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Abstract– Differential steering of in-wheel electric vehicle provides the functions of both active 

steering and power assisted steering with the coupling control of force and displacement transfer 

characteristic of system. A collaborative optimization model of the differential power-assisted 

steering system of in-wheel electric vehicle is built, with steering economy as the main system 

optimization goal, steering road feel, steering sensitivity and torque sensor performance as the 

subsystem optimization goals. Considering the coupled relationship of each discipline, the main 

system is optimized by the particle swarm algorithm, and the subsystems are optimized by the 

directional heuristic search algorithm which is good on local optimization. The simulation results 

show that the collaborative optimization based on particle swarm algorithm has more optimal 

solution sets and fast convergence by considering the coupling relationship between different 

disciplines, and the comprehensive performance of in-wheel electric vehicle is improved.           
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1. INTRODUCTION 
 

Because of the continuous depletion of world energy resources and growing environmental pollution, 

electric vehicles, as environment friendly, energy saving and quiet vehicles, cause research upsurge at 

home and abroad. An important direction of the new generation of electric vehicles, in-wheel electric 

vehicle is a cause for concern with its small vehicle equipment quality, high power transmission 

efficiency. With independent driving of the in-wheel motor, differential steering system (DSS) can realize 

power steering function by changing the left and right wheel motor output torque to control the force 

transmission characteristics and active steering function by providing additional corner of wheel motors to 

control displacement transmission characteristics[1, 2]. Therefore, the development of DSS based on in-

wheel electric vehicle can not only combine the steering portability and the steering road feel perfectly but 

also unite the safety and economy. As an ideal steering technology, the DSS owns perfect application 

prospect and potential technical development. 

At present, the study focused primarily on modeling and simulation of electric wheel motors, torque 

coordination control, etc. Research on the optimization of differential steering was very little [3]. Reports 

of DSS optimization are hard to search. The optimization of the DSS involves not only steering road feel, 

steering sensitivity and steering stability, but also the steering economy and some other disciplines with 

coupled affection. Therefore, the optimization of the DSS is essentially a problem of multidisciplinary 

design optimization (MDO) [4]. The DSS will get the best performance only if each discipline is 

considered comprehensively and put together to optimize collaboratively. MDO is a methodology of 

designing complicated system and subsystem by fully exploiting and exploring the collaborative 

                                                           
Received by the editors November 14, 2013; Accepted September 24, 2014. 
Corresponding author 
 

 

mailto:zhaowanzhong@126.com


W. Z. Zhao et al. 

 

IJST, Transactions of Mechanical Engineering, Volume 39, Number M1+                                                                      May 2015 

176 

mechanism in every system. The optimal solution in system level can be realized by coordinating the 

coupled relationship of each subsystem [5, 6]. 

Without evolution operator operation such as cross, variation and selection in other evolution 

algorithm, Particle swarm optimization algorithm (PSO) regards individuals in the swarm as particles 

without quality and volume in D-dimensional search space. Each particle gathers around its own best 

known position and the entire swarm's best known position with certain speed in the search space so that 

the optimal solution will be achieved [7].  Due to the good biological social background and the need for 

fewer parameters, it is easy to understand and implement. PSO has been widespread in the scientific 

research and engineering practice for its strong global search capability for multimodal nonlinear. 

In this paper, particle swarm algorithm is applied to optimize the DSS based on the multidisciplinary 

collaborative optimization. The research work provides a theoretical foundation for the design of the DSS 

and the in-wheel electric vehicle.  

2. MECHANISM OF DSS 

The driving force and steering assist torque are provided by two in-wheel motors of DSS. The output 

torques of in-wheel motors are changed independently so that functions of power assisted steering is 

realized. And the function of active steering is realized by the addition steering angle provided by the in-

wheel motors. Figure 1 shows the structure of DSS. The DSS works efficiently by coupling control of in-

wheel motors. When the driver turns the steering wheel, the torque and angle signal measured from the 

torque sensor and angle sensor are passed to the ECU. In order to achieve the DSS, the ECU combined 

speed, yaw rate and lateral acceleration and other signals to determine the driver's steering intention and 

the ideal steering torque, so that the left and right wheel motor output different torques and speeds through 

the different instructions[8, 9]. 
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Fig. 1. The structure of the DSS  

1. Torque sensor 2. Pinion and rack mechanism 3, 4. In-wheel motors 5, 6. Kingpins 

 

3. COLLABORATIVE OPTIMIZATION (CO) 

The objective of the steering system optimization is to ensure optimum steering road feel, but the vehicle 

performance requirements must be taken into account. In this paper, the collaborative optimization method 

is applied to optimize steering system parameters. The steering road feel was defined as the system-level 

problem, and the ergonomics, automobile security and the steering economy were taken as subsystem 

problem.  

The basic framework of CO is shown in Fig. 2
 
[10, 11]. The top level is the main system optimizer 

whose task is to optimize the multidisciplinary variables so that the multidisciplinary constraint *J  is 
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satisfied and system objective F  is minimized. The shared design variables and coupled state variables of 

each subsystem are adjusted according to the main system level equality constraint, where sx  is the shared 

design variable; xL  is the local design variable and c  is the subsystem constraint.  
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Fig. 2. The framework of CO 

The optimization objective of subsystem is to minimize the difference between the optimization 

results of subsystem and optimization targets provided by main system, which is depicted as 

                  
2 2

s c

j s j jJ x z y z                                                               (1) 

where sz  is the system design variables; cz  is the system coupled variable and y  is the couple state 

variable. 

 

4. OPTIMIZATION MODEL 

In the process of DSS designing, the contradiction between the steering road feel and the steering 

sensitivity cannot be avoided. The mechanic character cannot be ignored when ensuring steering road feel 

and steering sensitivity. Besides, the economy is always an important problem in vehicle design. The 

steering economy (the output power P of in-wheel motor) is taken as the optimization objective, and the 

steering road feel, steering sensitivity and the mechanic character of steering sensors are taken as the 

subsystems to build the CO model of the DSS. 

a) Optimization model of the main system 

The surrogate model of steering power consumptions is built, taking the heavy computation into 

consideration. The experiment variables are determined by optimal Latin hypercube experimental design. 

The second order response surface mode is depicted as [12, 13]: 
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   (2) 

where 1C  is rolling angle stiffness of the front suspension; 2C  is rolling angle stiffness of the rear 

suspension. 
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b) Optimization model of road feel 

In order to reduce the influence of road disturbance and improve the steering portability, the steering 

power in a certain frequency domain should be as small as possible. The subsystem model is built as 
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where 0Sc  is the initial value steering feel; { , , , }e e m sB J K K   
s

Z . 

The objective function  f
s

Z  presents the mean value of steering feel in the frequency domain 

(0, 0 ) where road information is most obvious. 0 is the biggest frequency of useful road information, 

which is 40Hz in the optimization. When the vehicle is in low speed, the road feel should be small, so 

 f
s

Z  is relatively small. 

c) Optimization model of steering sensitivity 

 g
f

Z  is the mean value of steering sensitivity in a certain frequency domain. The subsystem model 

is depicted as 
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where 0Fl  is the steering sensitivity before optimization; 
1 2 1{ , , , , , , }e e m sB J K K C C k      

f
Z ; 0 is also 

40Hz here;  g
f

Z  should be large when the vehicle is in low speed. 

d) Optimization model of steering sensor 

The torsion bar is an important stressed part in the torque and angle sensor. The stiffness of torsion 

bar is closely related to the stiffness of entire steering system and measurement accuracy of sensor. If the 

torsion bar stiffness is too big, the measurement accuracy will be low. If it is too small, the stiffness of 

steering system will be small which will cause understeer. Therefore, the stiffness of torsion bar must be 

chosen carefully. The design variables which have great influence on rT  are chosen through bode diagram. 

The subsystem model is built as follows: 
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where the angle of torsion bar should be 5 5      , considering the stiffness and accuracy of sensor. 

rT  is the torque about the steering out shaft produced by tire resistance torques;   is slip angle;   is 

rolling angle;   is steering angle; a  is displacement from vehicle mass center to front axle; 1E  is front 

roll steer coefficient; 1( , , , , )t e m sB K K k n    Z . 

 

5. OPTIMIZATION ALGORITHM 

a) Particle Swarm Optimization (PSO) 

PSO was introduced by American social psychologists James Kennedy and electrical engineer Russell 

Eberhart [14]. The basic idea is to simulate the behavior of birds group. Based on the biotic group model 

and concepts of “swarm” and “evolution”, each individual (particle) moves according to the fitness values. 

PSO regards individuals in the swarm as particles without quality and volume in N-dimensional search 

space. Each particle moves at a certain speed adjusted by its experiment as well as swarm’s experiment. 

Most PSO variants are improved from the PSO with inertia weight algorithm which is called standard PSO 

algorithm.  

1 2( , , , )i i i inX X X X   is the present position of particle i ; 
1 2( , , , )i i i inV V V V   is the present speed of 

particle i ; 
1 2( , , , )i i i inP P P P   is the best known position of particle i , which is the best individual position 

(pbest) with the best fitness value; 1 2( , , , )g g g gnP P P P   is the best known position of swarm (gbest).  

The evolution equations of standard PSO algorithm are depicted as 

1 1 2 2( 1) ( ) ( )( ( ) ( )) ( )( ( ) ( ))ij ij j ij ij j gj ijV t V t c r t P t X t c r t P t X t                                     (6)
 

( 1) ( ) ( 1)ij ij ijV t X t V t                                                             (7) 

where subscript i  presents the particle i ; subscript
 

j  presents the j-th dimension; t  presents the t-th 

generation; 1 2,c c  are the speed constants;   is the inertia weight; 2( ) (0,1), ( ) (0,1)ij jr t U r t U  are the 

random numbers which are independent with each other;   can be a fixed value or linear varying value; 

1 2,c c  are usually chosen in (0, 2].  

In order to ensure the convergence of algorithm, each particle must converge at position P , due to 

the tracing ability of particle and the aggregation of swarm. In standard PSO algorithm, the particle moves 

along track with limited speed. Therefore, the search space of particle cannot cover the entire feasible 

space. The Global optimal solution cannot be achieved by standard PSO algorithm, which is the biggest 

weakness of standard PSO algorithm.  

b) Hybrid particle swarm optimization based on parallel directional turbulence (HPSO-PDT)  

The core concept of HPSO-PDT is parallel directional turbulence. m n  matrix X  is position of 

swarm; m  is particle number; n  is independent variable number of the objective functions, as well as the 

dimensions of search space; gP  is the best known position of the swarm. When the swarm is premature, 

each dimension of gP  mutates to a new swarm based on PDT
 
[15, 16]. 

Parallel directional criterion of particle is determined by directional information matrix B . B  is a 

m×n logic matrix. min( , )z m n ; A  is the z-dimension integer vector,  1,2, ,A n  . The elements of B  

meet the following equations 
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where  1,2, ,i n  ;  1,2, ,j n  ; mod presents modulo operator. The directional information 

matrix B decides the movement of each particle. 

The mutation search space of particle narrows linearly, which improves the global search in early 

iterate process and disturbance mutation in late iterate process. The boundaries of mutation space are 

0

0

(1 )
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L L g

U U g

q q P

q q P

 

 

   
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                                                             (9) 

where Uq  and Lq  are the upper and lower boundary, respectively; 0

Uq  and 0

Lq  are the upper and lower 

boundary of initial search space, respectively;   is the constriction factor.  

1
t

MAX
                                                                      (10) 

where t  is the current iterate number; MAX  is the biggest iterate number. 

The m×n matrix s  is built by Logistic chaotic mapping from an 0-1 uniform distribution row victor 

with n-dimension. The mutation matrix   of particle positions is expressed as 

, , , , ,(1 )i j L j i j U j i jq S q S                                                           (11) 

The mutation of particles meets the following equation 

, , , , ,(1 )
i j

t

i j i j g j i jB P B                                                           (12) 

In order to improve directional turbulence, the current swarm speed ,

t

i jV  is set to zero; the current 

swarm position is set to the best known position of particle ,

t

i jP .  

When the element of directional information matrix B  is 1, the value of corresponding element of X  

is the same as the value of mutation matrix  . So each particle just moves in one dimension and 

turbulence of HPSO-PDT only occurs in z directions in each mutation.  

Traditional optimal algorithm such as sequence quadratic programming is combined with parallel 

directional turbulence to increase the convergence speed in global optimization.  

When swarm is premature, the process of disturbance mutation of HPSO-PDT is as follows: 

The new best position gP  is obtained by local search using sequence quadratic programming with the 

current best position as start point. The new swarm X  is produced from Eqs. (8)-(12) with gP . After 3 

times of PSO iteration, if new gP  is updated, iteration continues and above steps repeats when swarm is 

premature; If gP  is invariant, z-dimension integer vector A  is rebuilt, mutation proceeds until new gP  is 

obtained. 

 

6. OPTIMIZATION RESULTS 

Global design variables are transferred from main system to subsystems. Because of its strong search 

capability, the particle swarm algorithm is applied in global optimization. The directional heuristic search 

algorithm (DHS) is applied in subsystem optimization in order to ensure the coordination between main 

system and subsystem design variables. The Pareto optimization solution sets of road feel, steering 

sensitivity and steering economy are shown as Fig. 3. 

There are 216 Pareto optimization solution sets in the collaborative optimization based on particle 

swarm algorithm, far more than the general optimization algorithm. This shows that it is easier for 

collaborative optimization to find the best solution based on particle swarm algorithm. 

The iterative process of steering economy, road feel and steering sensitivity of collaborative 

optimization based on particle swarm algorithm are shown as Figs. 4-6, respectively.  



Collaborative optimization of differential steering for… 

 

May 2015                                                                      IJST, Transactions of Mechanical Engineering, Volume 39, Number M1+   

181 

 

 
Fig. 3. Pareto optimization solution sets 
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       Fig. 4. The iterative process of steering economy                             Fig. 5. The iterative process of road feel 

 
Fig. 6. The iterative process of steering sensitivity 

It can be seen from Figs. 4-6 that the performance indexes of collaborative optimization based on 

particle swarm algorithm have faster convergence speed. Especially for the road feel, there is less 

oscillation during the iterative process. The local design variables are optimized independently in each 

subsystem under the collaborative optimization based on particle swarm algorithm, which is different from 
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the general collaborative optimization. The optimal values of general collaborative optimization and 

collaborative optimization based on particle swarm algorithm are shown as Table 1.  

Table 1. Optimal values  

Design variables Initial values 
Optimal values 

of general CO 

Optimal values of CO based on 

particle swarm algorithm 

Be(N m/(rad  s)) 2.63 1.96 2.76 

C1(N  m/rad) 64896 42789 20452 

Je(kg  m2) 1.07×10
-4

 8.44×10
-4

 8.85×10
-4

 

Km(A/(N m)) 2.23 3.21 2.27 

Ks(N m/rad) 237 209 223 

n 17 18 16 

1k
(N/m) -56963 -57286 -48450 

Ka 2.5 1.91 1.47 

Sc  0.15 0.11 0.11 

Fl  9.03×10
-4

 9.29×10
-4

 1.05×10
-3

 

P(kw) 1.98 1.20 0.98 
 

It can be seen from Table 1 that under the general CO, the optimal value of road feel is 0.11J, 27% 

lower than initial value; the steering sensitivity is 9.29e-4J, increased by 2.9% and energy consumption is 

1.2kw, reduced by 39%. Under the CO based on particle swarm algorithm, the road feel is 0.11J, reduced 

by 27%; the steering sensitivity is 1.05e-3J, increased by 16% and energy consumption is 0.98kw, reduced 

by 51%. The results show that optimal values of each performance index under the CO based on particle 

swarm algorithm are better than the general CO.  

The Bode diagrams of road feel and steering senstivity under general CO and CO based on particle 

swarm algorithm are shown in Figs. 7-8.  
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Fig. 7. Bode diagram of road feel 
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Fig. 8. Bode diagram of road feel of steering sensivity 

 

It can be seen from Figs. 7-8 that the comparisons between the conventional collaborative 

optimization and the one based on particle swarm optimization show that the static error of steering feel 

decreases, response speed increases and band width widens, so the system with particle swarm 

optimization responds more accurately. The optimal solution of steering feel, steering sensitivity and 

steering economy satisfying the constraints of DSS is derived by the collaborative optimization based on 

particle swarm optimization so that the performance of steering portability and steering feel are combined 

perfectly. 

 

7. CONCLUSION 

a) The DSS for the in-wheel electric vehicle is introduced, which not only improves the steering 

portability and road feel, but combines the active safety with steering economy.  

b) A collaborative optimization model of the DSS is built, with steering economy as the main system 

optimization goal, steering road feel, steering sensitivity and torque sensor performance as the subsystem 

optimization goals. The main system is optimized by the particle swarm algorithm and the subsystems are 

optimized by the directional heuristic search algorithm. 

c) The optimization shows that the CO based on particle swarm algorithm provides a faster convergence 

speed and more optimization solution sets with considering the coupling relationship between different 

disciplines. The comprehensive performance of motorized wheels electric vehicle is improved. With 

satisfying steering feel, good robust performance and steering stability being the control objectives, the 

models of the novel AFS system are set up, and the time-delay H∞ controller for the novel AFS system is 

designed.  
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