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Abstract

Let M be a lattice module over the multiplicative lattice L. M is said to be a comultiplication L-module if for every
element N of M there exists an element a € L such that N = (0,:p @). Our objective is to investigate properties

of comultiplication lattice modules.
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1. Introduction

A multiplicative lattice L is a complete lattice in
which there is defined a commutative, associative
multiplication which distributes over arbitrary joins
and has a compact greatest element 1, (least
element 0,) as a multiplicative identity (zero). Let
L be a multiplicative latticeand a € L, L/a ={b €
L:a<blbe a multiplicative lattice  with
multiplication ¢ o d = cdVa. Multiplicative lattices
have been studied (Jayaram and Johnson, 1995,
1997, 1998; Johnson, 2002, 2003, 2004; Johnson
and Johnson, 2003).

An element a € L is said to be proper if a < 1.
Anelement p < 1in L is said to be prime if ab < p
impliesa<porb<p.Anelementm<1inlLis
said to be maximal if m < x < 1 implies x = 1. It
is easily seen that maximal elements are prime.

If a,b belongto L, (a:; b) isthe joinofallc € L
such that ch < a. An element e of L is called meet
principal if aAbe = ((a:;, e)Ab))e for all a,b € L.
An element eof Lis called join principal if
((aeVb):pe) =aV(b: e) forall a,be L. e€Lis
said to be principal if e is both meet principal and
join principal. e € L is said to be weak meet (join)
principal if ale =e(a:; e) (aV(0,: e) =
(ea:pe)) for all aelL. An element a of a
multiplicative lattice L is called compact if a <
Vb, implies a < by, Vbg,V...Vb,, for some subset
{ag, az,...,a,}. If each element of L is a join of
principal (compact) elements of L, then L is called a
PG-lattice (CG-lattice).
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Let M be a complete lattice. Recall that M is a
lattice module over the multiplicative lattice L, or
simply an L-module in case there is a multiplication
between elements of L and M, denoted by (B for
leL and B € M, which satisfies the following
properties:

i. (Ib)B = L(bB) ;

i. (Vala)(VgBg) = Vo plaBg;

iii. 1,B = B;

iv. 0,B = 0y; forall [,l,, bin L and for all B, Bg
in M.

Let M be an L-module. If N,K belong to M,
(N:; K) isthe joinof all a € L such that ak < N. If
a € L, then (0y:3, @) is the join of all H € M such
that aH = 0. An element N of M is called meet
principal if (bA(B:, N))N = bNAB for all b € L
and for all B € M. An element N of M is called join
principal if bV(B:, N) = ((bNVB):,N) for all
b € L and for all B € M. N is said to be principal if
it is both meet principal and join principal. In a
special case, an element N of M is called weak
meet principal (weak join principal) if (B:, N)N =
BAN ((bN:, N) = bV(04:, N)) for all B € M (for
all b eL). N is said to be weak principal if N is
both weak meet principal and weak join principal.

Let M be an L-module. An element N in M is
called compact if N <V,B, implies N <
By, VB,V ...VB,, for some subset {a;, ay, ..., a,}.
The greatest element of M will be denoted by 1,,. If
each element of M is a join of principal (compact)
elements of M, then M is called a PG-lattice (CG-
lattice).

Let M be an L-module. An element N € M is said
to be proper if N < 1. If Ann(M) = (0, 1) =
0,, then M is called a faithful L-module. If cm =
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0y implies m = 0y, or ¢ =0, for any ¢ € L and
m € M, M is called a torsion-free L-module.

For various characterizations of lattice modules,
the reader is referred to Nakkar and Al-Khouja
(1989), Nakkar and Anderson (1988) and Scott
Culhan (2005). In this paper we study
comultiplication  lattice  modules over a
multiplicative lattice and generalize the important
results for comultiplication modules over
commutative rings, obtained by Ansari-Toroghy
and Farshadifar (2007, 2011), Shaniafi and Smith
(2011) to the lattice modules over multiplicative
lattice.

2. Comultiplication Lattice Modules

Definition 1.

i. (Calhalp and Tekir, 2011) An L-module M is
called a multiplication lattice module if for every
element N € M there exists an element a € L such
that N = aly,

ii. Let M be a lattice L-module. M is said to be a
comultiplication L-module if for every element N
of M there exists an element a € L such that
N = (0py:y ).

Lemma 1. Let M be a lattice L-module. Then, M is
a comultiplication lattice L-module if and only if
N = (0p:p1 (0pg:, N)) for every element N in M.

Proof: <:Clear.

=: Suppose that M is a comultiplication lattice L-
module and N € M. Then there exists an a € L
such that N = (0p:pa). Thus we have a <
(04:. N) so that (0p:p (0L N)) < (Opyim @) =
N. It is clear that N < (0p:y (04, N)). This
implies N = (0p:p (Ops:1 N)).

Proposition 1. Let M be a lattice L-module. Then
the followings are equivalent.

i. For any K,N € M, (04:, K) < (0, N) implies
that N < K.

ii. Forany K, N € M, (K:;, N) = ((0pz, N):, (042, K)).

Proof: (i)=(ii): For any K,NeM, (K:; N) <
((0p:L N):p (04 K)).  Indeed b= (K N) =
bN < K = b(0y:, K)N =0y = b(04:, K) <
Oy N)=b=(K: N) < ((OM:L N): (0p: K))
Conversely, let r = ((04:, N):; (0, K)). Then
70y KON = 0y = (0py:, K) < (03, 7N), by (i),
we have rN <K and so r < (K:, N). (ii))=(i):
Suppose that (0p:, K) < (0y:, N).Then (K:, N) =
((0ppi, N):p (0p:, K)) =1, by (ii)and so N < K.

Theorem 1. Let M be a lattice L-module. Suppose
¢:L > M is defined by ¢(a) = (0y:ya) and
Y:M - L by Y(N) = (0y:, N) for all a € L and

N € M. Then,
i. (pyYd)(@) = (Op:y (Op: Opiy @) = Oy @) =
¢(a) forall a € L.

ii. WoP)(N) = (Oprzp (Opriyg (Oprzp N))) = (Op: N) =
Y(N) forall N € M.

Proof: i. Suppose that (04:y, a) = N. Clearly,
(Opiy @) = N < (0414 Oy, N)). On the other
hand, aN = 0, and so a < (04:, N). Therefore,
(Opips Oz, N)) < (Oppiyy @) = N.

ii. Suppose that b = (0,,:, N).Clearly b = (0,:, N) <
(OM:L (RO N))). On the other hand,hbN =
0yand so N < (0y:y b) = (044 (01, N)). Hence
(OpriL (Opsim (Opi N))) < (0y:, N) = b

Corollary 1. Let M be a lattice L-module. Let us
define ¢:L - M where ¢(a) = (0p:ya), and
Y:M — L where Y(N) = (0y:, N) for all a el
and N € M. The followings are equivalent.

i. M is a comultiplication lattice L-module.

ii. There exists a € L such that N = (0p:y @) =
¢(a) forall N € M.

iii. ¢ is an identity map.

iv. ¥ is one-to-one.

V. (0p: K) = (0pp:, N) implies K = N.

Proposition 2. Let M be a comultiplication lattice
L-module. If Lis a Noetherian (Artinian)
multiplicative lattice, then M is an Artinian
(Noetherian) lattice L —module.

Proof: Let L be an Artinian multiplicative lattice.
Suppose that N; < N, <... Then, (0y:, N1) =

(0p:p N3) = -+ Since L is Artinian, there exists a
positive integer k such that (0 Ny) =

(Opip Niggq) = - Therefore,
Ny = (Opiy (Opri Ni)) = Oyt (Opgip Nigyq)) =
Ny4q1 =.... Consequently, M is a Noetherian lattice

module. Similarly, if L is Noetherian, then M is
Artinian lattice L-module.

Let L be a multiplicative lattice and M be an L-
module. Suppose that N € M. Consider the set
[0y, N] = {A < N:A € M}. We say that [0,, N] is
a submodule of M. If M is a comultiplication L-
module, it is clear that [0,, N] is a comultiplication
L-module.

Proposition 3. Let M be a comultiplication lattice
L-module. If (0y:p b) = 0, for some b € L, then
bY =Y forall Y € M. In particular, b1, = 1.

Proof: Let beL and Ye M. Since M is a
comultiplication lattice module, it follows that
bY = (0y:y @) for some a € L. Then abY = 0.
Since  (0y:yb) =04, we have aY = 0.
Consequently, Y < (0y:y @) = bY andso bY =Y.
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Proposition 4. Let M be a comultiplication lattice
L-module. If p is a maximal element of L and
(Opip ) # Oy, then (0py:p p) is minimal in M.

Proof: Suppose that N < (04:y p). Since M is a
comultiplication lattice L-module, there exists an
element a of L such that N = (0p:y a). Since
N < (0p:mp), We have pN =0, and so p <
(Op: N). Since p is maximal, p = (0y:, N) or
Oy N)=1,. If p=(0y: N), then N=
Opmim Oy N)) = Oy p)- 1f (O N) =1,
then N = 0y,. Therefore, (04:p p) is minimal in M.

Proposition 5. Let M be a comultiplication PG-
lattice L-module with 1,, compact. If p €L is
prime and (0,,:3 p) = 0y, then there exists c € L
suchthatc £ pand c1y = 0.

Proof: Since 1, is compact, then 1, = VLY
where Y; s are principal elements of M. Since
Oy:up) =0y, pY; =Y, foralie{1,2,...,n} by
Proposition 3. Then pV(0y:. ;) = (pYii V) =1,
and so (0p: Y) £p for all ie{1,2,...,n}L
Therefore, ¢ = [T2,(0y:. Y;) £ pand cly = 0y

Corollary 2. Let M be a comultiplication PG-lattice
L-module with 1,, compact. If M is faithful, then
(Op:p p) # 0y for some prime element p € L.

Corollary 3. If M is a comultiplication PG-lattice
L-module with 1,, compact and (0,:y @) = 0,, for
some a € L, then 1L = aV(OM:L 1M ).

Proof: Suppose that 1, # aV(0:, 1,)- Then there
exists a maximal element p €L such that
aV(0y:p 1) <p. Thus we have (0py:yp) <
(0 @) =0y Hence (0p:pyp) =0y. There
exists an element c €L , ¢ £p such that ¢ <
(0 1) by Proposition 5. Since (0p:, 1) < b,
we have c¢<p. This is a contradiction.
Consequently, aV (0y:; 1) = 1;.

Proposition 6. Let M be a non-zero
comultiplication PG-lattice L-module. Then, M has
a minimal element. In particular, every nonzero
element of M has a minimal element.

Proof: Suppose that Y is a nonzero principal
element of M. Then (0y:, Y) = a < 1;. Then there
exists a maximal element p such that a < p. If
N = (0p: p) = 0y, then pY =Y by Proposition 3
and so pV(0y:, Y) = (pY: Y) =1,. Therefore,
a = (0,:.Y) £p. This is a contradiction. Hence
N = (0p:p p) # 0y Therefore, N is a minimal
element of M by Proposition 4.

Proposition 7. Let M be a non-zero
comultiplication PG-latticeL-module. Then K € M
is minimal if and only if K = (0y:y p) # 0y for
some maximal element p € L.

Proof: <: By Proposition 4.

=: Let K be a minimal principal element of M.
Since M is a comultiplication lattice L-module,
K = (0p:a0 (041 K)). We will show that (04,:; K)
is maximal. Let ¢ € L such that (0y: K) <c.
Since K is minimal and cK < K, it follows that
¢cK=K or ¢cK=0y. If cK=K, then 1, =
(cK: LK) =cV(0y: K)=c. If cK =0, then
¢ < (0p:p K) and so ¢ = (043 K).

Proposition 8. Let M be a comultiplication lattice L-
module. Then, (N:y a) = ((Op:iy @iy (04, N)) for
anya €L, N € M.

Proof: Let K = (N:ya). Then aK <N =
(0y:p N)aK =0y = (0y:, NK < (0y:y @) =
K=(N:ya) < ((Opin @iy Oy, N)).
Conversely, if R = ((0pipy @)y (04:, N)), then
0y, NR < (g1 @) = (02, N)aR = 0,y =
aR < (0414 (042, N)) = N. Consequently,
R < (N:iya).

Theorem 2. Let L be a distributive lattice. Let M be
a comultiplication  lattice  L-module and
(Oping AV (Oppipg b) = (0py:ps aA\b) forall @, b € L.
Then M is distributive.

Proof: Let X,Y,Z € M. There exist a, b, c € L such
that X = (0y:pa), Y = (0p:ib), Z = 04y C).
Then,

XVYIAZ = ((0piy @)V(Oping D))AOpyiy ) =
(Opsips AADIA(O 207 ©) = (0p:p aADIA(Opy1py €) =
0y (@AD)VC) = (024 (aAC)V(DAC)) =
(Opripg aNSA(Oppipg BAC) = (XVZNYVZ).

Corollary 4. Let L be a distributive lattice. Let M
be a comultiplication lattice L-module and aVb =
1, forall a,b € L. Then M is distributive.

Proof: If aVb =1,, then(K:y aAb) =
(K:p aAb)(aVb) = a(K:y aAD)Vb(K:y al\b) <
(K:yb)V(K:pya) for all a,b,c € LNote that
a(K:yaAb) < (K:y b) and b(K:y al\b) <
(K:ya).lt is clear that (K:yb)V(K:iya)<
(K:p al\D). ForK = 0y, we have
(Op:p V(Opipe b) = (Opgipp aAb).  The  result
follows from Theorem 2.

Proposition 9. Let M be a comultiplication lattice
L-module and p, g be maximal elements of L. If
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(Om:m PIV(Onin @) = (Op:m PAQ).

Proof: Let 0, # (0py:yp) = N. Since pN =0y
and p is maximal, we have p = (0y:, N).
Similarly, if 0y #K = (0p:pnq), then gq=
(0 K). Since M is a comultiplication L-module,
it follows that NVK = (0y:y (04:, NVK)) =
(Onrias Opgi, NIA(Oy:, KD). Consequently,
(Om:m PIV(Ouin @) = 0y PAQ).

Definition 2. A lattice L-module M is said to be
finitely cogenerated, if for every set {M;};e. Of
elements of M, Ayc M, = 0y implies A2, M;, =
0,, for some positive integer m > 0.

Theorem 3. Let M be a faithful comultiplication
PG-lattice L-module.

i. 1,, is compact.

ii. (Op:pa) # 0y foralla < 1;.

iii. (Op: ) # 0y for all maximal elements p € L.
iv. M is finitely cogenerated.

Then (i)=(ii)=(iii)=>(iv).

Proof: (i)=(ii): Suppose that (0,:y @) = 0, and
a <1;. Then(Op:yp) =0, for all maximal
elementsa < p.This is a contradiction by Corollary
2. (ii)=(iii): Clear. (iii)=(iv): Let N, = (Ops: Qo).
Supppose that 0y = Ager No = Aaer(Onin ae) =
(Oprim Vaeraq). Then Vg a, =1;. Indeed, if
Veerag < p for some maximal elementp, then
(Omim P) < Opmiy Vaer @) =0y This is a
contradiction with (iii). Since 1, is compact,
Viciag, =1, and SO Oy = AaerNg =
(Opim Viz1@a) = Ni2i(Ouiy Gg;) = Nizq No,  for
somen > 1.

Let Jac(L) denote the infimum of the maximal
elements of L. Note that Jac(L) is called the
Jacobson radical of L (Nakkar and Al-Khouja,
1985).

Theorem 4. (A dual of Nakayama Lemma for
comultiplication lattice modules) Let M be a
comultiplication PG-lattice L-module and a € L
such that a <Jac(L). If (Op:pa) =0y, then
M = 0y.

Proof: Suppose that M # 0,. Then, there exists a
maximal element p such that 0y, # K = (0p:y )
is minimal in M by Proposition 6 and Proposition 7.
Since a<p and (Op:pya)=0, we have
(0p: ) = 0y This is a contradiction.

Theorem 5. Let M be a comultiplication PG-lattice
L-module and {N,},e4 be a collection of elements
of M such that  AgeaNg = Oy If

a = Vgaea(0y: N) and X.is a compact element of
M, then 1L = aV(OM:L X).

Proof: If X is compact and for a = Ve (0p: Ny,
aV(0y:, X) # 1, then there exists a maximal
element p of L such that aV(0y:, X) <p. Then
Omim ) < Oy @) = Oy Vaea(Oyip No)) =
NaeaNg =0y . Hence (Op:iyp) = (Opixp) =
O0y. Since the submodule [0, X] s
comultiplication and X is compact, there exists an
element c € L, ¢ £ p such that ¢ < Ann,(X) by
Proposition 5. But this is a contradiction, because
Anng (X)) = (0p:, X) < p. S0 aV(0y: X) =1;.

Corollary 5. Let M be a comultiplication PG-lattice
L-module. If X is a compact element of M, then the
submodule [0,,, X] is finitely cogenerated.

Proof: Let {X;},e4 be set of elements such that
X <X with AjyesX; =04 By Theorem 5,
1, = aV(0u:, X) With a = V;yea(04:, X5). But
Opi X) < 0y X)) for all A€ A, Hence
1, = a=V(0y:,X;). Since 1, is compact, it
follows that 1, =a =Vi_;(0y:, X;,) for some
n>1. Since the submodule [04,,X] is a
comultiplication ~ module, we have X, =
(Opgip (0p:p X)) for all A € A. Hence we obtain
Op = (Opim 1) = (Opping Vi1 Oy X)) =

Ni=1 0y (O3 X/Ii)) = /\?=1X/1i-

Definition 3. (Callialp and Tekir, 2011) Let M be
an L-module. If 1,, is a principal element in M,
then M is called a cyclic lattice module.

Theorem 6. Let M be a PG-lattice module.

i. If M is a multiplication L-module such that M has
a faithful [0,,, N] submodule and N is principal in
M, then al, < 1,, for every element a € L with
a<l1;.

ii. If M is a faithful cyclic comultiplication L-
module, then (0,:p @) # 04, for every a € L with
a<l1;.

iii. If M is a comultiplication L-module, then for
every element a € L with al, < 1,, there exists a
maximal element p € L with aV(0py: 1y) <p
such that (0,:p p) is a minimal in M.

Proof: i. Since M is a multiplication L-module,
there exists b € L such that N = b1,,. If there exists
a € Lwith a<1, such that al, =1,, then
N = b1, = a(bly) = aN. Since N is principal,
aV(0y:, N) = (aN:; N) =1, and so a = 1,.This
is a contradiction.

ii. If there exists a € L with a <1, such that
(0p:y @) = 0y, then al,, = 1,, by Proposition 3.
Since 1,, is principal and (0,,:;, 1,,) = 04, we have
1, = (alpy:; 1y) = aV(0py:p 1) = a. This is a
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contradiction.

iii. Let a € L with aly < 14. Then (04 @) # 0y
by Proposition 3. There exists a minimal element K
in M with K < (0,:) @) by Proposition 6. Hence
there exists a maximal element p € L such that
K = (04: p) # 0, by Proposition 7. It follows
that  (Op:p1p ) <p. Indeed, (Op: 1y ) <
0y, K) = (042, (02 p)) = p. Since p s
maximal, (0y:, Oy D)) =P, S0 (041, 1) < .
The proof will be completed if we show that a < p.
Suppose that a £p. Then aVp=1;. Since
K < (0p:y @), it follows that 0y = (0 1) =
(Opi aVpP) = (0pi a)A(Opiyp) = K. Hence
K = 0,,. This is a contradiction. We obtain a < p.

Definition 4. (Nakkar and Anderson, 1988) Let M
be an L-module. An element N < 1,, in M is said
to be primary, if aX <N implies X <N or
a1, < N for some k >0 i.e.a* < (N:; 1) for
everya €L, X € M.

Definition 5. (Nakkar and Anderson, 1988) Let M
be an L-module. Let B be an arbitrary element of
M. A finite family {Q;}-, of elements of M such
that Q; is P;-primary for any i € {1,2,...,n} and
B = AL, Q;, is called a primary decomposition of
B in M. If no Q; contains
QiNAQ2A. .. NQ;_1N\Q; 1 A...ANQ,, and if the
elements P,, P,, ..., B, are all distinct, then the
primary decomposition is said to be reduced
(irredundant).

An L-module M is called a K-lattice if it is a CG-
lattice and for any compact element h € L and any
compact element H € M, the element hH is
compact. Let L be a K-lattice in which the greatest
element 1, is compact and let M be a K-lattice.
Clearly for an arbitrary element B of M, any
primary decomposition of B can be simplified to a
reduced one (Nakkar and Anderson, 1988).

Theorem 7. Let L be a K-lattice and let M be a K-
lattice. Let M be a comultiplication lattice L-
module. If 0,, has a primary decomposition, then
every element of M has a primary decomposition.

Proof: Let 0, = A~; P; be irredundant primary
decomposition. Assume that N € M. Then there
exists an a € L such that N = (0y,:p @). Therefore,
N = (0p:y @) = Aj=1(P; 1y @). We will show that
(P @) is a primary element of M for each
i=12,...,n. Suppose that bX < (P;:)y @), where
beL and X € M. Hence abX < P,. Since P; is
primary, there exists a positive integer n such that
b™"1,, <P, or aX <P;.. Hence X < (P;:yya) or
b"1y < P; < (Pyiy a).

Theorem 8. Let M be a lattice L-module. Then the

followings are equivalent.

i. M is a comultiplication module.

ii. For every element N € M and each element
¢ € L with N < (0y: ¢), there exists an element
b € Lsuchthatc < band N = (0p:p b).

iii. For every element N € M and each element
¢ € L with N < (04:4 ¢), there exists an element
b € Lsuchthatc < band N < (0p:p b).

Proof: (i)=(ii). Let N < (0p:p c) Where N € M,
c € L. Since M is a comultiplication module, we
have N = (0p:y (0p:p N)). Let b = cV(0y: N).
Since N = (0p1as (Opgi, N)) < (Opgiy ©), it follows
that (0p:, N) £c. Hence ¢ <b and we have
(Opim b) = (Oyiy C)/\(OM:M (Opip N)) =

(Opias (Opgz, N)) = N (ii)=>(iii). Clear.

(iif)=(i). Suppose that M is not a comultiplication
module. It is clear that 1, = (0p:p 0.). There
exists N < 1,, such that N # (0, c) for all c €
L. Suppose that 2 = {c € L: N < (0p:p )} Since
0, € 2, we have 2 # @. Let {c;} be a chain in (0.
Since N < (0p:pci),we have ¢;N =0, and
so(V¢;)N = V(c¢;N) = 0y. Therefore N <
(Opip V). But N < (0p:p V) from above.
Therefore, Vc; € ). There exists a maximal
element of 2 by Zorn's Lemma. Let ¢ be a maximal
element of 0. Since N < (0y:y ), there exists
b >c such that N < (0p:pb) by (iii). Since
N # (0p:p b), We have b € . Since b > c, this is
a contradiction.

Definition 6. Let M be a comultiplication lattice L-
module. An element 0, # N € M is said to be
second element in M, if foreacha € L, aN = N or
aN = 0y.

Proposition 10. Let M be a comultiplication lattice
L-module. If (0y:, N) = pisprimeinL for N € M,
then N is second element in M.

Proof: Let p = (0y:, N) be prime element of L for
NeM. If aN #0, for a€lL, then 0, # K =
aN < N. Suppose that 0y #K=aN <N =
(Opsips (Oprip N)) = (Opgipr p)- By Theorem 8 (i),
there exists an element b € L such that p < b and
K = aN = (0y:y b). It follows that baN = 0,
and so ba < p = (0y:; N). Since p is prime and
b £ p, we have a < p and so aN = 0,. This is a
contradiction. Consequently, K = aN = N.

Corollary 9. Let M be a comultiplication lattice L-
module and N € M. Then the followings are
equivalent.

i. N is a second element in M.

ii. (0y:, N) isaprime elementin L.
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Proof: (i)=(ii). Suppose that N € M is a second
element. Let p = (0p:p N). Suppose that ab < p
and b < p. Since b £ p, we have bN # 0,. Since
N is a second element, we have bN = N and so
0y = (ab)N = a(bN) = aN. Therefore, a<p =
(Op: N).

(if)=(i). Proposition 10.

Proposition 11. Let M be a nonzero
comultiplication PG-lattice L-module.

i. Let {M;};c4 be a family of elements of a module
M with AM; = 0y. Then N = Ayea(NVM,) for
every N € M.

ii. Let p be a minimal element in L and (04 p) =
0p- Then M is simple.

Proof: i. Let {M;},c, be a family of elements of a
module M with AM,; = 0,. Therefore, N =
(OM:M (Op:y, N)) = (/\MA5M (Opzy, N)) =

A My:y (045, N)) @nd My < (Myzy (0p:, N)) and
N < (My:p (0y:p N))  for A€ A, Therefore,
N = A(My:p (043, N)) = A(M;VN) = N.

ii. Let 0,, # X € M be a principal element and let p
be a minimal element in L such that (04:,p) =
0p. There exists a € L such that X = (0y:y @).
ThenX = Oy @) = ((Oyiy P)iy @) =

(04y:3 ap). Since p is minimal, we have 0, < ap
pand so ap=0, or ap=p. If ap=p, X
Oy ap) = (Opiyep) = Opye This is
contradiction. Hence ap = 0,. Therefore, X =
(Op:p ap) = 1, is principal. Consequently, M is
cyclic. Since M = {0y, 1.}, M is simple.

Let L be a multiplicative lattice. An element
a €L is called zero-divisor if there exists an
element 0, # b € L such that ab = 0. L is said to
be a domain if it has only zero-divisor 0,. Note that
Z (L) denote the set of zero divisors of L.

o Il IA

Lemma 2. Let M be a faithful comultiplication L-
module. ThenW (M) ={a € L:aly <1y} =
Z(L).

Proof: Let a € W(M). Then al, < 1,,. Since M is
comultiplication, aly = (0p:y (0p: aly)). It is
clear that (0,:, aly) # 0, and (0y:, aly)aly =
0. Since M is faithful, (04:, aly)a =0,. We
have a € Z(L). Conversely, let a € Z(L). There
exists 0, # b € L such that ab = 0,. Therefore,
(ab)1,, = b(aly) =0y = aly < 0y b) #
1y. Indeed, if (Ouy:y b) =1y, then b1y, = 0.
Since M is faithful, we have b = 0,. This is a
contradiction. Therefore al, #1, and so
a € W(M).

Definition 7. (Nakkar and Anderson, 1988) Let M
be an L-module. An element N < 1, in M is said

to be prime, if aX < N impliesX < Noraly <N
i.e.a < (N: 1) foreverya €L, X € M.

Definition 8. Let M be an L-module. M is said to be
prime L-module if 0,, is prime element of M.
It is clear that 0, is prime element in M if and only
if (04 1p) = (04, N) forall 0y = N € M.

Definition 9. Let M be an L-module. M is said to be
coprime L-module if (0 1) = (N:, 1,,) for all
N eM.

Proposition 12. Let M be a L-module.

i. Let M be a comultiplication prime L-module.
Then M is a simple L-module.

ii. If M is a multiplication coprime L-module, then
M is a simple module.

iii. Let L be a domain and let M be a faithful
multiplication and comultiplication L-module. Then
M is simple.

Proof: i. Let 0y # N € M. Since M is a prime L-
module, we have (0p: 1p) = (0p: N) for all
Oy #N€EM. Then N = (04 0y, N))=
(0p:as (Opgi, 14)) = 1. Hence M is a simple.

ii. Let N < 1,,. Since M is coprime L-module, we
have (Op:p1y) = (N:p1y). Since M is a
multiplication ~ L-module, N = (N:; 1,)1y =
(Opri 1p) 1y = 0y Therefore, M is a simple L-
module.

iii. Let N € M. Therefore, N = (0y:ya) and
N = b1, forsome a,b € L. SO, aN = ab1,, = 0.
Since M is faithful, ab =0,. Then a =0, or
b=0, as L is a domain. Hence N =1, or
N = 0,,.

Definition 10.

i. Let M be a PG-lattice L-module. M is called a
torsion module if Ann(X) = (0,:, X) # 0, for all
principal elements X € M.

ii. Let M be an L-module. M is called a domain if
Ann(N) =0, forall 0y, # N € M.

Theorem 9. If M is a comultiplication PG-lattice L-
module, then M is cyclic or torsion.

Proof: Let M be a comultiplication PG-lattice
module. Suppose that M is not a torsion L-module.
Thus there exists a principal element X € M such
that (04:, X) = 0,. Then X = 0y (Opr: X)) =
1,. Hence, M is cyclic.

Corollary 7. Let M a faithful comultiplication PG-
lattice L-module and 1,, compact. If L is domain,
then M is cyclic.

Proof: Assume that M is not cyclic. Then, M is
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torsion. Hence (0,:, X) # 0, for all principal X.
Since 1, is compact, 1, = VX; implies that
1y =V, X; for some principal elements X;.
Therefore, 0, = (Op: 1p) = Aln1(0ppi Xi) 2
[T (04, X;) # 0,. This is a contradiction.

Proposition 13. Let L be a comultiplication PG-
lattice and M be a faithful PG-lattice L-module.
Then for each a € L, with a < 1;, (0p:p @) # Oy
and al, < 1.

Proof: Let a€ L, with a <1,. Suppose that
Oy @) = 0y. Then (0.:,a)ly =0y, for if
(0,:, @)1, #+ 0y, there exists a principal element
x €L such that x < (0,:;a) and a principal
element Y € M such that xY # 0,,. Since ax = 0,,
we have axY = 0y. Then xY < (0p:pa) = Oy
This is a contradiction. Since (0.:;, a)1y = 0y, it
follows that (0,:, a) < Ann; (M) = 0,.Since L isa
comultiplication lattice, a = (0,:, (0,:, @) = 1,.
This is a contradiction. Now suppose that al,, =
1,. Therefore (0,:, a) = (0,:, 1) = 0,. Since L
is a comultiplication lattice, a = 1,. This is a
contradiction.

Definition 11. Let M be an L-module and N a non-
zero element of M. Then N is said to be large if for
every element K in M such that NAK = 0,, implies
K = OM'

Definition 12. Let M be an L-module and N be a
proper element of M. Then N is said to be small
element if for every element K in M such that
NVK = 1, implies that K = 1.

Proposition 14. Let M be a faithful
comultiplication PG-lattice L-module with 1,
compact. Then every non-zero element of M is
large if and only if every element a € L, with
a <1, issmall.

Proof: =: Suppose that every non-zero element of
M is large and let a € L, a < 1, such that aVb =
1, forsome 0, # b € L. Then 0, = (0y:p aVh) =
(Oprie A(Oppip b). Since a <1, we have
(Op:m @) # 0y by Theorem 3. We know that
(Oy:ya) is  large. Hence  (0p:py b) = 0y
Therefore, we obtain b = 1,.<: Suppose that
N € M such that KAN = 0, where 0, # K € M.
Since M is a comultiplication L-module, K =
(Opig (0. K)) and N = (0pyipg (04 N). Then
Oy = KAN = (0p:p (042, K)V(0y:, N)) and so
(Op: K)V(0p:, N) = 1,. Since 0y # K, we have
Oy K) # 1;. Since (0p:, K) is small, it follows
that (0p:, N) =1, and so N = 0,,.

Proposition 15. Let M be a faithful
comultiplication PG-lattice L-module with 1,
compact. Then N € M is large if and only if there
exists a small element a €L such that N =

(Opipm @).

Proof: =: Suppose that N € M is large. Since M is
a comultiplication L-module, N = (0y:y @).
Suppose aVb =1, for some 0, # b € L. Then
NAQOuy:y b) = (0p:0 )Ny b) =

(Opip aVbh) = 0y. Since N is large, we have
(Opipy b) = 0y, hence by Theorem 3, we have
b =1,.S0aissmall.

«: Suppose that a € L be a small element of L. Let
N = (0p:pa). Assume that K € M such that
NAK = 0y. Since M is a comultiplication L-
module, there exists b € L such that K = (0p:p b).
Then0y = NAK = (041 a)A(Opyiy b) =
(Op:pyaVb) and so aVb =1; by Theorem 3.
Therefore b =1;. Hence K = (0p:yb) = 0y.
Consequently, N is large.
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