
1
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22

  dxxyyJ 
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whose minimum should be found with respect to 

the integral condition ,2)(
1

0

2  dxxy  and 

boundary conditions y(0)=0, y(1)=0, (Yousefi and 

Dehghan, 2010).  
Numerical result of GA and MQ case with constant 

shape parameter was obtained by Maple software that 

shows RMS error around 1e−4 for N= 5, 9, 25, and for 

various center points choosing methods such as 

equally spaced, Gauss-Lobatto and Chebyshev roots. 

To improve the accuracy of the method authors used 

root square varying shape parameter with Digits 

environment variable in Maple that controls the 

number of digits that Maple uses when making 

calculations with software floating-point numbers. In 

table (1) it is demonstrated that with N = 25 equally 

spaced centers, increasing floating-point numbers 

enhances accuracy of the method as high as six 

decimal digits in comparison with when default 

floating-point number is used. It asserts that the main 

part of error of the RBF method which is reported in 

these examples is due to machine epsilon. 

 
Example 3. An optimal control problem with free 

endpoint 

Consider the differential equation 

]1,0[..)()(3)( oneatutxtx   with the 

initial condition 0)0( xx   where x0∈ R is arbitrarily 

chosen. The objective functional J is as follows: 
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and the control 
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Figure 3 demonstrates the superiority of GA-RBF to 

MQ-RBF in absolute error criterion and condition 

number criterion. In Fig. 4 the results are shown from 

five shape parameter strategies which demonstrates 

the better accuracy of CR and SR to other shape 

strategies (especially in GA-RBF) meanwhile better 

condition number. In Fig. 5 it is demonstrated that 

absolute error has stable behavior when number of 

centers (N) increases in GA-RBF and MQ-RBF cases. 
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Fig. 1. (Example 1) a) Up left: Optimal Investment path over time. b) Up right: Capital  

Stock over time. c) Below: Comparing accuracy of MQ and GA RBFs 

 

 
 

Fig. 2. (Example 1) a) Up: Comparison of absolute error of five shape parameter strategies.  

b) Down: Comparison of condition number of five shape parameter strategies 
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Table 1. Results for Example 2 

 

X Exact Solution Results of (Yousefi and Dehghan, 2010) Results of the method 

0 0.0 0.0 0.0 

0.1 0.618033988750 5.0×10-11 1.12×10-12 

0.2 1.175570504585 4.15×10-10 1.15×10-13 

0.3 1.618033988750 2.50×10-10 3.50×10-12 

0.4 1.902113032590 4.10×10-10 5.00×10-12 

0.5 2.0 3.50×10-11 2.50×10-13 

0.6 1.902113032590 4.10×10-10 3.00×10-12 

0.7 1.618033988750 2.50×10-10 5.00×10-12 

0.8 1.175570504585 4.15×10-10 1.35×10-12 

0.9 0.618033988750 5.00×10-11 6.50×10-12 

1.0 0.0 0.0 0 

 

 
 

Fig. 3. (Example 3) Accuracy and numeical stability of the solution as N=10 loboto center points 
 

 
 

Fig. 4. (Example 3) Comparison between various VSPs for MQ-RBF (up) and GA-RBF (down) 
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Fig. 5. (Example 3) Behaviour of Absolute error when number of centers (N) increases 

 

5. Conclusion 

This paper dealt with the constrained variational 

problem with fixed and free end points. Using 

computational properties of RBFs a RBF-direct 

method for solving this type of problems was 

developed and it essentially reduced the constrained 

variational problem to a static optimization problem 

through which its well-definedness under certain 

conditions was proved by a theorem. 

The high accuracy and performance of the 

approximation method in comparison with other 

existing methods was demonstrated through some 

examples including dynamic investment problem. 

Finally, to improve the performance of RBF 

method in scattered centers and equally distributed 

centers, a Cubic Root shape parameter strategy and 

a Square Root shape parameter strategy were 

introduced that successfully increase the accuracy 

and reliability of the solution, especially in GA-

RBF. Meanwhile it was shown that using extended 

precision floating point arithmetic considerably 

increases accuracy of the method. 
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