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Abstract– Nowadays, textile and woven fabric composites are taken into consideration for 
applications in high mechanical properties and every in-plane direction. However, developments in 
modelling and characterisation of the fabric reinforced composite materials are considered more in 
the effects of element types used in the mesh generation of the crack tip. The type of element 
selected for the crack tip, a critical point for evaluation of crack growth in a double cantilever 
beam (DCB) sample, is extremely important. In this study, results of strain energy release rate 
(SERR) meshed with singular and or brick elements with the experimental data were compared to 
select better element type. The plotted results of the crack tips meshed with the brick elements and 
the diagrams revealing the SERR in contrast to the crack length was evaluated. In addition, the 
aforementioned operation has been repeated for singular elements. The theory of the failure 
mechanics has been used to calculate the amounts of SERR for several crack lengths. It is 
concluded that, numerical results from SERR of the crack tip when meshed with singular elements 
were closer to the experimental results compared with data of SERR when meshed with brick 
elements.           
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1. INTRODUCTION 
 

Textile composites and woven textile composites in particular have been increasingly under consideration 
for applications where high mechanical properties are desired in every in-plane direction. Two-
dimensional woven fabrics consist of two types of interfaced yarns known as warp and fill and each yarn 
consists of a bundle of filaments. Woven textile plays a crucial role in composite technology providing 
glass fabrics that are widely used as reinforcing materials. The main advantages of woven composites are 
their cost efficiency and high process ability, particularly in the lay-up manufacturing of large-scale 
structures. Furthermore, the bending of fibres in the process of fabric weaving results in a substantial 
reduction in the material strength and stiffness. Numerical simulations are widely used in industries to 
optimise process and analyse the behaviour of materials under various conditions. However, in order to 
have a confidence in the results of such simulations, an accurate material model is required[1]. One of the 
best methods of evaluating the strength of these materials, considering the high cost and sensitivity of 
experiments is the Finite Element Method (FEM). This method involves the selection of an appropriate 
element for meshing different sections of sample. Since the crack tip is extremely important for meshing 
this section, the smallest elements need to be used. 

There are different methods available such as Compliance [2], Berry[3], etc. to analyse the DCB 
(Double Cantilever Beam), which are loaded statically in mode I of failure.   
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Khaleed et al [4] used FEM simulation for ınvestıgatıon of producing Autonomous underwater 
vehicle (AUV) propeller blade. 

Duong and Hung [5] used finite element models to solve the delamination problem in composite 
laminate structures. In this research singular elements have been used. 

Baruffaldi [6] used the FEM (Finite Element Method) analysis of the unit cell providing the 
macroscopic shear stress-shear strain curve of basket-weave laminates in her research. She applied brick 
elements to the meshing of her designed unit cell. However, meshing of the crack tip due to the sensitivity 
of this point with brick elements is unable to produce exact results.  

Denda and Marante [7] considered multiple curvilinear cracks in the two-dimensional general 
anisotropic solids and establish a computationally effective technique to determine the stress intensity 
factors accurately. They used singular element for meshing the crack tip too. 

Khoshbakht et al [8] also studied the plane deformation of a composite specimen under combined 
tension – the bending loading using finite element method and mechanic failure rules. They used singular 
elements for meshing critical points of their specimen. 

Khoshravan and Azimpour [9] applied singular elements for meshing the crack tip of their specimen 
using FEM. They predicted micro-buckling in composite laminate and emphasised the point that a 
singular element is the best type of element for meshing the crack tip. 

Tao Zeng et al. [10] presented a simplified numerical model of 3D woven composites with 
discretization of a unit cell into a number of rectangular elements which is different from conventional 
FEM method and, by using this method have gained the mechanical properties and the local stress within 
3D woven composites. In this method the simplified numerical model of 3D braided composites has been 
presented. But this method for modelling is not so exact. 

In structurally inhomogeneous materials (adhesive compounds, composites and geo-materials), when 
there are domains with a disrupted structure close to a crack, and physical fields and aggressive media act 
on the fracture process, quite a large part of the crack becomes involved in the fracture process and 
different fracture mechanisms can occur when the size of the end zone of a crack changes [11]. Hence 
examination of crack tip is too important in analysing process. 

In this research study, woven fabrics modelled with a new method in ANSYS software exactly [12] 
followed by numerical analysis has been carried out under static load. For estimation of the strain energy 
release rate for various crack lengths, the compliance theory is used. Using singular elements and brick 
elements, crack analysis has been carried out. When comparing the obtained results, the theoretical results 
are in agreement with the experiment results, especially for singular elements. 
   

2. MATERIALS AND METHOD 

Glass fibre reinforced composite with a fibre fraction volume of 60% was used. The thickness of each ply 
was 0.125mm. Each test bar had 24 plies. The mechanical characteristics of this composite for its 
unidirectional ply are presented in Table 1 in which XY is the plane of the weave and Z is the normal axe 
to the plane.  The geometrical properties of the test bars are shown in Table 2 [13]. 

Table1. Mechanical properties of the composite             

Young modulus EXX = EYY =20 GPa 
EZZ = 12 GPa 

Poisson ratio νXY =νYZ = 0.13 
νXZ = 0.3 

Shear modulus GXY = 2.85 GPa 
GYZ= GXZ = 1.9 GPa 
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the load-displacement diagram for the brick and the singular elements, it is found that singular elements 
produce better results than brick elements. 

Using the obtained values of Fcrt and δcrt for different crack lengths, the values of C (compliance) 
have been computed. In Figs. 11 and 12, variation of the C versus crack length for brick and singular 
elements is shown. Then, the function C relative crack length a for both elements can be estimated. 

 

Fig. 11. Compliance versus crack length for brick elements 

 

 

Fig. 12. Compliance versus crack length for singular elements 

The obtained function for brick elements is 

ܥ ൌ 0.482	ܽଷ െ 0.001	ܽଶ െ 5 ∙ 10ିܽ  2 ∙ 10ି   (4) 

If this function is derived with respect to ܽ,  
ௗ

ௗ
ൌ 0.1446ܽଶ െ 0.002ܽ  5 ∙ 10ି                                            (5) 

and using  ௗ
ௗ

, SERR is determined. Then, the curve of the critical strain energy release rate (GIcrt), which is 

the critical value of SERR, versus ܽ is plotted for brick elements using the compliance theory (Fig. 13). 
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Fig. 13. Curves of strain energy release rate relative crack length for Brick elements 

According to Fig. 13, which has been plotted for brick elements, while the brick elements present good 
results simply for the crack length between 40mm - 80mm, for the crack length before 40mm values of 
GIcrt that are above experimental results and for crack length after 80 mm, these values drop out. 
Evaluation of the obtained results shows that there is a difference of 60% between the experimental and 
numerical results. 

From the above evaluation, it can be seen that brick elements are not convenient to use. Therefore, 
singular elements for the solution of this problem must be used in spite of the difficulties. 

The obtained function for the singular elements is:  

ܥ ൌ 0.589ܽଷ  0.003ܽଶ െ 2. 10ିܽ  2. 10ି଼                                        (6) 

If this function is derived with respect to	ܽ, the following relation is found: 

ௗ

ௗ
ൌ 0.1767ܽଶ  0.006ܽ  2. 10ି                                                          (7) 

and using  
ௗ

ௗ
 , the Strain Energy Release Rate (SERR) is determined and the curve of GIcrt versus ܽ is 

plotted for singular elements using the compliance theory (Fig. 14). 

 

Fig. 14. Curves of strain energy release rate relative crack length for singular elements 
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Figure 14 indicates that the results of FEM using singular elements and experiment are 
comparable. We can clearly observe the growth of delamination along the weft filaments and a 
sudden change in the point of crossing the woof filaments. Numerical results show that there is a 
difference of less than 10% with the experimental results [9]. 

 

Fig. 15. Comparing the Curves of strain energy release rate relative crack length for types of elements 

Finally, in comparison with the curves in Fig. 15, the difference between the results obtained for brick and 
singular elements shows that the results of the sample with the crack tip meshed with singular elements 
presents better results than those of the brick elements. 
 

4. CONCLUSION 

Because of the anisotropic constitution of the woven composites, modeling of this type of composite is too 
complicated; therefore a significant part of this paper is devoted to modeling. The effects of element types 
in the crack tip have been studied and it is concluded that using singular elements at the crack tip in a 
Double Cantilever Beam (DCB) presents better results than those of the brick elements.  
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