
IJST (2015) 39A2: 213-220 

Iranian Journal of Science & Technology 

http://ijsts.shirazu.ac.ir 

 

Comultiplication lattice modules 

 

F. Callialp
1
, U. Tekir

2
* and G. Ulucak

3
 

 
1Department of Mathematics, Beykent University, Ayazaga-Maslak, 34396, Istanbul, Turkey 

2Department of Mathematics, Marmara University, Ziverbey, P.K.34722, Göztepe, Istanbul, Turkey 

3Department of Mathematics, Gebze Institute of Technology, P.K.141 41400 Gebze-Kocaeli, Turkey 

E-mail: utekir@marmara.edu.tr 

 

Abstract 

Let 𝑀 be a lattice module over the multiplicative lattice 𝐿. 𝑀 is said to be a comultiplication 𝐿-module if for every 

element 𝑁 of 𝑀 there exists an element 𝑎 ∈ 𝐿 such that 𝑁 = (0𝑀:𝑀 𝑎). Our objective is to investigate properties 

of comultiplication lattice modules.  
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1. Introduction 

A multiplicative lattice 𝐿 is a complete lattice in 

which there is defined a commutative, associative 

multiplication which distributes over arbitrary joins 

and has a compact greatest element 1𝐿 (least 

element 0𝐿) as a multiplicative identity (zero). Let 

 𝐿 be a multiplicative lattice and 𝑎 ∈ 𝐿, 𝐿/𝑎 = {𝑏 ∈
𝐿: 𝑎 ≤ 𝑏}be a multiplicative lattice with 

multiplication 𝑐 ∘ 𝑑 = 𝑐𝑑⋁𝑎. Multiplicative lattices 

have been studied (Jayaram and Johnson, 1995, 

1997, 1998; Johnson, 2002, 2003, 2004; Johnson 

and Johnson, 2003). 

An element 𝑎 ∈ 𝐿 is said to be proper if 𝑎 < 1. 

An element 𝑝 < 1 in 𝐿 is said to be prime if 𝑎𝑏 ≤ 𝑝 

implies 𝑎 ≤ 𝑝 or 𝑏 ≤ 𝑝. An element 𝑚 < 1 in 𝐿 is 

said to be maximal if 𝑚 < 𝑥 ≤ 1 implies 𝑥 = 1. It 

is easily seen that maximal elements are prime. 

If 𝑎, 𝑏  belong to 𝐿, (𝑎:𝐿 𝑏) is the join of all 𝑐 ∈ 𝐿 

such that 𝑐𝑏 ≤ 𝑎. An element 𝑒 of 𝐿 is called meet 

principal if 𝑎⋀𝑏𝑒 = ((𝑎:𝐿 𝑒)⋀𝑏))𝑒 for all 𝑎, 𝑏 ∈ 𝐿. 
An element 𝑒 of 𝐿 is called join principal if 

((𝑎𝑒⋁𝑏):𝐿 𝑒) = 𝑎⋁(𝑏:𝐿 𝑒) for all 𝑎, 𝑏 ∈ 𝐿. 𝑒 ∈ 𝐿 is 

said to be principal if 𝑒 is both meet principal and 

join principal. 𝑒 ∈ 𝐿 is said to be weak meet (join) 

principal if 𝑎⋀𝑒 = 𝑒(𝑎:𝐿 𝑒) (𝑎⋁(0𝐿:𝐿 𝑒) =
(𝑒𝑎:𝐿 𝑒)) for all 𝑎 ∈ 𝐿. An element 𝑎 of a 

multiplicative lattice 𝐿 is called compact if 𝑎 ≤
⋁𝑏𝛼  implies 𝑎 ≤ 𝑏𝛼₁⋁𝑏𝛼2

⋁. . . ⋁𝑏𝛼𝑛
 for some subset 

{𝛼₁, 𝛼₂ , . . . , 𝛼𝑛}. If each element of 𝐿 is a join of 

principal (compact) elements of 𝐿, then 𝐿 is called a 

𝑃𝐺-lattice (𝐶𝐺-lattice). 
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Let 𝑀 be a complete lattice. Recall that 𝑀 is a 

lattice module over the multiplicative lattice 𝐿, or 

simply an 𝐿-module in case there is a multiplication 

between elements of  𝐿 and 𝑀, denoted by 𝑙𝐵 for 

𝑙 ∈ 𝐿 and 𝐵 ∈ 𝑀, which satisfies the following 

properties: 

i. (𝑙𝑏)𝐵 = 𝑙(𝑏𝐵) ; 

ii. (⋁𝛼𝑙𝛼)(⋁𝛽𝐵𝛽) = ⋁𝛼,𝛽𝑙𝛼𝐵𝛽 ; 

iii. 1𝐿𝐵 = 𝐵; 

iv. 0𝐿𝐵 = 0𝑀; for all 𝑙, 𝑙𝛼 ,  𝑏 in 𝐿 and for all 𝐵, 𝐵𝛽 

in 𝑀. 

Let 𝑀 be an 𝐿-module. If 𝑁, 𝐾 belong to 𝑀, 
(𝑁:𝐿 𝐾) is the join of all 𝑎 ∈ 𝐿 such that 𝑎𝐾 ≤ 𝑁. If 

𝑎 ∈ 𝐿, then (0𝑀:𝑀 𝑎) is the join of all 𝐻 ∈ 𝑀 such 

that 𝑎𝐻 = 0𝑀. An element 𝑁 of 𝑀 is called meet 

principal if (𝑏⋀(𝐵:𝐿 𝑁))𝑁 = 𝑏𝑁⋀𝐵 for all 𝑏 ∈ 𝐿 

and for all 𝐵 ∈ 𝑀. An element 𝑁 of 𝑀 is called join 

principal if 𝑏⋁(𝐵:𝐿 𝑁) = ((𝑏𝑁⋁𝐵):𝐿 𝑁) for all 

𝑏 ∈ 𝐿 and for all 𝐵 ∈ 𝑀. 𝑁 is said to be principal if 

it is both meet principal and join principal. In a 

special case, an element 𝑁 of 𝑀 is called weak 

meet principal (weak join principal) if (𝐵:𝐿 𝑁)𝑁 =

𝐵⋀𝑁 ((𝑏𝑁:𝐿 𝑁) = 𝑏⋁(0𝑀:𝐿 𝑁)) for all 𝐵 ∈ 𝑀 (for 

all 𝑏 ∈ 𝐿). 𝑁 is said to be weak principal if 𝑁 is 

both weak meet principal and weak join principal. 

Let 𝑀 be an 𝐿-module. An element 𝑁 in 𝑀 is 

called compact if 𝑁 ≤ ⋁ 𝐵𝑎𝑎  implies 𝑁 ≤
𝐵𝛼1

⋁𝐵𝛼2
⋁ … ⋁𝐵𝛼𝑛

 for some subset {𝛼1, 𝛼2, … , 𝛼𝑛}. 

The greatest element of 𝑀 will be denoted by 1𝑀. If 

each element of 𝑀 is a join of principal (compact) 

elements of 𝑀, then 𝑀 is called a 𝑃𝐺-lattice (𝐶𝐺-

lattice). 
Let 𝑀 be an 𝐿-module. An element 𝑁 ∈ 𝑀 is said 

to be proper if 𝑁 < 1𝑀. If 𝐴𝑛𝑛(𝑀) = (0𝑀:𝐿 1𝑀) =
0𝐿 , then 𝑀 is called a faithful 𝐿-module. If 𝑐𝑚 =
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0𝑀 implies 𝑚 = 0𝑀 or 𝑐 = 0𝐿  for any 𝑐 ∈ 𝐿 and 

𝑚 ∈ 𝑀, 𝑀 is called a torsion-free 𝐿-module. 
For various characterizations of lattice modules, 

the reader is referred to Nakkar and Al-Khouja 

(1989), Nakkar and Anderson (1988) and Scott 

Culhan (2005). In this paper we study 

comultiplication lattice modules over a 

multiplicative lattice and generalize the important 

results for comultiplication modules over 

commutative rings, obtained by Ansari-Toroghy 

and Farshadifar (2007, 2011), Shaniafi and Smith 

(2011) to the lattice modules over multiplicative 

lattice. 

2. Comultiplication Lattice Modules 

Definition 1. 

i. (Callıalp and Tekir, 2011) An 𝐿-module 𝑀 is 

called a multiplication lattice module if for every 

element 𝑁 ∈ 𝑀 there exists an element 𝑎 ∈ 𝐿 such 

that 𝑁 = 𝑎1𝑀  

ii. Let 𝑀 be a lattice 𝐿-module. 𝑀 is said to be a 

comultiplication 𝐿-module if for every element 𝑁 

of 𝑀 there exists an element 𝑎 ∈ 𝐿 such that 

𝑁 = (0𝑀:𝑀 𝑎). 
 

Lemma 1. Let 𝑀 be a lattice 𝐿-module. Then, 𝑀 is 

a comultiplication lattice 𝐿-module if and only if 

𝑁 = (0𝑀:𝑀 (0𝑀:𝐿 𝑁)) for every element 𝑁 in 𝑀. 
 

Proof: ⇐:Clear.  

⇒: Suppose that 𝑀 is a comultiplication lattice 𝐿-

module and 𝑁 ∈ 𝑀. Then there exists an 𝑎 ∈ 𝐿 

such that 𝑁 = (0𝑀:𝑀 𝑎). Thus we have 𝑎 ≤
(0𝑀:𝐿 𝑁) so that (0𝑀:𝑀 (0𝑀:𝐿 𝑁)) ≤ (0𝑀:𝑀 𝑎) =

𝑁. It is clear that 𝑁 ≤ (0𝑀:𝑀 (0𝑀:𝐿 𝑁)). This 

implies 𝑁 = (0𝑀:𝑀 (0𝑀:𝐿 𝑁)). 
 

Proposition 1. Let 𝑀 be a lattice 𝐿-module. Then 

the followings are equivalent.  

i. For any 𝐾, 𝑁 ∈ 𝑀, (0𝑀:𝐿 𝐾) ≤ (0𝑀:𝐿 𝑁) implies 

that 𝑁 ≤ 𝐾. 

ii. For any 𝐾, 𝑁 ∈ 𝑀, (𝐾:𝐿 𝑁) = ((0𝑀:𝐿 𝑁):𝐿 (0𝑀:𝐿 𝐾)). 

 

Proof: (i)⇒(ii): For any 𝐾, 𝑁 ∈ 𝑀, (𝐾:𝐿 𝑁) ≤

((0𝑀:𝐿 𝑁):𝐿 (0𝑀:𝐿 𝐾)). Indeed 𝑏 = (𝐾:𝐿 𝑁) ⇒

𝑏𝑁 ≤ 𝐾 ⇒ 𝑏(0𝑀:𝐿 𝐾)𝑁 = 0𝑀 ⇒ 𝑏(0𝑀:𝐿 𝐾) ≤
(0𝑀:𝐿 𝑁) ⇒ 𝑏 = (𝐾:𝐿 𝑁) ≤ ((0𝑀:𝐿 𝑁):𝐿 (0𝑀:𝐿 𝐾)). 

Conversely, let 𝑟 = ((0𝑀:𝐿 𝑁):𝐿 (0𝑀:𝐿 𝐾)). Then 

𝑟(0𝑀:𝐿 𝐾)𝑁 = 0𝑀 ⇒ (0𝑀:𝐿 𝐾) ≤ (0𝑀:𝐿 𝑟𝑁), by (i), 

we have 𝑟𝑁 ≤ 𝐾 and so 𝑟 ≤ (𝐾:𝐿 𝑁). (ii)⇒(i): 

Suppose that (0𝑀:𝐿 𝐾) ≤ (0𝑀:𝐿 𝑁).Then (𝐾:𝐿 𝑁) =
((0𝑀:𝐿 𝑁):𝐿 (0𝑀:𝐿 𝐾)) = 1𝐿 by (ii) and so 𝑁 ≤ 𝐾. 

 

Theorem 1. Let 𝑀 be a lattice 𝐿-module. Suppose 

𝜙: 𝐿 → 𝑀  is defined by 𝜙(𝑎) = (0𝑀:𝑀 𝑎) and 

𝜓: 𝑀 → 𝐿 by 𝜓(𝑁) = (0𝑀:𝐿 𝑁) for all 𝑎 ∈ 𝐿 and 

𝑁 ∈ 𝑀. Then, 
i. (𝜙𝜓𝜙)(𝑎) = (0𝑀:𝑀 (0𝑀:𝐿 (0𝑀:𝑀 𝑎))) = (0𝑀:𝑀 𝑎) =
𝜙(𝑎) for all 𝑎 ∈ 𝐿. 

ii. (𝜓𝜙𝜓)(𝑁) = (0𝑀:𝐿 (0𝑀:𝑀 (0𝑀:𝐿 𝑁))) = (0𝑀:𝐿 𝑁) =
𝜓(𝑁) for all 𝑁 ∈ 𝑀. 

 

Proof: i. Suppose that (0𝑀:𝑀 𝑎) = 𝑁. Clearly, 

(0𝑀:𝑀 𝑎) = 𝑁 ≤ (0𝑀:𝑀 (0𝑀:𝐿 𝑁)). On the other 

hand, 𝑎𝑁 = 0𝑀 and so 𝑎 ≤ (0𝑀:𝐿 𝑁). Therefore, 

(0𝑀:𝑀 (0𝑀:𝐿 𝑁)) ≤ (0𝑀:𝑀 𝑎) = 𝑁. 
ii. Suppose that 𝑏 = (0𝑀:𝐿 𝑁).Clearly 𝑏 = (0𝑀:𝐿 𝑁) ≤

(0𝑀:𝐿 (0𝑀:𝑀 (0𝑀:𝐿 𝑁))). On the other hand,𝑏𝑁 =

0𝑀and so 𝑁 ≤ (0𝑀:𝑀 𝑏) = (0𝑀:𝑀 (0𝑀:𝐿 𝑁)). Hence 

(0𝑀:𝐿 (0𝑀:𝑀 (0𝑀:𝐿 𝑁))) ≤ (0𝑀:𝐿 𝑁) = 𝑏. 

 

Corollary 1. Let 𝑀 be a lattice 𝐿-module. Let us 

define 𝜙: 𝐿 → 𝑀 where 𝜙(𝑎) = (0𝑀:𝑀 𝑎), and 

𝜓: 𝑀 → 𝐿 where 𝜓(𝑁) = (0𝑀:𝐿 𝑁) for all 𝑎 ∈ 𝐿 

and 𝑁 ∈ 𝑀. The followings are equivalent. 

i. 𝑀 is a comultiplication lattice 𝐿-module. 

ii. There exists 𝑎 ∈ 𝐿 such that 𝑁 = (0𝑀:𝑀 𝑎) =
𝜙(𝑎) for all 𝑁 ∈ 𝑀. 

iii. 𝜙𝜓 is an identity map. 

iv. 𝜓 is one-to-one. 

v. (0𝑀:𝐿 𝐾) = (0𝑀:𝐿 𝑁) implies 𝐾 = 𝑁. 
 

Proposition 2. Let 𝑀 be a comultiplication lattice 

𝐿-module. If 𝐿 is a Noetherian (Artinian) 

multiplicative lattice, then 𝑀 is an Artinian 

(Noetherian) lattice 𝐿 −module. 

 

Proof: Let 𝐿 be an Artinian multiplicative lattice. 

Suppose that 𝑁₁ ≤ 𝑁₂ ≤. ... Then, (0𝑀:𝐿 𝑁₁) ≥
(0𝑀:𝐿 𝑁₂) ≥ ⋯ Since 𝐿 is Artinian, there exists a 

positive integer k such that (0𝑀:𝐿 𝑁𝑘) =
(0𝑀:𝐿 𝑁𝑘+1) = ⋯. Therefore, 

𝑁𝑘 = (0𝑀:𝑀 (0𝑀:𝐿 𝑁𝑘)) = (0𝑀:𝑀 (0𝑀:𝐿 𝑁𝑘+1)) =
𝑁𝑘+1 =. .. . Consequently, 𝑀 is a Noetherian lattice 

module. Similarly, if 𝐿 is Noetherian, then 𝑀 is 

Artinian lattice 𝐿-module. 

Let 𝐿 be a multiplicative lattice and 𝑀 be an 𝐿-

module. Suppose that 𝑁 ∈ 𝑀. Consider the set 

[0𝑀 , 𝑁] = {𝐴 ≤ 𝑁: 𝐴 ∈ 𝑀}. We say that [0𝑀, 𝑁] is 

a submodule of 𝑀. If 𝑀 is a comultiplication 𝐿-

module, it is clear that [0𝑀, 𝑁] is a comultiplication 

𝐿-module. 

 

Proposition 3. Let 𝑀 be a comultiplication lattice 

𝐿-module. If (0𝑀:𝑀 𝑏) = 0𝑀 for some 𝑏 ∈ 𝐿, then 

𝑏𝑌 = 𝑌 for all 𝑌 ∈ 𝑀. In particular, 𝑏1𝑀 = 1𝑀. 
 

Proof: Let 𝑏 ∈ 𝐿 and 𝑌 ∈ 𝑀. Since 𝑀 is a 

comultiplication lattice module, it follows that 

𝑏𝑌 = (0𝑀:𝑀 𝑎) for some 𝑎 ∈ 𝐿. Then 𝑎𝑏𝑌 = 0𝑀. 
Since (0𝑀:𝑀 𝑏) = 0𝑀, we have 𝑎𝑌 = 0𝑀. 
Consequently, 𝑌 ≤ (0𝑀:𝑀 𝑎) = 𝑏𝑌 and so 𝑏𝑌 = 𝑌. 
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Proposition 4. Let 𝑀 be a comultiplication lattice 

𝐿-module. If 𝑝 is a maximal element of 𝐿 and 

(0𝑀:𝑀 𝑝) ≠ 0𝑀, then (0𝑀:𝑀 𝑝) is minimal in 𝑀. 

 

Proof: Suppose that 𝑁 ≤ (0𝑀:𝑀 𝑝). Since 𝑀 is a 

comultiplication lattice 𝐿-module, there exists an 

element 𝑎 of 𝐿 such that 𝑁 = (0𝑀:𝑀 𝑎). Since 

𝑁 ≤ (0𝑀:𝑀 𝑝), we have 𝑝𝑁 = 0𝑀 and so 𝑝 ≤
(0𝑀:𝐿 𝑁). Since 𝑝 is maximal, 𝑝 = (0𝑀:𝐿 𝑁) or 

(0𝑀:𝐿 𝑁) = 1𝐿 . If 𝑝 = (0𝑀:𝐿 𝑁), then 𝑁 =
(0𝑀:𝑀 (0𝑀:𝐿 𝑁)) = (0𝑀:𝑀 𝑝). If (0𝑀:𝐿 𝑁) = 1𝐿 , 
then 𝑁 = 0𝑀. Therefore, (0𝑀:𝑀 𝑝) is minimal in 𝑀. 

 

Proposition 5. Let 𝑀 be a comultiplication 𝑃𝐺-

lattice 𝐿-module with 1𝑀 compact. If 𝑝 ∈ 𝐿 is 

prime and (0𝑀:𝑀 𝑝) = 0𝑀, then there exists 𝑐 ∈ 𝐿 

such that 𝑐 ≰ 𝑝 and 𝑐1𝑀  = 0𝑀. 
 

Proof: Since 1𝑀 is compact, then 1𝑀  = ⋁𝑖=1
𝑛 𝑌𝑖 

where 𝑌𝑖 s are principal elements of 𝑀. Since 

(0𝑀:𝑀 𝑝) = 0𝑀,  𝑝𝑌𝑖 = 𝑌𝑖 for all 𝑖 ∈ {1,2, . . . , 𝑛} by 

Proposition 3. Then 𝑝⋁(0𝑀:𝐿 𝑌𝑖) = (𝑝𝑌𝑖:𝐿 𝑌𝑖) = 1𝐿 

and so (0𝑀:𝐿 𝑌𝑖) ≰ 𝑝 for all 𝑖 ∈ {1,2, . . . , 𝑛}. 
Therefore, 𝑐 = ∏ (0𝑀:𝐿 𝑌𝑖)

𝑛
𝑖=1 ≰ 𝑝 and 𝑐1𝑀   = 0𝑀 . 

 

Corollary 2. Let 𝑀 be a comultiplication 𝑃𝐺-lattice 

𝐿-module with 1𝑀 compact. If 𝑀 is faithful, then 

(0𝑀:𝑀 𝑝) ≠ 0𝑀 for some prime element 𝑝 ∈ 𝐿. 

 

Corollary 3. If 𝑀 is a comultiplication 𝑃𝐺-lattice 

𝐿-module with 1𝑀 compact and (0𝑀:𝑀 𝑎) = 0𝑀 for 

some 𝑎 ∈ 𝐿, then 1𝐿 = 𝑎⋁(0𝑀:𝐿 1𝑀 ). 
 

Proof: Suppose that 1𝐿 ≠ 𝑎⋁(0𝑀:𝐿 1𝑀). Then there 

exists a maximal element 𝑝 ∈ 𝐿 such that 

𝑎⋁(0𝑀:𝐿 1𝑀) ≤ 𝑝. Thus we have (0𝑀:𝑀 𝑝) ≤
(0𝑀:𝑀 𝑎) = 0𝑀. Hence (0𝑀:𝑀 𝑝) = 0𝑀 . There 

exists an element 𝑐 ∈ 𝐿 , 𝑐 ≰ 𝑝 such that 𝑐 ≤
(0𝑀:𝐿 1𝑀) by Proposition 5. Since (0𝑀:𝐿 1𝑀) ≤ 𝑝, 
we have 𝑐 ≤ 𝑝. This is a contradiction. 

Consequently, 𝑎⋁(0𝑀:𝐿 1𝑀) = 1𝐿 . 
 

Proposition 6. Let 𝑀 be a non-zero 

comultiplication 𝑃𝐺-lattice 𝐿-module. Then, 𝑀 has 

a minimal element. In particular, every nonzero 

element of 𝑀 has a minimal element. 

 

Proof: Suppose that 𝑌 is a nonzero principal 

element of 𝑀. Then (0𝑀:𝐿 𝑌) = 𝑎 < 1𝐿. Then there 

exists a maximal element 𝑝 such that 𝑎 ≤ 𝑝. If 

𝑁 = (0𝑀:𝑀 𝑝) = 0𝑀 , then 𝑝𝑌 = 𝑌 by Proposition 3 

and so 𝑝⋁(0𝑀:𝐿 𝑌) = (𝑝𝑌:𝐿 𝑌) = 1𝐿 . Therefore, 

𝑎 = (0𝑀:𝐿 𝑌) ≰ 𝑝. This is a contradiction. Hence 

𝑁 = (0𝑀:𝑀 𝑝) ≠ 0𝑀 . Therefore, 𝑁 is a minimal 

element of 𝑀 by Proposition 4. 

 

Proposition 7. Let 𝑀 be a non-zero 

comultiplication 𝑃𝐺-lattice𝐿-module. Then 𝐾 ∈ 𝑀 

is minimal if and only if 𝐾 = (0𝑀:𝑀 𝑝) ≠ 0𝑀 for 

some maximal element 𝑝 ∈ 𝐿. 

 

Proof: ⇐: By Proposition 4.  

⇒: Let 𝐾 be a minimal principal element of 𝑀. 
Since 𝑀 is a comultiplication lattice 𝐿-module, 

𝐾 = (0𝑀:𝑀 (0𝑀:𝐿 𝐾)). We will show that (0𝑀:𝐿 𝐾) 

is maximal. Let 𝑐 ∈ 𝐿 such that (0𝑀:𝐿 𝐾) ≤ 𝑐. 
Since 𝐾 is minimal and 𝑐𝐾 ≤ 𝐾, it follows that 

𝑐𝐾 = 𝐾 or 𝑐𝐾 = 0𝑀. If 𝑐𝐾 = 𝐾, then 1𝐿 =
(𝑐𝐾:𝐿 𝐾) = 𝑐⋁(0𝑀:𝐿 𝐾) = 𝑐. If 𝑐𝐾 = 0𝑀, then 

𝑐 ≤ (0𝑀:𝐿 𝐾) and so 𝑐 = (0𝑀:𝐿 𝐾). 

 

Proposition 8. Let 𝑀 be a comultiplication lattice 𝐿-

module. Then, (𝑁:𝑀 𝑎) = ((0𝑀:𝑀 𝑎):𝑀 (0𝑀:𝐿 𝑁)) for 

any 𝑎 ∈ 𝐿, 𝑁 ∈ 𝑀. 
 

Proof: Let 𝐾 = (𝑁:𝑀 𝑎). Then 𝑎𝐾 ≤ 𝑁 ⇒
(0𝑀:𝐿 𝑁)𝑎𝐾 = 0𝑀 ⇒ (0𝑀:𝐿 𝑁)𝐾 ≤ (0𝑀:𝑀 𝑎) ⇒

𝐾 = (𝑁:𝑀 𝑎) ≤ ((0𝑀:𝑀 𝑎):𝑀 (0𝑀:𝐿 𝑁)). 

Conversely, if 𝑅 = ((0𝑀:𝑀 𝑎):𝑀 (0𝑀:𝐿 𝑁)), then 

(0𝑀:𝐿 𝑁)𝑅 ≤ (0𝑀:𝑀 𝑎) ⇒ (0𝑀:𝐿 𝑁)𝑎𝑅 = 0𝑀 ⇒

𝑎𝑅 ≤ (0𝑀:𝑀 (0𝑀:𝐿 𝑁)) = 𝑁. Consequently, 

𝑅 ≤ (𝑁:𝑀 𝑎). 
 

Theorem 2. Let 𝐿 be a distributive lattice. Let 𝑀 be 

a comultiplication lattice 𝐿-module and 

(0𝑀:𝑀 𝑎)⋁(0𝑀:𝑀 𝑏) = (0𝑀:𝑀 𝑎⋀𝑏) for all 𝑎, 𝑏 ∈ 𝐿. 

Then 𝑀 is distributive. 

 

Proof: Let 𝑋, 𝑌, 𝑍 ∈ 𝑀. There exist 𝑎, 𝑏, 𝑐 ∈ 𝐿 such 

that 𝑋 = (0𝑀:𝑀 𝑎), 𝑌 = (0𝑀:𝑀 𝑏), 𝑍 = (0𝑀:𝑀 𝑐). 
Then, 

(𝑋⋁𝑌)⋀𝑍 = ((0𝑀:𝑀 𝑎)⋁(0𝑀:𝑀 𝑏))⋀(0𝑀:𝑀 𝑐) =
(0𝑀:𝑀 a⋀b)⋀(0𝑀:𝑀 c) = (0𝑀:𝑀 𝑎⋀𝑏)⋀(0𝑀:𝑀 𝑐) =
(0𝑀:𝑀 (𝑎⋀𝑏)⋁𝑐) = (0𝑀:𝑀 (𝑎⋀𝑐)⋁(𝑏⋀𝑐))  =

(0𝑀:𝑀 𝑎⋀𝑐)⋀(0𝑀:𝑀 𝑏⋀𝑐) =  (𝑋⋁𝑍)⋀(𝑌⋁𝑍). 
 

Corollary 4. Let 𝐿 be a distributive lattice. Let 𝑀 

be a comultiplication lattice 𝐿-module and 𝑎⋁𝑏 =
1𝐿 for all 𝑎, 𝑏 ∈ 𝐿. Then 𝑀 is distributive. 

 

Proof: If 𝑎⋁𝑏 = 1𝐿 , then(𝐾:𝑀  𝑎⋀𝑏) =
(𝐾:𝑀  𝑎⋀𝑏)(𝑎⋁𝑏) = 𝑎(𝐾:𝑀 𝑎⋀𝑏)⋁𝑏(𝐾:𝑀 𝑎⋀𝑏) ≤
(𝐾:𝑀 𝑏)⋁(𝐾:𝑀 𝑎) for all 𝑎, 𝑏, 𝑐 ∈ 𝐿.Note that 

𝑎(𝐾:𝑀 𝑎⋀𝑏) ≤ (𝐾:𝑀 𝑏) and 𝑏(𝐾:𝑀 𝑎⋀𝑏) ≤
(𝐾:𝑀 𝑎).It is clear that (𝐾:𝑀 𝑏)⋁(𝐾:𝑀 𝑎) ≤
(𝐾:𝑀 𝑎⋀𝑏). For𝐾 = 0𝑀, we have 

(0𝑀:𝑀 𝑎)⋁(0𝑀:𝑀 𝑏) = (0𝑀:𝑀 𝑎⋀𝑏). The result 

follows from Theorem 2. 

 

Proposition 9. Let 𝑀 be a comultiplication lattice 

𝐿-module and 𝑝, 𝑞 be maximal elements of 𝐿. If 
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(0𝑀:𝑀 𝑝) ≠ 0𝑀 and (0𝑀:𝑀 𝑞) ≠ 0𝑀, then 

(0𝑀:𝑀 𝑝)⋁(0𝑀:𝑀 𝑞) = (0𝑀:𝑀 𝑝⋀𝑞). 
 

Proof: Let  0𝑀 ≠ (0𝑀:𝑀 𝑝) = 𝑁. Since 𝑝𝑁 = 0𝑀 

and 𝑝 is maximal, we have 𝑝 = (0𝑀:𝐿 𝑁). 
Similarly, if 0𝑀 ≠ 𝐾 = (0𝑀:𝑀 𝑞), then 𝑞 =
(0𝑀:𝐿 𝐾). Since 𝑀 is a comultiplication 𝐿-module, 

it follows that 𝑁⋁𝐾 = (0𝑀:𝑀 (0𝑀:𝐿 𝑁⋁𝐾)) =

(0𝑀:𝑀 (0𝑀:𝐿 𝑁 )⋀(0𝑀:𝐿 𝐾)). Consequently, 

(0𝑀:𝑀 𝑝)⋁(0𝑀:𝑀 𝑞) = (0𝑀:𝑀 𝑝⋀𝑞). 
 

Definition 2. A lattice 𝐿-module 𝑀 is said to be 

finitely cogenerated, if for every set {𝑀𝜆}𝜆∈𝛬 of 

elements of 𝑀, ⋀𝜆∈𝛬𝑀𝜆 = 0𝑀 implies ⋀ 𝑀𝜆𝑖

𝑚
𝑖=1 =

0𝑀 for some positive integer 𝑚 > 0. 

 

Theorem 3. Let 𝑀 be a faithful comultiplication 

𝑃𝐺-lattice 𝐿-module.  

i. 1𝑀 is compact. 

ii. (0𝑀:𝑀 𝑎) ≠ 0𝑀 for all 𝑎 < 1𝐿. 

iii. (0𝑀:𝑀 𝑝) ≠ 0𝑀 for all maximal elements 𝑝 ∈ 𝐿. 

iv. 𝑀 is finitely cogenerated. 

Then (i)⇒(ii)⇒(iii)⇒(iv). 

 

Proof: (i)⇒(ii): Suppose that (0𝑀:𝑀 𝑎) = 0𝑀 and 

𝑎 < 1𝐿 . Then(0𝑀:𝑀 𝑝) = 0𝑀 for all maximal 

elements𝑎 ≤ 𝑝.This is a contradiction by Corollary 

2. (ii)⇒(iii): Clear. (iii)⇒(iv): Let 𝑁𝛼 = (0𝑀:𝑀 𝑎𝛼). 
Supppose that 0𝑀 = ⋀ 𝑁𝛼 = ⋀ (0𝑀:𝑀 𝑎𝛼)𝛼∈𝐼𝛼∈𝐼 =
(0𝑀:𝑀 ⋁𝑎∈𝐼𝑎𝑎). Then ⋁ 𝑎𝛼𝛼∈𝐼 = 1𝐿 . Indeed, if 

⋁ 𝑎𝛼𝛼∈𝐼 ≤ 𝑝 for some maximal element𝑝, then 
(0𝑀:𝑀 𝑝) ≤ (0𝑀:𝑀 ⋁ 𝑎𝛼𝛼∈𝐼 ) = 0𝑀 . This is a 

contradiction with (iii). Since 1𝐿 is compact, 

⋁ 𝑎𝛼𝑖

𝑛
𝑖=1 = 1𝐿 and so 0𝑀 = ⋀ 𝑁𝛼𝛼∈𝐼 =

(0𝑀:𝑀 ⋁ 𝑎𝛼𝑖

𝑛
𝑖=1 ) = ⋀ (0𝑀:𝑀 𝑎𝛼𝑖

)𝑛
𝑖=1 = ⋀ 𝑁𝛼𝑖

𝑛
𝑖=1  for 

some 𝑛 ≥ 1. 

Let 𝐽𝑎𝑐(𝐿) denote the infimum of the maximal 

elements of 𝐿. Note that 𝐽𝑎𝑐(𝐿) is called the 

Jacobson radical of 𝐿 (Nakkar and Al-Khouja, 

1985). 

 

Theorem 4. (A dual of Nakayama Lemma for 

comultiplication lattice modules) Let 𝑀 be a 

comultiplication 𝑃𝐺-lattice 𝐿-module and 𝑎 ∈ 𝐿 

such that 𝑎 ≤ 𝐽𝑎𝑐(𝐿). If (0𝑀:𝑀 𝑎) = 0𝑀, then 

𝑀 = 0𝑀. 

 

Proof: Suppose that 𝑀 ≠ 0𝑀. Then, there exists a 

maximal element 𝑝 such that 0𝑀 ≠ 𝐾 = (0𝑀:𝑀 𝑝) 

is minimal in 𝑀 by Proposition 6 and Proposition 7. 

Since 𝑎 ≤ 𝑝 and (0𝑀:𝑀 𝑎) = 0𝑀 , we have 

(0𝑀:𝑀 𝑝) = 0𝑀. This is a contradiction. 

 

Theorem 5. Let 𝑀 be a comultiplication 𝑃𝐺-lattice 

𝐿-module and {𝑁𝛼}𝛼∈𝛬 be a collection of elements 

of 𝑀 such that ⋀ 𝑁𝛼 = 0𝑀.𝛼∈𝛬  If 

𝑎 = ⋁ (0𝑀:𝐿 𝑁𝛼)𝛼∈𝛬  and 𝑋.is a compact element of 

𝑀, then 1𝐿 = 𝑎⋁(0𝑀:𝐿 𝑋). 
 

Proof: If 𝑋 is compact and for 𝑎 = ⋁ (0𝑀:𝐿 𝑁𝛼)𝛼∈𝛬 , 
𝑎⋁(0𝑀:𝐿 𝑋) ≠ 1𝐿 , then there exists a maximal 

element 𝑝 of 𝐿 such that 𝑎⋁(0𝑀:𝐿 𝑋) ≤ 𝑝. Then 

(0𝑀:𝑀 𝑝) ≤ (0𝑀:𝑀 𝑎) = (0𝑀:𝑀 ⋁ (0𝑀:𝐿 𝑁𝛼))𝛼∈𝛬 =
⋀ 𝑁𝛼 = 0𝑀 𝛼∈𝛬 . Hence (0𝑀:𝑀 𝑝) = (0𝑀:𝑋 𝑝) =
0𝑀.  Since the submodule [0𝑀, 𝑋] is 

comultiplication and 𝑋 is compact, there exists an 

element 𝑐 ∈ 𝐿, 𝑐 ≰ 𝑝 such that 𝑐 ≤ 𝐴𝑛𝑛𝐿(𝑋) by 

Proposition 5. But this is a contradiction, because 

𝐴𝑛𝑛𝐿(𝑋) = (0𝑀:𝐿 𝑋) ≤ 𝑝. So 𝑎⋁(0𝑀:𝐿 𝑋) = 1𝐿 . 
 

Corollary 5. Let 𝑀 be a comultiplication 𝑃𝐺-lattice 

𝐿-module. If 𝑋 is a compact element of 𝑀, then the 

submodule [0𝑀, 𝑋] is finitely cogenerated. 

 

Proof: Let {𝑋𝜆}𝜆∈𝛬 be set of elements such that 

𝑋𝜆 ≤ 𝑋 with ⋀ 𝑋𝜆𝜆∈𝛬 = 0𝑀. By Theorem 5, 

1𝐿 = 𝑎⋁(0𝑀:𝐿 𝑋) with 𝑎 = ⋁ (0𝑀:𝐿 𝑋𝜆)𝜆∈𝛬 . But 

(0𝑀:𝐿 𝑋) ≤ (0𝑀:𝐿 𝑋𝜆) for all 𝜆 ∈ 𝛬. Hence 

1𝐿 = 𝑎 = ⋁(0𝑀:𝐿 𝑋𝜆). Since 1𝐿 is compact, it 

follows that 1𝐿 = 𝑎 = ⋁ (0𝑀:𝐿 𝑋𝜆𝑖
)𝑛

𝑖=1  for some 

𝑛 ≥ 1. Since the submodule [0𝑀 , 𝑋] is a 

comultiplication module, we have 𝑋𝜆 =
(0𝑀:𝑀 (0𝑀:𝐿 𝑋𝜆)) for all 𝜆 ∈ 𝛬. Hence we obtain 

0𝑀 = (0𝑀:𝑀 1𝐿) = (0𝑀:𝑀 ⋁ (0𝑀:𝐿 𝑋𝜆𝑖
)𝑛

𝑖=1 ) =

⋀ (0𝑀:𝑀 (0𝑀:𝐿 𝑋𝜆𝑖
))𝑛

𝑖=1 = ⋀ 𝑋𝜆𝑖

𝑛
𝑖=1 . 

 

Definition 3. (Callıalp and Tekir, 2011) Let 𝑀 be 

an 𝐿-module. If 1𝑀 is a principal element in 𝑀, 

then 𝑀 is called a cyclic lattice module. 

 

Theorem 6. Let 𝑀 be a 𝑃𝐺-lattice module. 

i. If 𝑀 is a multiplication 𝐿-module such that 𝑀 has 

a faithful [0𝑀, 𝑁] submodule and 𝑁 is principal in 

𝑀, then 𝑎1𝑀 < 1𝑀 for every element 𝑎 ∈ 𝐿 with 

𝑎 < 1𝐿 . 
ii. If 𝑀 is a faithful cyclic comultiplication 𝐿-

module, then (0𝑀:𝑀 𝑎) ≠ 0𝑀 for every 𝑎 ∈ 𝐿 with 

𝑎 < 1𝐿 . 
iii. If 𝑀 is a comultiplication 𝐿-module, then for 

every element 𝑎 ∈ 𝐿 with 𝑎1𝑀 < 1𝑀 , there exists a 

maximal element 𝑝 ∈ 𝐿 with 𝑎⋁(0𝑀:𝐿 1𝑀) ≤ 𝑝 

such that (0𝑀:𝑀 𝑝) is a minimal in 𝑀. 
 

Proof: i. Since 𝑀 is a multiplication 𝐿-module, 

there exists 𝑏 ∈ 𝐿 such that 𝑁 = 𝑏1𝑀 . If there exists 

𝑎 ∈ 𝐿 with 𝑎 < 1𝐿 such that 𝑎1𝑀 = 1𝑀, then 

𝑁 = 𝑏1𝑀 = 𝑎(𝑏1𝑀) = 𝑎𝑁. Since 𝑁 is principal, 

𝑎⋁(0𝑀:𝐿 𝑁) = (𝑎𝑁:𝐿 𝑁) = 1𝐿 and so 𝑎 = 1𝐿 .This 

is a contradiction. 

ii. If there exists 𝑎 ∈ 𝐿 with 𝑎 < 1𝐿 such that 

(0𝑀:𝑀 𝑎) = 0𝑀, then 𝑎1𝑀 = 1𝑀 by Proposition 3. 

Since 1𝑀 is principal and (0𝑀:𝐿 1𝑀) = 0𝑀, we have 

1𝐿 = (𝑎1𝑀:𝐿 1𝑀) = 𝑎⋁(0𝑀:𝐿 1𝑀) = 𝑎. This is a 
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contradiction. 

iii. Let 𝑎 ∈ 𝐿 with 𝑎1𝑀 < 1𝑀. Then (0𝑀:𝑀 𝑎) ≠ 0𝑀 

by Proposition 3. There exists a minimal element 𝐾 

in 𝑀 with 𝐾 ≤ (0𝑀:𝑀 𝑎) by Proposition 6. Hence 

there exists a maximal element 𝑝 ∈ 𝐿 such that 

𝐾 = (0𝑀:𝑀 𝑝) ≠ 0𝑀 by Proposition 7. It follows 

that (0𝑀:𝐿 1𝑀 ) ≤ 𝑝. Indeed, (0𝑀:𝐿 1𝑀 ) ≤
(0𝑀:𝐿 𝐾) = (0𝑀:𝐿 (0𝑀:𝑀 𝑝)) ≥ 𝑝. Since  𝑝 is 

maximal, (0𝑀:𝐿 (0𝑀:𝑀 𝑝)) = 𝑝, so (0𝑀:𝐿 1𝑀) ≤ 𝑝. 

The proof will be completed if we show that 𝑎 ≤ 𝑝. 
Suppose that 𝑎 ≰ 𝑝. Then 𝑎⋁𝑝 = 1𝐿 . Since 

𝐾 ≤ (0𝑀:𝑀 𝑎), it follows that 0𝑀 = (0𝑀:𝑀 1𝐿) =
(0𝑀:𝑀 𝑎⋁𝑝) = (0𝑀:𝑀 𝑎)⋀(0𝑀:𝑀 𝑝) = 𝐾.  Hence 

𝐾 = 0𝑀 .  This is a contradiction. We obtain 𝑎 ≤ 𝑝. 

 

Definition 4. (Nakkar and Anderson, 1988) Let 𝑀 

be an 𝐿-module. An element 𝑁 < 1𝑀 in 𝑀 is said 

to be primary, if 𝑎𝑋 ≤ 𝑁 implies 𝑋 ≤ 𝑁 or 

𝑎𝑘1𝑀 ≤ 𝑁 for some 𝑘 ≥ 0 i.e. 𝑎𝑘 ≤ (𝑁:𝐿 1𝑀) for 

every 𝑎 ∈ 𝐿, 𝑋 ∈ 𝑀. 
 

Definition 5. (Nakkar and Anderson, 1988) Let 𝑀 

be an 𝐿-module. Let 𝐵 be an arbitrary element of 

𝑀. A finite family {𝑄𝑖}𝑖=1
𝑛  of elements of 𝑀 such 

that 𝑄𝑖  is 𝑃𝑖-primary for any 𝑖 ∈ {1,2, . . . , 𝑛} and 

𝐵 = ⋀ 𝑄𝑖
𝑛
𝑖=1 , is called a primary decomposition of 

𝐵 in 𝑀. If no 𝑄𝑖  contains 

𝑄₁⋀𝑄₂⋀. . . ⋀𝑄𝑖−1⋀𝑄𝑖+1⋀. . . ⋀𝑄𝑛 and if the 

elements 𝑃₁, 𝑃₂, . . . , 𝑃𝑛 are all distinct, then the 

primary decomposition is said to be reduced 

(irredundant). 

An 𝐿-module 𝑀 is called a 𝐾-lattice if it is a 𝐶𝐺-

lattice and for any compact element ℎ ∈ 𝐿 and any 

compact element 𝐻 ∈ 𝑀, the element ℎ𝐻 is 

compact. Let 𝐿 be a 𝐾-lattice in which the greatest 

element 1𝐿 is compact and let 𝑀 be a 𝐾-lattice. 

Clearly for an arbitrary element 𝐵 of 𝑀, any 

primary decomposition of 𝐵 can be simplified to a 

reduced one (Nakkar and Anderson, 1988). 

 

Theorem 7. Let 𝐿 be a 𝐾-lattice and let 𝑀 be a 𝐾-

lattice. Let 𝑀 be a comultiplication lattice 𝐿-

module. If 0𝑀 has a primary decomposition, then 

every element of 𝑀 has a primary decomposition. 

 

Proof: Let 0𝑀  = ⋀ 𝑃𝑖
𝑛
𝑖=1  be irredundant primary 

decomposition. Assume that 𝑁 ∈ 𝑀. Then there 

exists an 𝑎 ∈ 𝐿 such that 𝑁 = (0𝑀:𝑀 𝑎). Therefore, 

𝑁 = (0𝑀:𝑀 𝑎) = ⋀ (𝑃𝑖
𝑛
𝑖=1 :𝑀 𝑎). We will show that 

(𝑃𝑖:𝑀 𝑎) is a primary element of 𝑀 for each 

𝑖 = 1,2, . . . , 𝑛. Suppose that 𝑏𝑋 ≤ (𝑃𝑖 :𝑀 𝑎), where 

𝑏 ∈ 𝐿 and 𝑋 ∈ 𝑀. Hence 𝑎𝑏𝑋 ≤ 𝑃𝑖 . Since 𝑃𝑖  is 

primary, there exists a positive integer 𝑛 such that 

𝑏𝑛1𝑀 ≤ 𝑃𝑖  or 𝑎𝑋 ≤ 𝑃𝑖 . Hence 𝑋 ≤ (𝑃𝑖 :𝑀 𝑎) or 

𝑏𝑛1𝑀 ≤ 𝑃𝑖 ≤ (𝑃𝑖 :𝑀 𝑎). 
Theorem 8. Let 𝑀 be a lattice 𝐿-module. Then the 

followings are equivalent. 

i. 𝑀 is a comultiplication module. 

ii. For every element 𝑁 ∈ 𝑀 and each element 

𝑐 ∈ 𝐿 with 𝑁 < (0𝑀:𝑀 𝑐), there exists an element 

𝑏 ∈ 𝐿 such that 𝑐 < 𝑏 and 𝑁 = (0𝑀:𝑀 𝑏). 
iii. For every element 𝑁 ∈ 𝑀 and each element 

𝑐 ∈ 𝐿 with 𝑁 < (0𝑀:𝑀 𝑐), there exists an element 

𝑏 ∈ 𝐿 such that 𝑐 < 𝑏 and 𝑁 ≤ (0𝑀:𝑀 𝑏). 
 

Proof: (i)⇒(ii). Let 𝑁 < (0𝑀:𝑀 𝑐) where 𝑁 ∈ 𝑀, 
𝑐 ∈ 𝐿. Since 𝑀 is a comultiplication module, we 

have 𝑁 = (0𝑀:𝑀 (0𝑀:𝐿 𝑁)). Let 𝑏 = 𝑐⋁(0𝑀:𝐿 𝑁). 

Since 𝑁 = (0𝑀:𝑀 (0𝑀:𝐿 𝑁)) < (0𝑀:𝑀 𝑐), it follows 

that (0𝑀:𝐿 𝑁) ≰ 𝑐. Hence 𝑐 < 𝑏 and we have 

(0𝑀:𝑀 𝑏) = (0𝑀:𝑀 𝑐)⋀(0𝑀:𝑀 (0𝑀:𝐿 𝑁)) =

(0𝑀:𝑀 (0𝑀:𝐿 𝑁)) = 𝑁. (ii)⇒(iii). Clear. 

(iii)⇒(i). Suppose that 𝑀 is not a comultiplication 

module. It is clear that 1𝑀 = (0𝑀:𝑀 0𝐿). There 

exists 𝑁 < 1𝑀 such that 𝑁 ≠ (0𝑀:𝑀 𝑐) for all 𝑐 ∈
𝐿. Suppose that 𝛺 = {𝑐 ∈ 𝐿: 𝑁 < (0𝑀:𝑀 𝑐)}. Since 

0𝐿 ∈ 𝛺, we have 𝛺 ≠ ∅. Let {𝑐𝑖} be a chain in 𝛺. 

Since 𝑁 < (0𝑀:𝑀 𝑐𝑖), we have 𝑐𝑖𝑁 = 0𝑀 and 

so(⋁𝑐𝑖)𝑁 = ⋁(𝑐𝑖𝑁) = 0𝑀. Therefore 𝑁 ≤
(0𝑀:𝑀 ⋁𝑐𝑖). But 𝑁 < (0𝑀:𝑀 ⋁𝑐𝑖) from above. 

Therefore, ⋁𝑐𝑖 ∈ 𝛺. There exists a maximal 

element of 𝛺 by Zorn's Lemma. Let 𝑐 be a maximal 

element of 𝛺. Since 𝑁 < (0𝑀:𝑀 𝑐),  there exists 

𝑏 > 𝑐 such that 𝑁 ≤ (0𝑀:𝑀 𝑏) by (iii). Since 

𝑁 ≠ (0𝑀:𝑀 𝑏), we have 𝑏 ∈ 𝛺. Since 𝑏 > 𝑐, this is 

a contradiction. 

 

Definition 6. Let 𝑀 be a comultiplication lattice 𝐿-

module. An element 0𝑀 ≠ 𝑁 ∈ 𝑀 is said to be 

second element in 𝑀, if for each 𝑎 ∈ 𝐿,  𝑎𝑁 = 𝑁 or 

𝑎𝑁 = 0𝑀. 

 

Proposition 10. Let 𝑀 be a comultiplication lattice 

𝐿-module. If (0𝑀:𝐿 𝑁) = 𝑝 is prime in 𝐿 for 𝑁 ∈ 𝑀, 
then 𝑁 is second element in 𝑀. 

 

Proof: Let 𝑝 = (0𝑀:𝐿 𝑁) be prime element of 𝐿 for 

𝑁 ∈ 𝑀. If 𝑎𝑁 ≠ 0𝑀 for 𝑎 ∈ 𝐿, then 0𝑀 ≠ 𝐾 =
𝑎𝑁 ≤ 𝑁. Suppose that 0𝑀 ≠ 𝐾 = 𝑎𝑁 < 𝑁 =
(0𝑀:𝑀 (0𝑀:𝐿 𝑁)) = (0𝑀:𝑀 𝑝). By Theorem 8 (ii), 

there exists an element 𝑏 ∈ 𝐿 such that 𝑝 < 𝑏 and 

𝐾 = 𝑎𝑁 = (0𝑀:𝑀 𝑏).  It follows that 𝑏𝑎𝑁 = 0𝑀 , 
and so 𝑏𝑎 ≤ 𝑝 = (0𝑀:𝐿 𝑁). Since 𝑝 is prime and 

𝑏 ≰ 𝑝, we have 𝑎 ≤ 𝑝 and so 𝑎𝑁 = 0𝑀. This is a 

contradiction. Consequently, 𝐾 = 𝑎𝑁 = 𝑁. 

 

Corollary 9. Let 𝑀 be a comultiplication lattice 𝐿-

module and 𝑁 ∈ 𝑀. Then the followings are 

equivalent. 

i. 𝑁 is a second element in 𝑀. 

ii. (0𝑀:𝐿 𝑁) is a prime element in 𝐿. 
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Proof: (i)⇒(ii). Suppose that 𝑁 ∈ 𝑀 is a second 

element. Let 𝑝 = (0𝑀:𝑀 𝑁). Suppose that 𝑎𝑏 ≤ 𝑝 

and 𝑏 ≰ 𝑝. Since 𝑏 ≰ 𝑝, we have 𝑏𝑁 ≠ 0𝑀.  Since 

𝑁 is a second element, we have 𝑏𝑁 = 𝑁 and so 

0𝑀 = (𝑎𝑏)𝑁 = 𝑎(𝑏𝑁) = 𝑎𝑁. Therefore, 𝑎 ≤ 𝑝 =
(0𝑀:𝐿 𝑁). 
(ii)⇒(i). Proposition 10. 

 

Proposition 11. Let 𝑀 be a nonzero 

comultiplication 𝑃𝐺-lattice 𝐿-module. 

i. Let {𝑀𝜆}𝜆∈𝛬 be a family of elements of a module 

𝑀 with ⋀𝑀𝜆 = 0𝑀. Then 𝑁 = ⋀ (𝑁⋁𝑀𝜆)𝜆∈𝛬  for 

every 𝑁 ∈ 𝑀. 

ii. Let 𝑝 be a minimal element in 𝐿 and (0𝑀:𝑀 𝑝) =
0𝑀. Then 𝑀 is simple. 

 

Proof: i. Let {𝑀𝜆}𝜆∈𝛬 be a family of elements of a 

module 𝑀 with ⋀𝑀𝜆 = 0𝑀 . Therefore, 𝑁 =

(0𝑀:𝑀 (0𝑀:𝐿 𝑁)) = (⋀𝑀𝜆:𝑀 (0𝑀:𝐿 𝑁)) =

⋀(𝑀𝜆:𝑀 (0𝑀:𝐿 𝑁)) and 𝑀𝜆 ≤ (𝑀𝜆:𝑀 (0𝑀:𝐿 𝑁)) and 

𝑁 ≤ (𝑀𝜆:𝑀 (0𝑀:𝐿 𝑁)) for 𝜆 ∈ 𝛬. Therefore, 

𝑁 = ⋀(𝑀𝜆:𝑀 (0𝑀:𝐿 𝑁)) ≥ ⋀(𝑀𝜆⋁𝑁) ≥ 𝑁. 

ii. Let 0𝑀 ≠ 𝑋 ∈ 𝑀 be a principal element and let 𝑝 

be a minimal element in 𝐿 such that (0𝑀:𝑀 𝑝) =
0𝑀. There exists 𝑎 ∈ 𝐿 such that 𝑋 = (0𝑀:𝑀 𝑎). 

Then𝑋 = (0𝑀:𝑀 𝑎) = ((0𝑀:𝑀 𝑝):𝑀 𝑎) =
(0𝑀:𝑀 𝑎𝑝). Since 𝑝 is minimal, we have 0𝐿 ≤ 𝑎𝑝 ≤
𝑝 and so 𝑎𝑝 = 0𝐿 or 𝑎𝑝 = 𝑝. If 𝑎𝑝 = 𝑝,  𝑋 =
(0𝑀:𝑀 𝑎𝑝) = (0𝑀:𝑀 𝑝) = 0𝑀. This is a 

contradiction. Hence 𝑎𝑝 = 0𝐿 . Therefore, 𝑋 =
(0𝑀:𝑀 𝑎𝑝) = 1𝑀 is principal. Consequently, 𝑀 is 

cyclic. Since 𝑀 = {0𝑀 , 1𝑀}, 𝑀 is simple. 

Let 𝐿 be a multiplicative lattice. An element 

𝑎 ∈ 𝐿 is called zero-divisor if there exists an 

element 0𝐿 ≠ 𝑏 ∈ 𝐿 such that 𝑎𝑏 = 0𝐿. 𝐿 is said to 

be a domain if it has only zero-divisor 0𝐿. Note that 

𝑍(𝐿) denote the set of zero divisors of 𝐿. 
 

Lemma 2. Let 𝑀 be a faithful comultiplication 𝐿-

module. Then𝑊(𝑀) = {𝑎 ∈ 𝐿: 𝑎1𝑀 < 1𝑀} =
𝑍(𝐿). 
 

Proof: Let 𝑎 ∈ 𝑊(𝑀). Then 𝑎1𝑀 < 1𝑀 . Since 𝑀 is 

comultiplication, 𝑎1𝑀 = (0𝑀:𝑀 (0𝑀:𝐿 𝑎1𝑀)). It is 

clear that (0𝑀:𝐿 𝑎1𝑀) ≠ 0𝐿 and (0𝑀:𝐿 𝑎1𝑀)𝑎1𝑀 =
0𝑀. Since 𝑀 is faithful, (0𝑀:𝐿 𝑎1𝑀)𝑎 = 0𝐿 . We 

have 𝑎 ∈ 𝑍(𝐿). Conversely, let 𝑎 ∈ 𝑍(𝐿). There 

exists 0𝐿 ≠ 𝑏 ∈ 𝐿 such that 𝑎𝑏 = 0𝐿 . Therefore, 

(𝑎𝑏)1𝑀 = 𝑏(𝑎1𝑀) = 0𝑀 ⇒ 𝑎1𝑀 ≤ (0𝑀:𝑀 𝑏) ≠
1𝑀. Indeed, if (0𝑀:𝑀 𝑏) = 1𝑀 , then 𝑏1𝑀 = 0𝑀. 
Since 𝑀 is faithful, we have 𝑏 = 0𝐿 . This is a 

contradiction. Therefore 𝑎1𝑀 ≠ 1𝑀 and so 

𝑎 ∈ 𝑊(𝑀). 
 

Definition 7. (Nakkar and Anderson, 1988) Let 𝑀 

be an 𝐿-module. An element 𝑁 < 1𝑀 in 𝑀 is said 

to be prime, if 𝑎𝑋 ≤ 𝑁 implies 𝑋 ≤ 𝑁 or 𝑎1𝑀 ≤ 𝑁 

i.e.𝑎 ≤ (𝑁:𝐿 1𝑀) for every 𝑎 ∈ 𝐿, 𝑋 ∈ 𝑀. 
 

Definition 8. Let 𝑀 be an 𝐿-module. 𝑀 is said to be 

prime 𝐿-module if 0𝑀 is prime element of 𝑀. 

It is clear that 0𝑀 is prime element in M if and only 

if (0𝑀:𝐿 1𝑀) = (0𝑀:𝐿 𝑁) for all 0𝑀 ≠ 𝑁 ∈ 𝑀. 

 

Definition 9. Let 𝑀 be an 𝐿-module. 𝑀 is said to be 

coprime 𝐿-module if (0𝑀:𝐿 1𝑀) = (𝑁:𝐿 1𝑀) for all 

𝑁 ∈ 𝑀. 

 

Proposition 12. Let 𝑀 be a 𝐿-module. 

i. Let 𝑀 be a comultiplication prime 𝐿-module. 

Then 𝑀 is a simple 𝐿-module. 

ii. If 𝑀 is a multiplication coprime 𝐿-module, then 

𝑀 is a simple module. 

iii. Let 𝐿 be a domain and let 𝑀 be a faithful 

multiplication and comultiplication 𝐿-module. Then 

𝑀 is simple. 

 

Proof: i. Let 0𝑀 ≠ 𝑁 ∈ 𝑀. Since 𝑀 is a prime 𝐿-

module, we have (0𝑀:𝐿 1𝑀) = (0𝑀:𝐿 𝑁) for all 

0𝑀 ≠ 𝑁 ∈ 𝑀. Then 𝑁 = (0𝑀:𝑀 (0𝑀:𝐿 𝑁)) =

(0𝑀:𝑀 (0𝑀:𝐿 1𝑀)) = 1𝑀. Hence 𝑀 is a simple.  

ii. Let 𝑁 < 1𝑀. Since 𝑀 is coprime 𝐿-module, we 

have (0𝑀:𝐿 1𝑀) = (𝑁:𝐿 1𝑀). Since 𝑀 is a 

multiplication 𝐿-module, 𝑁 = (𝑁:𝐿 1𝑀)1𝑀 =
(0𝑀:𝐿 1𝑀)1𝑀 = 0𝑀. Therefore, 𝑀 is a simple 𝐿-

module.  

iii. Let 𝑁 ∈ 𝑀. Therefore, 𝑁 = (0𝑀:𝑀 𝑎) and 

𝑁 = 𝑏1𝑀 for some 𝑎, 𝑏 ∈ 𝐿. So, 𝑎𝑁 = 𝑎𝑏1𝑀 = 0𝑀 . 
Since 𝑀 is faithful, 𝑎𝑏 = 0𝐿 . Then 𝑎 = 0𝐿 or 

𝑏 = 0𝐿 as 𝐿 is a domain. Hence 𝑁 = 1𝑀 or  

𝑁 = 0𝑀. 
 

Definition 10. 

i. Let 𝑀 be a 𝑃𝐺-lattice 𝐿-module. 𝑀 is called a 

torsion module if  𝐴𝑛𝑛(𝑋) = (0𝑀:𝐿 𝑋) ≠ 0𝐿 for all 

principal elements 𝑋 ∈ 𝑀. 

ii. Let 𝑀 be an 𝐿-module. 𝑀 is called a domain if 

𝐴𝑛𝑛(𝑁) = 0𝐿 for all 0𝑀 ≠ 𝑁 ∈ 𝑀. 
 

Theorem 9. If 𝑀 is a comultiplication 𝑃𝐺-lattice 𝐿-

module, then 𝑀 is cyclic or torsion. 

 

Proof: Let 𝑀 be a comultiplication 𝑃𝐺-lattice 

module. Suppose that 𝑀 is not a torsion 𝐿-module. 

Thus there exists a principal element 𝑋 ∈ 𝑀 such 

that (0𝑀:𝐿 𝑋) = 0𝐿 . Then 𝑋 = (0𝑀:𝑀 (0𝑀:𝐿 𝑋)) =
1𝑀. Hence, 𝑀 is cyclic. 

 

Corollary 7. Let 𝑀 a faithful comultiplication 𝑃𝐺-

lattice 𝐿-module and 1𝑀 compact. If 𝐿 is domain, 

then 𝑀 is cyclic. 

 

Proof: Assume that 𝑀 is not cyclic. Then, 𝑀 is 
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torsion. Hence (0𝑀:𝐿 𝑋) ≠ 0𝐿  for all principal 𝑋. 
Since 1𝑀 is compact, 1𝑀  = ⋁𝑋𝑖  implies that 

1𝑀  = ⋁ 𝑋𝑖
𝑛
𝑖=1  for some principal elements 𝑋𝑖 . 

Therefore, 0𝐿 = (0𝑀:𝐿 1𝑀) = ⋀ (0𝑀:𝐿 𝑋𝑖)
𝑛
𝑖=1 ≥

∏ (0𝑀:𝐿 𝑋𝑖)
𝑛
𝑖=1 ≠ 0𝐿 . This is a contradiction. 

 

Proposition 13. Let 𝐿 be a comultiplication 𝑃𝐺-

lattice and 𝑀 be a faithful 𝑃𝐺-lattice 𝐿-module. 

Then for each 𝑎 ∈ 𝐿, with 𝑎 < 1𝐿 , (0𝑀:𝑀 𝑎) ≠ 0𝑀 

and 𝑎1𝑀 < 1𝑀. 
 

Proof: Let 𝑎 ∈ 𝐿, with 𝑎 < 1𝐿 . Suppose that 

(0𝑀:𝑀 𝑎) = 0𝑀. Then (0𝐿:𝐿 𝑎)1𝑀 = 0𝑀 , for if 

(0𝐿:𝐿 𝑎)1𝑀 ≠ 0𝑀 , there exists a principal element 

𝑥 ∈ 𝐿 such that  𝑥 ≤ (0𝐿:𝐿 𝑎) and a principal 

element 𝑌 ∈ 𝑀 such that 𝑥𝑌 ≠ 0𝑀 . Since 𝑎𝑥 = 0𝐿 , 
we have 𝑎𝑥𝑌 = 0𝑀. Then 𝑥𝑌 ≤ (0𝑀:𝑀 𝑎) = 0𝑀. 
This is a contradiction. Since (0𝐿:𝐿 𝑎)1𝑀 = 0𝑀, it 

follows that (0𝐿:𝐿 𝑎) ≤ 𝐴𝑛𝑛𝐿(𝑀) = 0𝐿 . Since 𝐿 is a 

comultiplication lattice, 𝑎 = (0𝐿:𝐿 (0𝐿:𝐿 𝑎)) = 1𝐿 . 

This is a contradiction. Now suppose that 𝑎1𝑀 =
1𝑀. Therefore (0𝐿:𝐿 𝑎) = (0𝐿:𝐿 1𝑀) = 0𝐿 . Since 𝐿 

is a comultiplication lattice, 𝑎 = 1𝐿 . This is a 

contradiction. 

 

Definition 11. Let 𝑀 be an 𝐿-module and 𝑁 a non-

zero element of 𝑀. Then 𝑁 is said to be large if for 

every element 𝐾 in 𝑀 such that 𝑁⋀𝐾 = 0𝑀 implies 

𝐾 = 0𝑀.  

 

Definition 12. Let 𝑀 be an 𝐿-module and 𝑁 be a 

proper element of 𝑀. Then 𝑁 is said to be small 

element if for every element 𝐾 in 𝑀 such that 

𝑁⋁𝐾 = 1𝑀 implies that 𝐾 = 1𝑀 . 
 

Proposition 14. Let 𝑀 be a faithful 

comultiplication 𝑃𝐺-lattice 𝐿-module with 1𝑀 

compact. Then every non-zero element of 𝑀 is 

large if and only if every element 𝑎 ∈ 𝐿, with 

𝑎 < 1𝐿 is small. 

 

Proof: ⇒: Suppose that every non-zero element of 

𝑀 is large and let 𝑎 ∈ 𝐿, 𝑎 < 1𝐿 such that 𝑎⋁𝑏 =
1𝐿 for some 0𝐿 ≠ 𝑏 ∈ 𝐿. Then 0𝑀 = (0𝑀:𝑀 𝑎⋁𝑏) =
(0𝑀:𝑀 𝑎)⋀(0𝑀:𝑀 𝑏). Since 𝑎 < 1𝐿 we have 

(0𝑀:𝑀 𝑎) ≠ 0𝑀 by Theorem 3. We know that 

(0𝑀:𝑀 𝑎) is large. Hence (0𝑀:𝑀 𝑏) = 0𝑀. 
Therefore, we obtain 𝑏 = 1𝐿 .⇐: Suppose that 

𝑁 ∈ 𝑀 such that 𝐾⋀𝑁 = 0𝑀 where 0𝑀 ≠ 𝐾 ∈ 𝑀. 

Since 𝑀 is a comultiplication 𝐿-module, 𝐾 =
(0𝑀:𝑀 (0𝑀:𝐿 𝐾)) and 𝑁 = (0𝑀:𝑀 (0𝑀:𝐿 𝑁). Then 

0𝑀 = 𝐾⋀𝑁 = (0𝑀:𝑀 (0𝑀:𝐿 𝐾)⋁(0𝑀:𝐿 𝑁)) and so 

(0𝑀:𝐿 𝐾)⋁(0𝑀:𝐿 𝑁) = 1𝐿 . Since 0𝑀 ≠ 𝐾, we have 

(0𝑀:𝐿 𝐾) ≠ 1𝐿 . Since (0𝑀:𝐿 𝐾) is small, it follows 

that (0𝑀:𝐿 𝑁) = 1𝐿 and so 𝑁 = 0𝑀. 

 

Proposition 15. Let 𝑀 be a faithful 

comultiplication 𝑃𝐺-lattice 𝐿-module with 1𝑀 

compact. Then 𝑁 ∈ 𝑀 is large if and only if there 

exists a small element 𝑎 ∈ 𝐿 such that 𝑁 =
(0𝑀:𝑀 𝑎). 
 

Proof: ⇒: Suppose that 𝑁 ∈ 𝑀 is large. Since 𝑀 is 

a comultiplication 𝐿-module, 𝑁 = (0𝑀:𝑀 𝑎). 
Suppose 𝑎⋁𝑏 = 1𝐿 for some 0𝐿 ≠ 𝑏 ∈ 𝐿. Then 

𝑁⋀(0𝑀:𝑀 𝑏) = (0𝑀:𝑀 𝑎)⋀(0𝑀:𝑀 𝑏) =
(0𝑀:𝑀 𝑎⋁𝑏) = 0𝑀.  Since 𝑁 is large, we have 

(0𝑀:𝑀 𝑏) = 0𝑀, hence by Theorem 3, we have 

𝑏 = 1𝐿 . So 𝑎 is small. 

⇐: Suppose that 𝑎 ∈ 𝐿 be a small element of 𝐿. Let 

𝑁 = (0𝑀:𝑀 𝑎).  Assume that 𝐾 ∈ 𝑀 such that 

𝑁⋀𝐾 = 0𝑀. Since 𝑀 is a comultiplication 𝐿-

module, there exists 𝑏 ∈ 𝐿 such that 𝐾 = (0𝑀:𝑀 𝑏). 
Then0𝑀 = 𝑁⋀𝐾 = (0𝑀:𝑀 𝑎)⋀(0𝑀:𝑀 𝑏) =
(0𝑀:𝑀 𝑎⋁𝑏) and so 𝑎⋁𝑏 = 1𝐿 by Theorem 3. 

Therefore 𝑏 = 1𝐿 . Hence 𝐾 = (0𝑀:𝑀 𝑏) = 0𝑀 . 
Consequently, 𝑁 is large. 
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