http://ijsts.shirazu.ac.ir

Comultiplication lattice modules

F. Callialp¹, U. Tekir²* and G. Ulucak³

¹Department of Mathematics, Beykent University, Ayazaga-Maslak, 34396, Istanbul, Turkey ²Department of Mathematics, Marmara University, Ziverbey, P.K.34722, Göztepe, Istanbul, Turkey ³Department of Mathematics, Gebze Institute of Technology, P.K.141 41400 Gebze-Kocaeli, Turkey *E-mail: utekir@marmara.edu.tr*

Abstract

Let *M* be a lattice module over the multiplicative lattice *L*. *M* is said to be a comultiplication *L*-module if for every element *N* of *M* there exists an element $a \in L$ such that $N = (0_M:_M a)$. Our objective is to investigate properties of comultiplication lattice modules.

Keywords: Multiplicative lattice; lattice modules; comultiplication lattice modules

1. Introduction

A multiplicative lattice *L* is a complete lattice in which there is defined a commutative, associative multiplication which distributes over arbitrary joins and has a compact greatest element 1_L (least element 0_L) as a multiplicative identity (zero). Let *L* be a multiplicative lattice and $a \in L$, $L/a = \{b \in L: a \leq b\}$ be a multiplicative lattice with multiplication $c \circ d = cdVa$. Multiplicative lattices have been studied (Jayaram and Johnson, 1995, 1997, 1998; Johnson, 2002, 2003, 2004; Johnson and Johnson, 2003).

An element $a \in L$ is said to be proper if a < 1. An element p < 1 in L is said to be prime if $ab \le p$ implies $a \le p$ or $b \le p$. An element m < 1 in L is said to be maximal if $m < x \le 1$ implies x = 1. It is easily seen that maximal elements are prime.

If a, b belong to L, $(a:_L b)$ is the join of all $c \in L$ such that $cb \leq a$. An element *e* of *L* is called meet principal if $a \wedge be = ((a:_L e) \wedge b))e$ for all $a, b \in L$. An element e of L is called join principal if $((ae \lor b):_L e) = a \lor (b:_L e)$ for all $a, b \in L$. $e \in L$ is said to be principal if e is both meet principal and join principal. $e \in L$ is said to be weak meet (join) principal if $a \wedge e = e(a:_L e) (a \vee (0_L:_L e) =$ $(ea:_L e)$ for all $a \in L$. An element a of a multiplicative lattice L is called compact if $a \leq$ $\forall b_{\alpha} \text{ implies } a \leq b_{\alpha_1} \forall b_{\alpha_2} \forall \dots \forall b_{\alpha_n} \text{ for some subset}$ $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$. If each element of L is a join of principal (compact) elements of L, then L is called a PG-lattice (CG-lattice).

*Corresponding author

Received: 1 August 2013 / Accepted: 25 November 2014

Let *M* be a complete lattice. Recall that *M* is a lattice module over the multiplicative lattice *L*, or simply an *L*-module in case there is a multiplication between elements of *L* and *M*, denoted by *lB* for $l \in L$ and $B \in M$, which satisfies the following properties:

i. (lb)B = l(bB); ii. $(V_{\alpha}l_{\alpha})(V_{\beta}B_{\beta}) = V_{\alpha,\beta}l_{\alpha}B_{\beta}$; iii. $1_{L}B = B$;

iv. $0_L^{D} B = 0_M$; for all l, l_{α} , b in L and for all B, B_{β} in M.

Let *M* be an *L*-module. If *N*, *K* belong to *M*, $(N:_L K)$ is the join of all $a \in L$ such that $aK \leq N$. If $a \in L$, then $(0_M:_M a)$ is the join of all $H \in M$ such that $aH = 0_M$. An element *N* of *M* is called meet principal if $(b \land (B:_L N))N = bN \land B$ for all $b \in L$ and for all $B \in M$. An element *N* of *M* is called join principal if $b \lor (B:_L N) = ((bN \lor B):_L N)$ for all $b \in L$ and for all $B \in M$. *N* is said to be principal if it is both meet principal and join principal. In a special case, an element *N* of *M* is called weak meet principal (weak join principal) if $(B:_L N)N = B \land N((bN:_L N) = b \lor (0_M:_L N))$ for all $B \in M$ (for all $b \in L$). *N* is said to be weak principal if *N* is both weak meet principal and weak join principal.

Let *M* be an *L*-module. An element *N* in *M* is called compact if $N \leq \bigvee_a B_a$ implies $N \leq B_{\alpha_1} \bigvee B_{\alpha_2} \bigvee \dots \bigvee B_{\alpha_n}$ for some subset $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$. The greatest element of *M* will be denoted by 1_M . If each element of *M* is a join of principal (compact) elements of *M*, then *M* is called a *PG*-lattice (*CG*-lattice).

Let *M* be an *L*-module. An element $N \in M$ is said to be proper if $N < 1_M$. If $Ann(M) = (0_M:_L 1_M) = 0_L$, then *M* is called a faithful *L*-module. If cm = 0_M implies $m = 0_M$ or $c = 0_L$ for any $c \in L$ and $m \in M$, *M* is called a torsion-free *L*-module.

For various characterizations of lattice modules, the reader is referred to Nakkar and Al-Khouja (1989), Nakkar and Anderson (1988) and Scott Culhan (2005). In this paper we study comultiplication lattice modules over а multiplicative lattice and generalize the important for comultiplication modules results over commutative rings, obtained by Ansari-Toroghy and Farshadifar (2007, 2011), Shaniafi and Smith (2011) to the lattice modules over multiplicative lattice.

2. Comultiplication Lattice Modules

Definition 1.

i. (Callialp and Tekir, 2011) An *L*-module *M* is called a multiplication lattice module if for every element $N \in M$ there exists an element $a \in L$ such that $N = a 1_M$

ii. Let *M* be a lattice *L*-module. *M* is said to be a comultiplication *L*-module if for every element *N* of *M* there exists an element $a \in L$ such that $N = (0_M:_M a)$.

Lemma 1. Let *M* be a lattice *L*-module. Then, *M* is a comultiplication lattice *L*-module if and only if $N = (0_M:_M (0_M:_L N))$ for every element *N* in *M*.

Proof: ⇐:Clear.

⇒: Suppose that *M* is a comultiplication lattice *L*-module and $N \in M$. Then there exists an $a \in L$ such that $N = (0_M :_M a)$. Thus we have $a \leq (0_M :_L N)$ so that $(0_M :_M (0_M :_L N)) \leq (0_M :_M a) = N$. It is clear that $N \leq (0_M :_M (0_M :_L N))$. This implies $N = (0_M :_M (0_M :_L N))$.

Proposition 1. Let *M* be a lattice *L*-module. Then the followings are equivalent.

i. For any $K, N \in M$, $(0_M:_L K) \le (0_M:_L N)$ implies that $N \le K$.

ii. For any $K, N \in M$, $(K_{L} N) = ((0_{M}:_{L} N):_{L} (0_{M}:_{L} K)).$

Proof: (i)=(ii): For any $K, N \in M$, $(K:_L N) \leq ((0_M:_L N):_L (0_M:_L K))$. Indeed $b = (K:_L N) \Rightarrow bN \leq K \Rightarrow b(0_M:_L K)N = 0_M \Rightarrow b(0_M:_L K) \leq (0_M:_L N) \Rightarrow b = (K:_L N) \leq ((0_M:_L N):_L (0_M:_L K))$. Conversely, let $r = ((0_M:_L N):_L (0_M:_L K))$. Then $r(0_M:_L K)N = 0_M \Rightarrow (0_M:_L K) \leq (0_M:_L rN)$, by (i), we have $rN \leq K$ and so $r \leq (K:_L N)$. (ii)=(i): Suppose that $(0_M:_L K) \leq (0_M:_L N)$. Then $(K:_L N) = ((0_M:_L N):_L (0_M:_L K)) = 1_L$ by (ii) and so $N \leq K$.

Theorem 1. Let *M* be a lattice *L*-module. Suppose $\phi: L \to M$ is defined by $\phi(a) = (0_M:_M a)$ and $\psi: M \to L$ by $\psi(N) = (0_M:_L N)$ for all $a \in L$ and

 $N \in M$. Then,

i. $(\phi\psi\phi)(a) = (0_{M:M} (0_{M:L} (0_{M:M} a))) = (0_{M:M} a) = \phi(a)$ for all $a \in L$. ii. $(\psi\phi\psi)(N) = (0_{M:L} (0_{M:M} (0_{M:L} N))) = (0_{M:L} N) = \psi(N)$ for all $N \in M$.

Proof: i. Suppose that $(0_{M:M} a) = N$. Clearly, $(0_{M:M} a) = N \le (0_{M:M} (0_{M:L} N))$. On the other hand, $aN = 0_M$ and so $a \le (0_{M:L} N)$. Therefore, $(0_{M:M} (0_{M:L} N)) \le (0_{M:M} a) = N$. ii. Suppose that $b = (0_{M:L} N)$.Clearly $b = (0_{M:L} N) \le$ $(0_{M:L} (0_{M:M} (0_{M:L} N)))$. On the other hand,bN = 0_M and so $N \le (0_{M:M} b) = (0_{M:M} (0_{M:L} N))$. Hence $(0_{M:L} (0_{M:M} (0_{M:L} N))) \le (0_{M:L} N) = b$.

Corollary 1. Let *M* be a lattice *L*-module. Let us define $\phi: L \to M$ where $\phi(a) = (0_M:_M a)$, and $\psi: M \to L$ where $\psi(N) = (0_M:_L N)$ for all $a \in L$ and $N \in M$. The followings are equivalent. i. *M* is a comultiplication lattice *L*-module. ii. There exists $a \in L$ such that $N = (0_M:_M a) = \frac{1}{2} \int_{a}^{b} \frac{1}{2} \int_{a}^$

 $\phi(a)$ for all $N \in M$. iii. $\phi \psi$ is an identity map.

iv. ψ is one-to-one.

v. $(0_M:_L K) = (0_M:_L N)$ implies K = N.

Proposition 2. Let M be a comultiplication lattice L-module. If L is a Noetherian (Artinian) multiplicative lattice, then M is an Artinian (Noetherian) lattice L -module.

Proof: Let *L* be an Artinian multiplicative lattice. Suppose that $N_1 \le N_2 \le ...$ Then, $(0_M:_L N_1) \ge (0_M:_L N_2) \ge ...$ Since *L* is Artinian, there exists a positive integer k such that $(0_M:_L N_k) = (0_M:_L N_{k+1}) = ...$ Therefore, $N_k = (0_M:_M (0_M:_L N_k)) = (0_M:_M (0_M:_L N_{k+1})) = N_{k+1} = ...$ Consequently, *M* is a Noetherian lattice module. Similarly, if *L* is Noetherian, then *M* is Artinian lattice *L*-module.

Let *L* be a multiplicative lattice and *M* be an *L*-module. Suppose that $N \in M$. Consider the set $[0_M, N] = \{A \le N : A \in M\}$. We say that $[0_M, N]$ is a submodule of *M*. If *M* is a comultiplication *L*-module, it is clear that $[0_M, N]$ is a comultiplication *L*-module.

Proposition 3. Let *M* be a comultiplication lattice *L*-module. If $(0_M:_M b) = 0_M$ for some $b \in L$, then bY = Y for all $Y \in M$. In particular, $b1_M = 1_M$.

Proof: Let $b \in L$ and $Y \in M$. Since M is a comultiplication lattice module, it follows that $bY = (0_M:_M a)$ for some $a \in L$. Then $abY = 0_M$. Since $(0_M:_M b) = 0_M$, we have $aY = 0_M$. Consequently, $Y \leq (0_M:_M a) = bY$ and so bY = Y.

Proposition 4. Let *M* be a comultiplication lattice *L*-module. If *p* is a maximal element of *L* and $(0_M:_M p) \neq 0_M$, then $(0_M:_M p)$ is minimal in *M*.

Proof: Suppose that $N \leq (0_{M:M} p)$. Since M is a comultiplication lattice L-module, there exists an element a of L such that $N = (0_{M:M} a)$. Since $N \leq (0_{M:M} p)$, we have $pN = 0_M$ and so $p \leq (0_{M:L} N)$. Since p is maximal, $p = (0_{M:L} N)$ or $(0_{M:L} N) = 1_L$. If $p = (0_{M:L} N)$, then $N = (0_{M:M} (0_{M:L} N)) = (0_{M:M} p)$. If $(0_{M:L} N) = 1_L$, then $N = 0_M$. Therefore, $(0_{M:M} p)$ is minimal in M.

Proposition 5. Let *M* be a comultiplication *PG*-lattice *L*-module with 1_M compact. If $p \in L$ is prime and $(0_M:_M p) = 0_M$, then there exists $c \in L$ such that $c \leq p$ and $c1_M = 0_M$.

Proof: Since 1_M is compact, then $1_M = \bigvee_{i=1}^n Y_i$ where Y_i is are principal elements of M. Since $(0_M:_M p) = 0_M$, $pY_i = Y_i$ for all $i \in \{1, 2, ..., n\}$ by Proposition 3. Then $p \lor (0_M:_L Y_i) = (pY_i:_L Y_i) = 1_L$ and so $(0_M:_L Y_i) \leq p$ for all $i \in \{1, 2, ..., n\}$. Therefore, $c = \prod_{i=1}^n (0_M:_L Y_i) \leq p$ and $c1_M = 0_M$.

Corollary 2. Let *M* be a comultiplication *PG*-lattice *L*-module with 1_M compact. If *M* is faithful, then $(0_M:_M p) \neq 0_M$ for some prime element $p \in L$.

Corollary 3. If *M* is a comultiplication *PG*-lattice *L*-module with 1_M compact and $(0_M:_M a) = 0_M$ for some $a \in L$, then $1_L = a \lor (0_M:_L 1_M)$.

Proof: Suppose that $1_L \neq a \vee (0_{M:L} 1_M)$. Then there exists a maximal element $p \in L$ such that $a \vee (0_{M:L} 1_M) \leq p$. Thus we have $(0_{M:M} p) \leq (0_{M:M} a) = 0_M$. Hence $(0_{M:M} p) = 0_M$. There exists an element $c \in L$, $c \leq p$ such that $c \leq (0_{M:L} 1_M)$ by Proposition 5. Since $(0_{M:L} 1_M) \leq p$, we have $c \leq p$. This is a contradiction. Consequently, $a \vee (0_{M:L} 1_M) = 1_L$.

Proposition 6. Let M be a non-zero comultiplication PG-lattice L-module. Then, M has a minimal element. In particular, every nonzero element of M has a minimal element.

Proof: Suppose that *Y* is a nonzero principal element of *M*. Then $(0_{M:L}Y) = a < 1_L$. Then there exists a maximal element *p* such that $a \le p$. If $N = (0_{M:M}p) = 0_M$, then pY = Y by Proposition 3 and so $p \lor (0_{M:L}Y) = (pY:_LY) = 1_L$. Therefore, $a = (0_{M:L}Y) \le p$. This is a contradiction. Hence $N = (0_{M:M}p) \ne 0_M$. Therefore, *N* is a minimal element of *M* by Proposition 4.

Proposition 7. Let M be a non-zero comultiplication *PG*-lattice*L*-module. Then $K \in M$ is minimal if and only if $K = (0_M:_M p) \neq 0_M$ for some maximal element $p \in L$.

Proof: \Leftarrow : By Proposition 4.

⇒: Let *K* be a minimal principal element of *M*. Since *M* is a comultiplication lattice *L*-module, $K = (0_M:_M (0_M:_L K))$. We will show that $(0_M:_L K)$ is maximal. Let $c \in L$ such that $(0_M:_L K) \leq c$. Since *K* is minimal and $cK \leq K$, it follows that cK = K or $cK = 0_M$. If cK = K, then $1_L =$ $(cK:_L K) = c \lor (0_M:_L K) = c$. If $cK = 0_M$, then $c \leq (0_M:_L K)$ and so $c = (0_M:_L K)$.

Proposition 8. Let *M* be a comultiplication lattice *L*-module. Then, $(N_M^{*}a) = ((0_M \cdot M^{*}a) \cdot M^{*}(0_M \cdot M^{*}N))$ for any $a \in L, N \in M$.

Proof: Let $K = (N:_M a)$. Then $aK \le N \Rightarrow$ $(0_M:_L N)aK = 0_M \Rightarrow (0_M:_L N)K \le (0_M:_M a) \Rightarrow$ $K = (N:_M a) \le ((0_M:_M a):_M (0_M:_L N)).$ Conversely, if $R = ((0_M:_M a):_M (0_M:_L N))$, then $(0_M:_L N)R \le (0_M:_M a) \Rightarrow (0_M:_L N)aR = 0_M \Rightarrow$ $aR \le (0_M:_M (0_M:_L N)) = N.$ Consequently, $R \le (N:_M a).$

Theorem 2. Let *L* be a distributive lattice. Let *M* be a comultiplication lattice *L*-module and $(0_M:_M a) \lor (0_M:_M b) = (0_M:_M a \land b)$ for all $a, b \in L$. Then *M* is distributive.

Proof: Let $X, Y, Z \in M$. There exist $a, b, c \in L$ such that $X = (0_M:_M a), Y = (0_M:_M b), Z = (0_M:_M c)$. Then, $(X \lor Y) \land Z = ((0_M:_M a) \lor (0_M:_M b)) \land (0_M:_M c) = (0_M:_M a \land b) \land (0_M:_M c) = (0_M:_M a \land b) \land (0_M:_M c) = (0_M:_M (a \land b) \lor c) = (0_M:_M (a \land c) \lor (b \land c)) = (0_M:_M a \land c) \land (0_M:_M b \land c) = (X \lor Z) \land (Y \lor Z).$

Corollary 4. Let *L* be a distributive lattice. Let *M* be a comultiplication lattice *L*-module and $a \lor b = 1_L$ for all $a, b \in L$. Then *M* is distributive.

Proof: If $a \vee b = 1_L$ then($K:_M a \wedge b$) = $(K_{:_M} a \wedge b)(a \vee b) = a(K_{:_M} a \wedge b) \vee b(K_{:_M} a \wedge b) \leq$ $(K_{M} b) \vee (K_{M} a)$ for all $a, b, c \in L$.Note that $a(K:_M a \wedge b) \le (K:_M b)$ and $b(K:_M a \wedge b) \leq$ $(K:_M a)$. It is clear that $(K:_M b) \vee (K:_M a) \leq$ For $K = 0_M$, $(K:_M a \wedge b).$ we have $(0_M:_M a) \vee (0_M:_M b) = (0_M:_M a \wedge b).$ The result follows from Theorem 2.

Proposition 9. Let M be a comultiplication lattice L-module and p, q be maximal elements of L. If

 $(0_M:_M p) \neq 0_M$ and $(0_M:_M q) \neq 0_M$, then $(0_M:_M p) \lor (0_M:_M q) = (0_M:_M p \land q).$

Proof: Let $0_M \neq (0_{M:M} p) = N$. Since $pN = 0_M$ and p is maximal, we have $p = (0_{M:L} N)$. Similarly, if $0_M \neq K = (0_{M:M} q)$, then $q = (0_{M:L} K)$. Since M is a comultiplication L-module, it follows that $N \lor K = (0_{M:M} (0_{M:L} N \lor K)) = (0_{M:M} (0_{M:L} N) \land (0_{M:L} K))$. Consequently, $(0_{M:M} p) \lor (0_{M:M} q) = (0_{M:M} p \land q)$.

Definition 2. A lattice *L*-module *M* is said to be finitely cogenerated, if for every set $\{M_{\lambda}\}_{\lambda \in \Lambda}$ of elements of *M*, $\Lambda_{\lambda \in \Lambda} M_{\lambda} = 0_M$ implies $\Lambda_{i=1}^m M_{\lambda_i} = 0_M$ for some positive integer m > 0.

Theorem 3. Let M be a faithful comultiplication PG-lattice L-module.

i. 1_M is compact.

ii. $(0_M:_M a) \neq 0_M$ for all $a < 1_L$.

iii. $(0_M:_M p) \neq 0_M$ for all maximal elements $p \in L$. iv. *M* is finitely cogenerated.

Then (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv).

Proof: (i)=(ii): Suppose that $(0_M:_M a) = 0_M$ and $a < 1_L$. Then $(0_M:_M p) = 0_M$ for all maximal elements $a \le p$. This is a contradiction by Corollary 2. (ii)=(iii): Clear. (iii)=(iv): Let $N_{\alpha} = (0_M:_M a_{\alpha})$. Suppose that $0_M = \Lambda_{\alpha \in I} N_{\alpha} = \Lambda_{\alpha \in I} (0_M:_M a_{\alpha}) = (0_M:_M V_{\alpha \in I} a_{\alpha})$. Then $V_{\alpha \in I} a_{\alpha} = 1_L$. Indeed, if $V_{\alpha \in I} a_{\alpha} \le p$ for some maximal element p, then $(0_M:_M p) \le (0_M:_M V_{\alpha \in I} a_{\alpha}) = 0_M$. This is a contradiction with (iii). Since 1_L is compact, $V_{i=1}^n a_{\alpha_i} = 1_L$ and so $0_M = \Lambda_{\alpha \in I} N_{\alpha} = (0_M:_M V_{i=1}^n a_{\alpha_i}) = \Lambda_{i=1}^n (0_M:_M a_{\alpha_i}) = \Lambda_{i=1}^n N_{\alpha_i}$ for some $n \ge 1$.

Let Jac(L) denote the infimum of the maximal elements of *L*. Note that Jac(L) is called the Jacobson radical of *L* (Nakkar and Al-Khouja, 1985).

Theorem 4. (A dual of Nakayama Lemma for comultiplication lattice modules) Let M be a comultiplication PG-lattice L-module and $a \in L$ such that $a \leq Jac(L)$. If $(0_M:_M a) = 0_M$, then $M = 0_M$.

Proof: Suppose that $M \neq 0_M$. Then, there exists a maximal element p such that $0_M \neq K = (0_M:_M p)$ is minimal in M by Proposition 6 and Proposition 7. Since $a \leq p$ and $(0_M:_M a) = 0_M$, we have $(0_M:_M p) = 0_M$. This is a contradiction.

Theorem 5. Let *M* be a comultiplication *PG*-lattice *L*-module and $\{N_{\alpha}\}_{\alpha \in \Lambda}$ be a collection of elements of *M* such that $\bigwedge_{\alpha \in \Lambda} N_{\alpha} = 0_{M}$. If

 $a = \bigvee_{\alpha \in \Lambda} (0_M :_L N_\alpha)$ and *X* is a compact element of *M*, then $1_L = a \vee (0_M :_L X)$.

Proof: If *X* is compact and for $a = \bigvee_{\alpha \in \Lambda} (0_M :_L N_\alpha)$, $a \lor (0_M :_L X) \neq 1_L$, then there exists a maximal element *p* of *L* such that $a \lor (0_M :_L X) \leq p$. Then $(0_M :_M p) \leq (0_M :_M a) = (0_M :_M \bigvee_{\alpha \in \Lambda} (0_M :_L N_\alpha)) = \bigwedge_{\alpha \in \Lambda} N_\alpha = 0_M$. Hence $(0_M :_M p) = (0_M :_X p) = 0_M$. Since the submodule $[0_M, X]$ is comultiplication and *X* is compact, there exists an element $c \in L$, $c \not\leq p$ such that $c \leq Ann_L(X)$ by Proposition 5. But this is a contradiction, because $Ann_L(X) = (0_M :_L X) \leq p$. So $a \lor (0_M :_L X) = 1_L$.

Corollary 5. Let *M* be a comultiplication *PG*-lattice *L*-module. If *X* is a compact element of *M*, then the submodule $[0_M, X]$ is finitely cogenerated.

Proof: Let $\{X_{\lambda}\}_{\lambda \in \Lambda}$ be set of elements such that $X_{\lambda} \leq X$ with $\Lambda_{\lambda \in \Lambda} X_{\lambda} = 0_{M}$. By Theorem 5, $1_{L} = a \vee (0_{M}:_{L} X)$ with $a = \bigvee_{\lambda \in \Lambda} (0_{M}:_{L} X_{\lambda})$. But $(0_{M}:_{L} X) \leq (0_{M}:_{L} X_{\lambda})$ for all $\lambda \in \Lambda$. Hence $1_{L} = a = \vee (0_{M}:_{L} X_{\lambda})$. Since 1_{L} is compact, it follows that $1_{L} = a = \bigvee_{i=1}^{n} (0_{M}:_{L} X_{\lambda_{i}})$ for some $n \geq 1$. Since the submodule $[0_{M}, X]$ is a comultiplication module, we have $X_{\lambda} = (0_{M}:_{M} (0_{M}:_{L} X_{\lambda}))$ for all $\lambda \in \Lambda$. Hence we obtain $0_{M} = (0_{M}:_{M} 1_{L}) = (0_{M}:_{M} \vee_{i=1}^{n} (0_{M}:_{L} X_{\lambda_{i}})) = \Lambda_{i=1}^{n} (0_{M}:_{M} (0_{M}:_{L} X_{\lambda_{i}})) = \Lambda_{i=1}^{n} X_{\lambda_{i}}$.

Definition 3. (Callalp and Tekir, 2011) Let M be an *L*-module. If 1_M is a principal element in M, then M is called a cyclic lattice module.

Theorem 6. Let *M* be a *PG*-lattice module.

i. If *M* is a multiplication *L*-module such that *M* has a faithful $[0_M, N]$ submodule and *N* is principal in *M*, then $a1_M < 1_M$ for every element $a \in L$ with $a < 1_L$.

ii. If *M* is a faithful cyclic comultiplication *L*-module, then $(0_M:_M a) \neq 0_M$ for every $a \in L$ with $a < 1_L$.

iii. If *M* is a comultiplication *L*-module, then for every element $a \in L$ with $a1_M < 1_M$, there exists a maximal element $p \in L$ with $a \lor (0_M:_L 1_M) \le p$ such that $(0_M:_M p)$ is a minimal in *M*.

Proof: i. Since *M* is a multiplication *L*-module, there exists $b \in L$ such that $N = b\mathbf{1}_M$. If there exists $a \in L$ with $a < \mathbf{1}_L$ such that $a\mathbf{1}_M = \mathbf{1}_M$, then $N = b\mathbf{1}_M = a(b\mathbf{1}_M) = aN$. Since *N* is principal, $aV(\mathbf{0}_M:_L N) = (aN:_L N) = \mathbf{1}_L$ and so $a = \mathbf{1}_L$. This is a contradiction.

ii. If there exists $a \in L$ with $a < 1_L$ such that $(0_M:_M a) = 0_M$, then $a1_M = 1_M$ by Proposition 3. Since 1_M is principal and $(0_M:_L 1_M) = 0_M$, we have $1_L = (a1_M:_L 1_M) = a \lor (0_M:_L 1_M) = a$. This is a contradiction.

iii. Let $a \in L$ with $a1_M < 1_M$. Then $(0_M:_M a) \neq 0_M$ by Proposition 3. There exists a minimal element Kin M with $K \leq (0_M:_M a)$ by Proposition 6. Hence there exists a maximal element $p \in L$ such that $K = (0_M:_M p) \neq 0_M$ by Proposition 7. It follows that $(0_M:_L 1_M) \leq p$. Indeed, $(0_M:_L 1_M) \leq$ $(0_M:_L K) = (0_M:_L (0_M:_M p)) \geq p$. Since p is maximal, $(0_M:_L (0_M:_M p)) = p$, so $(0_M:_L 1_M) \leq p$. The proof will be completed if we show that $a \leq p$. Suppose that $a \leq p$. Then $a \lor p = 1_L$. Since $K \leq (0_M:_M a)$, it follows that $0_M = (0_M:_M 1_L) =$ $(0_M:_M a \lor p) = (0_M:_M a) \land (0_M:_M p) = K$. Hence $K = 0_M$. This is a contradiction. We obtain $a \leq p$.

Definition 4. (Nakkar and Anderson, 1988) Let M be an L-module. An element $N < 1_M$ in M is said to be primary, if $aX \le N$ implies $X \le N$ or $a^k 1_M \le N$ for some $k \ge 0$ i.e. $a^k \le (N:_L 1_M)$ for every $a \in L, X \in M$.

Definition 5. (Nakkar and Anderson, 1988) Let M be an L-module. Let B be an arbitrary element of M. A finite family $\{Q_i\}_{i=1}^n$ of elements of M such that Q_i is P_i -primary for any $i \in \{1, 2, ..., n\}$ and $B = \bigwedge_{i=1}^{n} Q_i$, is called a primary decomposition of В in M. If contains no Q_i $Q_1 \wedge Q_2 \wedge \ldots \wedge Q_{i-1} \wedge Q_{i+1} \wedge \ldots \wedge Q_n$ and if the elements P_1, P_2, \ldots, P_n are all distinct, then the primary decomposition is said to be reduced (irredundant).

An *L*-module *M* is called a *K*-lattice if it is a *CG*lattice and for any compact element $h \in L$ and any compact element $H \in M$, the element hH is compact. Let *L* be a *K*-lattice in which the greatest element 1_L is compact and let *M* be a *K*-lattice. Clearly for an arbitrary element *B* of *M*, any primary decomposition of *B* can be simplified to a reduced one (Nakkar and Anderson, 1988).

Theorem 7. Let *L* be a *K*-lattice and let *M* be a *K*-lattice. Let *M* be a comultiplication lattice *L*-module. If 0_M has a primary decomposition, then every element of *M* has a primary decomposition.

Proof: Let $0_M = \bigwedge_{i=1}^n P_i$ be irredundant primary decomposition. Assume that $N \in M$. Then there exists an $a \in L$ such that $N = (0_M:_M a)$. Therefore, $N = (0_M:_M a) = \bigwedge_{i=1}^n (P_i:_M a)$. We will show that $(P_i:_M a)$ is a primary element of M for each i = 1, 2, ..., n. Suppose that $bX \leq (P_i:_M a)$, where $b \in L$ and $X \in M$. Hence $abX \leq P_i$. Since P_i is primary, there exists a positive integer n such that $b^n 1_M \leq P_i$ or $aX \leq P_i$. Hence $X \leq (P_i:_M a)$ or $b^n 1_M \leq P_i \leq (P_i:_M a)$.

Theorem 8. Let *M* be a lattice *L*-module. Then the

IJST (2015) 39A2: 213-220

followings are equivalent.

i. *M* is a comultiplication module.

ii. For every element $N \in M$ and each element $c \in L$ with $N < (0_M:_M c)$, there exists an element $b \in L$ such that c < b and $N = (0_M:_M b)$.

iii. For every element $N \in M$ and each element $c \in L$ with $N < (0_M:_M c)$, there exists an element $b \in L$ such that c < b and $N \le (0_M:_M b)$.

Proof: (i)=(ii). Let $N < (0_{M:M} c)$ where $N \in M$, $c \in L$. Since M is a comultiplication module, we have $N = (0_{M:M} (0_{M:L} N))$. Let $b = c \lor (0_{M:L} N)$. Since $N = (0_{M:M} (0_{M:L} N)) < (0_{M:M} c)$, it follows that $(0_{M:L} N) \leq c$. Hence c < b and we have $(0_{M:M} b) = (0_{M:M} c) \land (0_{M:M} (0_{M:L} N)) =$ $(0_{M:M} (0_{M:L} N)) = N$. (ii)=(iii). Clear.

(iii) \Rightarrow (i). Suppose that *M* is not a comultiplication module. It is clear that $1_M = (0_M:_M 0_L)$. There exists $N < 1_M$ such that $N \neq (0_M:_M c)$ for all $c \in$ L. Suppose that $\Omega = \{c \in L : N < (0_M : M c)\}$. Since $0_L \in \Omega$, we have $\Omega \neq \emptyset$. Let $\{c_i\}$ be a chain in Ω . Since $N < (0_M:_M c_i)$, we have $c_i N = 0_M$ and $\operatorname{so}(\forall c_i)N = \forall (c_iN) = 0_M.$ Therefore $N \leq$ $(0_M:_M \forall c_i)$. But $N < (0_M:_M \forall c_i)$ from above. Therefore, $\forall c_i \in \Omega$. There exists a maximal element of Ω by Zorn's Lemma. Let *c* be a maximal element of Ω . Since $N < (0_M:_M c)$, there exists b > c such that $N \le (0_M:_M b)$ by (iii). Since $N \neq (0_M : M b)$, we have $b \in \Omega$. Since b > c, this is a contradiction.

Definition 6. Let *M* be a comultiplication lattice *L*-module. An element $0_M \neq N \in M$ is said to be second element in *M*, if for each $a \in L$, aN = N or $aN = 0_M$.

Proposition 10. Let *M* be a comultiplication lattice *L*-module. If $(0_M:_L N) = p$ is prime in *L* for $N \in M$, then *N* is second element in *M*.

Proof: Let $p = (0_M: N)$ be prime element of *L* for $N \in M$. If $aN \neq 0_M$ for $a \in L$, then $0_M \neq K = aN \leq N$. Suppose that $0_M \neq K = aN < N = (0_M: (0_M: N)) = (0_M: p)$. By Theorem 8 (ii), there exists an element $b \in L$ such that p < b and $K = aN = (0_M: b)$. It follows that $baN = 0_M$, and so $ba \leq p = (0_M: N)$. Since *p* is prime and $b \leq p$, we have $a \leq p$ and so $aN = 0_M$. This is a contradiction. Consequently, K = aN = N.

Corollary 9. Let *M* be a comultiplication lattice *L*-module and $N \in M$. Then the followings are equivalent.

i. N is a second element in M.

ii. $(0_M:_L N)$ is a prime element in *L*.

Proof: (i) \Rightarrow (ii). Suppose that $N \in M$ is a second element. Let $p = (0_M:_M N)$. Suppose that $ab \leq p$ and $b \leq p$. Since $b \leq p$, we have $bN \neq 0_M$. Since N is a second element, we have bN = N and so $0_M = (ab)N = a(bN) = aN$. Therefore, $a \leq p = (0_M:_L N)$.

(ii) \Rightarrow (i). Proposition 10.

Proposition 11. Let M be a nonzero comultiplication PG-lattice L-module.

i. Let $\{M_{\lambda}\}_{\lambda \in \Lambda}$ be a family of elements of a module M with $\Lambda M_{\lambda} = 0_{M}$. Then $N = \Lambda_{\lambda \in \Lambda}(N \vee M_{\lambda})$ for every $N \in M$.

ii. Let *p* be a minimal element in *L* and $(0_M:_M p) = 0_M$. Then *M* is simple.

Proof: i. Let $\{M_{\lambda}\}_{\lambda \in \Lambda}$ be a family of elements of a module M with $\Lambda M_{\lambda} = 0_{M}$. Therefore, $N = (0_{M}:_{M}(0_{M}:_{L}N)) = (\Lambda M_{\lambda}:_{M}(0_{M}:_{L}N)) =$

ii. Let $0_M \neq X \in M$ be a principal element and let p be a minimal element in L such that $(0_M:_M p) = 0_M$. There exists $a \in L$ such that $X = (0_M:_M a)$. Then $X = (0_M:_M a) = ((0_M:_M p):_M a) =$

 $(0_M:_M ap)$. Since *p* is minimal, we have $0_L \le ap \le p$ and so $ap = 0_L$ or ap = p. If ap = p, $X = (0_M:_M ap) = (0_M:_M p) = 0_M$. This is a contradiction. Hence $ap = 0_L$. Therefore, $X = (0_M:_M ap) = 1_M$ is principal. Consequently, *M* is cyclic. Since $M = \{0_M, 1_M\}$, *M* is simple.

Let *L* be a multiplicative lattice. An element $a \in L$ is called zero-divisor if there exists an element $0_L \neq b \in L$ such that $ab = 0_L$. *L* is said to be a domain if it has only zero-divisor 0_L . Note that Z(L) denote the set of zero divisors of *L*.

Lemma 2. Let *M* be a faithful comultiplication *L*-module. Then $W(M) = \{a \in L: a1_M < 1_M\} = Z(L).$

Proof: Let $a \in W(M)$. Then $a1_M < 1_M$. Since *M* is comultiplication, $a1_M = (0_M:_M (0_M:_L a1_M))$. It is clear that $(0_M:_L a1_M) \neq 0_L$ and $(0_M:_L a1_M)a1_M = 0_M$. Since *M* is faithful, $(0_M:_L a1_M)a = 0_L$. We have $a \in Z(L)$. Conversely, let $a \in Z(L)$. There exists $0_L \neq b \in L$ such that $ab = 0_L$. Therefore, $(ab)1_M = b(a1_M) = 0_M \Rightarrow a1_M \leq (0_M:_M b) \neq 1_M$. Indeed, if $(0_M:_M b) = 1_M$, then $b1_M = 0_M$. Since *M* is faithful, we have $b = 0_L$. This is a contradiction. Therefore $a1_M \neq 1_M$ and so $a \in W(M)$.

Definition 7. (Nakkar and Anderson, 1988) Let M be an *L*-module. An element $N < 1_M$ in M is said

to be prime, if $aX \le N$ implies $X \le N$ or $a1_M \le N$ i.e. $a \le (N:_L 1_M)$ for every $a \in L, X \in M$.

Definition 8. Let *M* be an *L*-module. *M* is said to be prime *L*-module if 0_M is prime element of *M*. It is clear that 0_M is prime element in M if and only if $(0_M:_L 1_M) = (0_M:_L N)$ for all $0_M \neq N \in M$.

Definition 9. Let *M* be an *L*-module. *M* is said to be coprime *L*-module if $(0_M:_L 1_M) = (N:_L 1_M)$ for all $N \in M$.

Proposition 12. Let *M* be a *L*-module.

i. Let M be a comultiplication prime L-module. Then M is a simple L-module.

ii. If M is a multiplication coprime L-module, then M is a simple module.

iii. Let L be a domain and let M be a faithful multiplication and comultiplication L-module. Then M is simple.

Proof: i. Let $0_M \neq N \in M$. Since *M* is a prime *L*-module, we have $(0_M:_L 1_M) = (0_M:_L N)$ for all $0_M \neq N \in M$. Then $N = (0_M:_M (0_M:_L N)) = (0_M:_M (0_M:_L 1_M)) = 1_M$. Hence *M* is a simple.

ii. Let $N < 1_M$. Since M is coprime L-module, we have $(0_M:_L 1_M) = (N:_L 1_M)$. Since M is a multiplication L-module, $N = (N:_L 1_M)1_M = (0_M:_L 1_M)1_M = 0_M$. Therefore, M is a simple L-module.

iii. Let $N \in M$. Therefore, $N = (0_M:_M a)$ and $N = b1_M$ for some $a, b \in L$. So, $aN = ab1_M = 0_M$. Since M is faithful, $ab = 0_L$. Then $a = 0_L$ or $b = 0_L$ as L is a domain. Hence $N = 1_M$ or $N = 0_M$.

Definition 10.

i. Let *M* be a *PG*-lattice *L*-module. *M* is called a torsion module if $Ann(X) = (0_M:_L X) \neq 0_L$ for all principal elements $X \in M$.

ii. Let *M* be an *L*-module. *M* is called a domain if $Ann(N) = 0_L$ for all $0_M \neq N \in M$.

Theorem 9. If *M* is a comultiplication *PG*-lattice *L*-module, then *M* is cyclic or torsion.

Proof: Let *M* be a comultiplication *PG*-lattice module. Suppose that *M* is not a torsion *L*-module. Thus there exists a principal element $X \in M$ such that $(0_M:_L X) = 0_L$. Then $X = (0_M:_M (0_M:_L X)) = 1_M$. Hence, *M* is cyclic.

Corollary 7. Let *M* a faithful comultiplication *PG*-lattice *L*-module and 1_M compact. If *L* is domain, then *M* is cyclic.

Proof: Assume that M is not cyclic. Then, M is

torsion. Hence $(0_M:_L X) \neq 0_L$ for all principal X. Since 1_M is compact, $1_M = \forall X_i$ implies that $1_M = \bigvee_{i=1}^n X_i$ for some principal elements X_i . Therefore, $0_L = (0_M:_L 1_M) = \bigwedge_{i=1}^n (0_M:_L X_i) \ge \prod_{i=1}^n (0_M:_L X_i) \neq 0_L$. This is a contradiction.

Proposition 13. Let *L* be a comultiplication *PG*-lattice and *M* be a faithful *PG*-lattice *L*-module. Then for each $a \in L$, with $a < 1_L$, $(0_M:_M a) \neq 0_M$ and $a1_M < 1_M$.

Proof: Let $a \in L$, with $a < 1_L$. Suppose that $(0_{M:M} a) = 0_M$. Then $(0_{L:L} a)1_M = 0_M$, for if $(0_{L:L} a)1_M \neq 0_M$, there exists a principal element $x \in L$ such that $x \leq (0_{L:L} a)$ and a principal element $Y \in M$ such that $xY \neq 0_M$. Since $ax = 0_L$, we have $axY = 0_M$. Then $xY \leq (0_{M:M} a) = 0_M$. This is a contradiction. Since $(0_{L:L} a)1_M = 0_M$, it follows that $(0_{L:L} a) \leq Ann_L(M) = 0_L$. Since *L* is a comultiplication lattice, $a = (0_{L:L} (0_{L:L} a)) = 1_L$. This is a contradiction. Now suppose that $a1_M = 1_M$. Therefore $(0_{L:L} a) = (0_{L:L} 1_M) = 0_L$. Since *L* is a contradiction lattice, $a = 1_L$. This is a contradiction lattice, $a = 1_L$.

Definition 11. Let *M* be an *L*-module and *N* a nonzero element of *M*. Then *N* is said to be large if for every element *K* in *M* such that $N \wedge K = 0_M$ implies $K = 0_M$.

Definition 12. Let *M* be an *L*-module and *N* be a proper element of *M*. Then *N* is said to be small element if for every element *K* in *M* such that $N \lor K = 1_M$ implies that $K = 1_M$.

Proposition 14. Let M be a faithful comultiplication PG-lattice L-module with 1_M compact. Then every non-zero element of M is large if and only if every element $a \in L$, with $a < 1_L$ is small.

Proof: \Rightarrow : Suppose that every non-zero element of M is large and let $a \in L$, $a < 1_L$ such that $a \lor b = 1_L$ for some $0_L \neq b \in L$. Then $0_M = (0_M:_M a \lor b) = (0_M:_M a) \land (0_M:_M b)$. Since $a < 1_L$ we have $(0_M:_M a) \neq 0_M$ by Theorem 3. We know that $(0_M:_M a) \neq 0_M$ by Theorem 3. We know that $(0_M:_M a)$ is large. Hence $(0_M:_M b) = 0_M$. Therefore, we obtain $b = 1_L$. \Leftarrow : Suppose that $N \in M$ such that $K \land N = 0_M$ where $0_M \neq K \in M$. Since M is a comultiplication L-module, $K = (0_M:_M (0_M:_L K))$ and $N = (0_M:_M (0_M:_L N))$ and so $(0_M:_L K) \lor (0_M:_L N) = 1_L$. Since $0_M \neq K$, we have $(0_M:_L K) \lor (0_M:_L N) = 1_L$ and so $N = 0_M$.

Proposition 15. Let M be a faithful comultiplication PG-lattice L-module with 1_M compact. Then $N \in M$ is large if and only if there exists a small element $a \in L$ such that $N = (0_M:_M a)$.

Proof: \Rightarrow : Suppose that $N \in M$ is large. Since M is a comultiplication L-module, $N = (0_M:_M a)$. Suppose $a \lor b = 1_L$ for some $0_L \neq b \in L$. Then $N \land (0_M:_M b) = (0_M:_M a) \land (0_M:_M b) =$

 $(0_M:_M a \lor b) = 0_M$. Since N is large, we have $(0_M:_M b) = 0_M$, hence by Theorem 3, we have $b = 1_L$. So a is small.

⇐: Suppose that $a \in L$ be a small element of *L*. Let $N = (0_M :_M a)$. Assume that $K \in M$ such that $N \land K = 0_M$. Since *M* is a comultiplication *L*-module, there exists $b \in L$ such that $K = (0_M :_M b)$. Then $0_M = N \land K = (0_M :_M a) \land (0_M :_M b) =$

 $(0_M:_M a \lor b)$ and so $a \lor b = 1_L$ by Theorem 3. Therefore $b = 1_L$. Hence $K = (0_M:_M b) = 0_M$. Consequently, *N* is large.

Acknowledgement

The authors thank the referee for his valuable and suggestions.

References

- Al-Khouja, E. A. (2003). Maximal Elements and Prime elements in Lattice Modules. *Damascus University for Basic Sciences*, 19(2), 9–20.
- Ansari-Toroghy, H., & Farshadifar, F. (2007). the dual notion of multiplication modules. *Taiwanese J. Math.*, 11(4), 1189–1201.
- Ansari-Toroghy, H., & Farshadifar, F. (2008). Comultiplication Modules and Related Results. *Honam Math. J.*, (1)30, 91-99.
- Ansari-Toroghy, H., & Farshadifar, F. (2008). On Comultiplication Modules. *Korean Ann. Math.*, 25(2), 57–66.
- Ansari-Toroghy, H., & Farshadifar, F. (2011). On Multiplication and Comultiplication Modules. Acta Mathematica Scientia, 31(2),694–700.
- Callialp, F., & Tekir, U. (2011). Multiplication Lattice Modules. *Iranian Journal of Science & Technology*, A4, 309–313.
- Jayaram, C., & Johnson, E. W. (1995). Some Results on Almost Principal Element Lattices. *Period. Math.Hungar*, 31, 33–42.
- Jayaram, C., & Johnson, E. W. (1995). *s* Prime Elements in Multiplicative Lattices. *Period. Math. Hungar*, 31, 201–208.
- Jayaram, C., & Johnson, E. W. (1997). Dedekind Lattice. Acta. Sci. Math., (Szeged), 63, 367–378.
- Jayaram, C., & Johnson, E. W. (1997). Strong Compact Elements in Multiplicative Lattices. *Czechoslovak Math. J.*, 47(122), 105–112.
- Jayaram, C., & Johnson, E. W. (1998). σ –Elements in Multiplicative Lattices. *Czechoslovak Math. J.*,

48(123), 641-651.

- Johnson, E. W., & Johnson, J. A. (2003). Lattice Modules over Principal Element Domains. *Comm. In. Algebra*, 31(7), 3505–3518.
- Jayaram, C. (2002). *l* Prime Elements in Multiplicative Lattices. *Algebra Universalis*, 48, 117–127.
- Jayaram, C. (2003). Laskerian Lattices. *Czechoslovak Math. J.*, 53(128), 351–363.
- Jayaram, C. (2004). Almost *π* –Lattices. *Czechoslovak Math. J.*, 54(129), 119–130.
- Nakkar, H. M., & Al-Khouja, I. A. (1985). Nakayama's Lemma and The Principal Elements in Lattice Modules over Multiplicative Lattices. *R. J. of Aleppo University*, 7, 1–16.
- Nakkar, H. M., & Al-Khouja, I. A. (1989). Multiplication Elements and Distributive and Supporting Elements in Lattice Modules. *R. J. of Aleppo University*, 11, 91– 110.
- Nakkar, H. M., & Anderson, D. D. (1988). Associates and Weakly Associated Prime Elements and Primary Decomposition in Lattice Modules. *Algebra Universalis*, 25, 196–209.
- Nakkar, H. M. (1974). Localization in Multiplicative Lattice Modules. *Mat. Issled.* 2(32), 88–108.
- Scott Culhan, D. (2005). Associated Primes and Primal Decomposition in Modules and Lattice Modules, and their duals, Thesis, University of California Riverside.
- Sevim, E. S. (2013). Radical Operations on The Multiplicative Lattice. *Turkish Journal of Mathematics*, 37, 739–746.
- Shaniafi, Y., & Smith, P. F. (2011). Comultiplication Modules over Commutative Rings. J. Commut. Algebra, 3(1), 1–29.