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Abstract– Multi frequency vibrations of a system of two isotropic circular plates interconnected 

by a rolling visco-elastic layer that has nonlinear characteristics are considered. The system with 

two circular plates and interconnecting discrete continually distributed rolling visco nonlinear 

elastic rheological elements presents the model of hybrid nonlinear system. The analytical 

solutions of first asymptotic approximation describing stationary behavior, in the regions around 

the resonances, are the principal results of the author. On the basis of those results the influence on 

the system dynamics of rolling coupling element was numerically analyzed. A series of the 

amplitude-frequency and phase-frequency curves of the two-frequency like vibration regimes were 

numerically obtained and presented. These curves present the evolution of the first asymptotic 

approximation of solutions for different nonlinear harmonics obtained by changing external 

excitation frequencies through discrete as well as continuous values for different values of rolling 

elements masses. Such an analysis proves that the presence of rolling elements in the 

interconnected layer of two plates  causes frequency overlap of resonant regions of nonlinear 

modes, which at the same time causes the enlargement of the mode mutual interactions. 
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1. INTRODUCTION 
 

In many engineering systems with non-linearity, high frequency excitations are the sources of multi 

frequency resonant regimes appearance at high as well as at low frequency modes. That is obvious from 

many experimental research results and also theoretical results [1, 2]. The interaction between amplitudes 

and phases of the different modes in the nonlinear systems with many degrees of freedom, as in the 

deformable body with infinite numbers frequency vibration in free and forced regimes, is observed 

theoretically in [3] by using averaging asymptotic methods Krilov-Bogoliyubov-Mitropolyskiy [4, 5]. This 

knowledge has great practical importance.  

In the monograph [1] by Nayfeh a coherent and unified treatment of analytical, computational, and 

experimental methods and concepts of modal nonlinear interactions is presented. These methods are used 

to explore and unfold in a unified manner the fascinating complexities in nonlinear dynamical systems.  

Identifying, evaluating, and controlling dynamical integrity measures in nonlinear mechanical 

oscillators are topics for researchers, [6-9]. Energy transfer between coupled oscillators can be a measure 

of the dynamical integrity of hybrid systems as well as subsystems [7, 10-12]. In the series of references it 

is possible to find a different approach to obtain solutions of the nonlinear dynamics of real systems, as 

well to discover nonlinear phenomena or some properties of the system dynamics. There are many 
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systems which consist of a nonlinear oscillator attached to a linear system, examples of which are 

nonlinear vibration absorbers, or nonlinear systems under test using shakers excited harmonically with a 

constant force.  The paper [13] presents a study of the dynamic behavior of a specific two degree-of-

freedom system representing such a system. It is found that closed detached resonance curves lying 

outside or inside the continuous path of the main resonance curve can appear as a part of the overall 

amplitude-frequency response. 

List of the valuable research results in a related area of the objects of the author’s research is large, 

but in this introduction the subjective choice was mentioned.  

By using averaging and asymptotic methods for obtaining system of ordinary differential equations of 

amplitudes and phases in first approximations and expressions for energy of the excited modes depending 

on amplitudes, phases and frequencies of different nonlinear modes are obtained by Hedrih [8, 9] and by 

Hedrih and Simonović [12]. By means of these asymptotic approximations, the energy analysis of mode 

interaction in the multi frequency free and forced vibration regimes of nonlinear elastic systems (beams, 

plates, and shells) excited by initial conditions was made, and a series of resonant jumps as well as energy 

transfer features were identified. Meaning that excitation was, by perturbation of equilibrium state of the 

double plate system at initial moment, defined by initial conditions for displacements and velocities of 

both plate middle surface points.  

Interest in the study of coupled plates, as new qualitative system dynamics has grown exponentially 

over the last few years because of the theoretical challenges involved in the investigation of such systems. 

Recent technological innovations have caused considerable interest in the study of the hybrid dynamical 

processes consisting of coupled rigid and deformable bodies (plates, beams and belts) [8, 9, 14, 16-17],   

characterized by the interaction between subsystem dynamics and governed by coupled partial differential 

equations. 

The study of transversal vibrations of a double, like multi plates system with elastic, visco-elastic of 

creep connections is important for both theoretical and pragmatic reasons. Many important structures may 

be modeled from composite structure and are necessary in many appliances. For example, in civil 

engineering for roofs, floors, walls, in thermo and acoustics isolation systems of walls, and floor 

constructions, orthotropic bridge decks or for building, any structural application in which the traditional 

method of construction is applied usage of stiffened steel. Also, it is applied in cars, planes and ship 

industry  for sheaths of wings, for inner arrangement of plane, it is suitable for building maritime vessels 

or for building civil structures such as double hull oil tankers, bulk carriers,  auto bodies, truck bodies or 

for railway vehicles. 

It is shown here that as a model of that structure it is possible to use two rolling visco-elastically 

connected plates with nonlinearity in elastic layer. This paper attempts to present the feature of 

interconnected layer joined with rolling elements with their inertia of rolling without sliding, and of 

translation of mass centers. The model of new rheological element with properties of visco- nonlinear 

elasticity and of rolling without sliding will be presented. Such an element has different forces on its ends 

in a motion. The presence of those elements in the model of interconnected layer of two plates introduces 

the dynamical coupling in the mathematical model of plate system dynamics. Also, this model with 

nonlinearity of the third order in the interconnected layer introduces the phenomenon of passing through 

resonant range and appearance of one or several resonant jumps in the amplitude–frequency and phase–

frequency curves, as in the multi-nonlinear mode mutual interactions between amplitudes and phases of 

different nonlinear modes. 
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2. CONSTITUTIVE RELATION FOR ROLLING VISCO NONLINEAR ELASTIC 

RHEOLOGICAL ELEMENT AND PDE`S OF TRANSVERSAL 

VIBRATIONS OF A DOUBLE PLATE SYSTEM 

For standard rolling visco nonlinear elastic element, Figs. 1a) and 1b), presented as a rheological model 

[18], we write the expressions for the velocity of translation for the centre of mass C  in the 

form:   212 wwwC
  , and for the angular velocity around center of mass in the form:    RwwC 212

  .  
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                                                                  a)                                       b) 
Fig. 1. a) The rheological model of rolling visco-elastic nonlinear discrete element; b) the rheological  

scheme of rolling visco-elastic nonlinear discrete element 

 

The constitutive relations for forces on the ends of this element are in the following form: 
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where c and 1c  are stiffness of linear springs, 1b is coefficient of damping force,   stiffness of nonlinear 

springs, m is mass of disc, m2

CJCi  is the square of radius of inertia for the rolling element. If the rolling 

element is the disc then mass moment of inertia is 2m2RCJ  
and 222 RiC  . 

The governing equations of the double plate system [9, 15, 16], Fig. 2, are formulated in terms of two 

unknowns: the transversal displacement   ii wtrw ,, , 2,1i  in direction of the axis z , of the upper plate 

middle surface and of the lower plate middle surface, respectively. We present the interconnecting layer as 

a model of distributed discrete rheological rolling visco-elastic elements with nonlinearity in the elastic 

part of the layer, as shown in Fig. 1a and 1b.  Since elements are continually distributed on plates surfaces, 

the generalized resulting forces (1) are also continually distributed onto middle plate points. Our 

assumptions for the plates are:  they are thin with the same contours and with an equal type of boundary 

condition and they have small transversal displacements. The system of two coupled partial differential 

equations is derived using d’Alembert’s principle of dynamic equilibrium in the following forms: 

 

              1

3

12)1(12

2

1

12

11

4

12

2

2

112112

1

2

~a2ca~a~1 qwwww
t

w

t

w
w

t

w

t

w






























 

                   
             2

3

12)2(12

2

2

12

22

4

22

1

2

212222

2

2

~a2ca~a~1 qwwww
t

w

t

w
w

t

w

t

w






























          (2) 

 

where: iiiiii hρâa~  ,
  ii12i12 hρâa~  , 8m44mâ 2

12  RCJ , 8m344mâ 2

ii  RCJ , 
    ii1

2

i hρ4cca  , 
 2

i

3

iii μ112hED  , 
  iii

4

i hρDc  , ii1i hρb2δ   and 
  iii hρββ  , for 1,2i  . E = Young’s modulus, 

i = 

Poisson’s coefficient, 
i =density of plates material, 

ih =height of plates. The form of the external loads on 

the plates surfaces are given as
    trqq ii ,,~~  . 
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Fig. 2. Double circular plate system connected with a rolling visco-elastic nonlinear layer  

 

3. ASYMPTOTIC APPROXIMATION OF THE SOLUTION OF PDE`S   OF TRANSVERSAL 

VIBRATIONS OF A DOUBLE CIRCULAR PLATE SYSTEM 

The systems of partial differential Eq. (2) describe the dynamics of the double plate - system with the 

rolling visco non-linear elastic layer. By using Bernoulli’s method of particular integrals we suppose the 

solutions for system that are in the form of the eigen amplitude functions 
     nminmi Wr ,W ,  ,....2,1,mn , 

satisfy the same boundary conditions, expansion with time coefficients in the form of unknown time 

functions 
     nminmi TtT  , and describe their time evolution [16], in the form:          tTrtrw nminmii  ,W,,  . After 

substituting this solution into the system of differential Eq. (2), keeping in mind orthogonality conditions 

of plate amplitude functions it makes system of DE for time function of one nm -mode of plates 

transversal oscillations: 
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Keeping in mind the form of solutions for the corresponding homogeneous system of (3) we suppose the 

solution of that system in the following form:  
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where, s

ijnmK  are cofactors of determinant corresponding to basic homogenous coupled linear system [15],  

and amplitudes  tRinm
 and phases    ttqt inminmiinm   are unknown time functions that were obtained 

by use of the asymptotic Krilov-Bogolyubov-Mitropolyskiy averaging method  [4, 5].  It is noted that the 

defined task satisfies all necessary conditions for applying asymptotic Krilov-Bogolyubov-Mitropolskiy 

method concerning small parameter. We suppose that the functions of external excitation at nm -mode of 

oscillations are the two-frequency process in the form: 

       nmnmnmnmnmnmnmi tttq 22021101 coshcosh~   , and that external force frequencies 
inm are in the 

range of two corresponding eigen linear damped coupled system frequencies 
nmnm 11 p̂  and  

nmnm 22 p̂  of 

the corresponding linear and free system to system (3) and that initial conditions of the double plate 

system permit appearance of the  two-frequency like vibrations regimes of the system. 
inmp̂  are frequencies 

of visco-elastic coupling obtained like imaginary parts of solution 
inminmjnmi δ p̂iˆ

,   for characteristic 

equations of system (3). For details see Refs. [9, 15, 17]. 
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The observed case is that external distributed two-frequencies force acts at upper surfaces of upper 

plate with frequencies near circular frequencies of coupling  
nmnm 11 p̂  and  

nmnm 22 p̂  , and that the 

lower plate is free  of excitation      0~
2 tq nm

. Then the first asymptotic averaged approximation of the 

system of differential equations for amplitudes  tRinm
 and difference of phases  tinm  are obtained in the 

following general form, [17]: 
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where     t
inminm

inmetRta
̂

 is  the change of variables, hence        t
inminminminm

inmetRtRta

ˆˆ 

  . The full forms of 

constants
inm , 

inm  ,
inm  and inmP were presented in [17], those values for considered cases of system 

parameters were presented in the Table 1. Here it was underlined that those constants all rely on 

coefficients of coupling properties via cofactors
 s

inm2K , that 
inm depends on damping coefficients of visco-

elastic layer 
 i

~ , 
inmP  depend on excited amplitudes, and 

inm ,
inm  depend on non-linearity layer 

properties. Coefficients 
inm  are coefficients of mode mutual interactions. 

 

4. NUMERICAL ANALYSIS OF THE STATIONARY REGIMES OF TRANSVERSAL 

VIBRATIONS OF A DOUBLE PLATE SYSTEM 

For analyses of the stationary regime of oscillations, we make the right hand sides of first and third 

differential equations for amplitudes  tRinm
 and second and fourth equations for difference of phases 

 tinm  of system (5) equal to null. Eliminating the phases 
nm1   and 

nm2  we obtained system of two 

algebraic equations by unknown amplitudes 
nma1

 and nma2 . Also, with elimination of amplitudes nma1  and 

nma2
, we obtained the forms for phases nm1   and 

nm2   in the case of two-frequencies  forced oscillations 

in stationary regime of one nm  mode of double plate system oscillations. Solving those  systems of 

algebraic equations by numerical  Newton-Kantorovic's method in computer program Mathematica, we 

obtained stationary amplitudes and phases curves of two-frequencies regime of one eigen nm -shape 

amplitude mode oscillations in double plate system  depending on frequencies of external excitation force. 

If we fixed the value of an external excitation frequency, of two possible, we obtained amlitude-frequency 

curves as well as phase-frequency curves of stationary states of vibration regime in the following forms:  

1* for second external excitation frequency with constant discrete value ( const2  nm
) corresponding 

amplitude-frequency and phase-frequency curves:  nmnm fa 111  ,  nmnm fa 122  ,  nmnm f 131   and 

 nmnm f 142    and  

2* for first external excitation frequency with constant discrete value const1  nm
 corresponding 

amplitude-frequency and phase-frequency curves:  nmnm fa 251  ,  nmnm fa 262  ,  nmnm f 271   and 

 nmnm f 282  . 

We will present amplitude-frequencies and phase-frequencies curves of stationary state in continuous 

exchange of fixed discrete values of external excitation frequencies and in that sense regard system in 

stationary regime, and some characteristic diagrams of that amplitude-frequency and phase-frequency 

curves are presented in the following Figs. 3-10. 

The following analysis considers changing of rolling element masses that influence kinetic energy of 

interconnected layer. For further numerical calculations we present three cases of interconnecting layer 

rolling elements by changing their mass per unit of plates surfaces from kg240m    and  kg100m   to 
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case when we do not have rolling elements for  kg0m  . The numerically considered plates have the same 

material characteristics, with radius of m1 , heights m01,0h1  and m005,0h2  , maiden of still with 

density 33

i kgm10849.7  , Poisson’s ratio 33.0 and Young's modulus 210

i Nm1021E  . Between 

plates is layer of continually distributed nonlinear visco-elastic rolling elements of stiffness  15 Nm102c   

and 15

1 Nm105,0c   and coefficient of damping 1

1 5.0  smkgb . This is the case when the lower plate has a 

height two times lower than upper plate,  2hh 12  , and when we modify  mass of rolling elements the 

solutions of characteristics equations of system (3)   
nmnmnm 112,1 p̂iˆ    and 

nmnmnm 224,3 p̂iˆ    have 

different values. Solved values of circular frequencies of coupling 
inmp̂  and the coefficients 

inm ,
inm , 

inm and  
inmP are presented in the Table 1. Here we present the solutions for the case of the first eigen 

mode of plates oscillations for 0n   and 1m  for which the characteristic eigen number of clamped 

circular plate is 196.3k11  . The value of the coefficient of nonlinearity influence is   117.01 W , and 

coefficient of the nonlinearity of layer is skgm 25  , reduced values of the amplitude of  excitations are 

 
37

11i0 Nm10h   for the value of the dimensionless parameters 210 . 

As expected, increasing the mass of rolling elements reduces circular frequencies of couplings 
inmp̂ , 

and coefficients of damping influence 
inm . 

Table 1. The values of circular frequencies of coupling  
inmp̂ , and coefficients  

inm , 
inm  and 

inm  , 
inmP , for  2,1i  

in first mode of plate system oscillations ( 1,0  mn ), for three different values of rolling elements masses 

 kgm   1

1p̂ s01

 

 1

2p̂ s01

 
011  

012  
011  

012  
011  

012  
011P  

012P  

0 108.33 174.49 11 8 12210 96220 267100 17590 2945 534 

100 87.33 148.42 6.273 2.151 25480 15720 91720 17470 1402 358.5 

240 71.61 126.82 3.326 0.7554 18640 3538 30310 8704 1082 289 

All the phenomena of the resonant transition for stationary regime need to be more evident for the same 

values of the amplitude of external excitations. Those are the distinctive jumps of the amplitude and phase 

response in the vicinity of the resonant values 
inminm p̂ , appearance of the new stable and unstable 

branches causing more value-system responses and the emergence of two stable solutions of the system in 

the area of those new branches, the mutual interaction of the harmonics and the jumps of the system 

energies. All this phenomena are presented through the series of the amplitude-frequency and phase-

frequency diagrams for both harmonics in the mentioned three cases of rolling element masses. Those 

characteristic shapes are the results of the modes interaction and  of the particular discrete values choice of 

the external excitation frequencies nm1  and  nm2 , selected from the resonant frequencies intervals, 

belonging to proper eigen frequencies 
nm1p̂  and  

nm2p̂  of the corresponding  nm - th eigen amplitude shape 

mode of plate linear system taken in the simulations. Strong interactions between time modes in the nm -th 

eigen amplitude shape mode of plate, appear only in the case that both values of both external excitation 

frequencies  nm1  and  nm2  are chosen simultaneously in the corresponding resonant frequency interval 

nmnm 11 p̂  and  
nmnm 22 p̂ . If one of the external excitation frequencies is outside of the corresponding 

resonant frequency interval, the interactions between modes are small. For that case a specific change of 

the corresponding amplitude-frequency and phase-frequency curves is not visible and is similar to the case 

of the single frequency external excitation in the corresponding resonant frequency interval. Hence, there 

is no interaction between time modes in the first asymptotic approximation. This is visible from Figs. 3-14 

at the beginning or at the end of the external excitation frequency intervals.  

The first five figures, Figs.3-7, present amplitude and phase response for both harmonics for the case of 

the greatest mass of the rolling elements kg240m   per unit of plate’s surface. The amplitude-frequency 

responses for two-frequency like stationary vibration regimes contain amplitudes 1a  and 2a  presented in 
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Figs.  3. and 4. These figures exhibit a strong characteristic as nonlinear interactions between time modes 

of the two-frequency external excitation in the resonant interval of two external excitation frequencies 

close to the eigen linearized system frequencies. Amplitude-frequency and phase-frequency curves for the 

cases:  1

211 s100, nma ,  1

211 s100, nm  presented in Figs. 3 and 5  have shapes as in the case of the 

corresponding single frequency amplitude-frequency and phase-frequency curves with only one pair of 

resonant jumps in each pair of the corresponding curves.  

Comparing the first and the last diagrams in the Figs. 3, 5, 6 we may conclude that the amplitude and 

phase responses of the first harmonic have small changes after transient regime while the amplitude and 

phase responses of the second harmonics have significant changes of the values and the shapes, Fig. 4. 

Therefore we conclude that the influence of the first harmonics on the second, in the resonant region of the 

frequencies 
nm1 of external excitation, is greater than in the resonant region of the frequencies 

nm2 of 

external excitation.  

In the second case for another value of rolling element masse for kg010m  , Fig. 7. presents the 

amplitude-frequency diagrams. In this case we did not present the phase-frequency diagrams because, as 

we noticed on the previous series of the figures, the phase transient through resonant regime is 

simultaneous to those of amplitude and gives the same quantitative conclusions. In this case the difference 

among first  1

1 s33.87p̂   and second  1

2 s42.148p̂   frequencies is greater than in the previous case for 

kg240m  . So, the overlap of the resonant region of the first   1

1 s210,120  nm
 and the second 

  1

2 s175,156  nm
 frequencies is less and mutual interactions of the modes are less obvious. The 

appearance of the new resonant branches has the identical mechanism as in the previous case. The new 

branches appear first on the right lower side of main resonant curve for the second resonant region at value 

 1

2 s156  nm
, Fig.7. 

For the third and final case we practically consider the case without rolling elements at the connected 

layer of the two plates, kg0m  . Here, the Fig. 8. also presents the amplitude-frequency diagrams of the 

first time harmonics. For this case we do not notice the distinctive phenomena of passing through resonant 

regime, there are no resonant jumps and mutual interactions of the harmonics are very small. Hence, the 

amplitude responses in this case is similar to  the case where there is no nonlinearity, we may conclude 

that influence of nonlinearity in the coupling layer is insignificant for such choice of all other system 

parameters. The influence of the nonlinearity in the interconnected layer may be more or less present 

which depends on the parameters of the system. 
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Fig. 3.  Amplitude-frequency characteristic curves for the amplitudes of the first time  harmonics  nmnm fa 111  ,on 

the different  value of excited frequency  nm1  from the interval  11

1 s250,s50  nm
for  discrete  value  

of excited frequency  11111111

2 s155,s150,s145,s140,s135,s132,s130,s100  nm
 , with characteristic one or  

more resonant jumps, for kg240m  . Arrows represent directions of the resonant jumps 
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Fig. 4. Amplitude-frequency characteristic curves for the amplitude of the second time harmonics  nmnm fa 122   , on 

the different  value of excited frequency nm1
  from the interval  11

1 s250,s50  nm
for  discrete  value  

of excited frequency  11111111

2 s155,s150,s145,s140,s135,s132,s130,s100  nm
, with  

characteristic one or more resonant jumps, for kg240m   
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Fig. 5.  Phase -frequency characteristic curves for the amplitudes of the first time harmonics  nmnm f 131  , on the 

different value of excited frequency 
nm1  for discrete  value of excited frequency  const2  nm

, with characteristic 

one or more resonant jumps, for kg240m  .  Arrows represent directions of the resonant jumps 
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Fig. 6. Amplitude-frequency characteristic curves for the amplitudes of the first time harmonics  nmnm fa 251  , on 

the different value of excited frequency  
nm2  continuously in the interval  11

2 s200,s60  nm
 for  

discrete value of excited frequency  11111111

1 s320,s300,s260,s220,s190,s120,s110,s85  nm
,  

with characteristic one or more resonant jumps, for kgm 240    
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Fig. 7.  Amplitude-frequency characteristic curves for the phases of the first time harmonics  nmnm fa 111  ,  

on the different  value of excited frequency  
nm1  continuously in the interval  11

1 s250,s50  nm  
 for discrete  value of excited frequency  11111

2 s170,s160,s158,s156,s145  nm
, with  

characteristic resonant jumps, for kg100m     
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Fig. 8.  Amplitude-frequency characteristic curves for the phases of the first time harmonics  nmnm fa 111  , on the 

different value of excited frequency  
nm1  continuously in the interval  11

1 s250,s50  nm  
for  

discrete  value of excited frequency  11111

2 s210,s201,s200,s190,s100  nm
, with  

characteristic resonant jumps, for kg0m   

 

5. CONCLUSION 

To analyze stationary regimes of nonlinear oscillations for presented model, we solved system of PDE`s 

(3) semi analytically in averaged asymptotic first approximation. Then part of the solution was obtained 

numerically and amplitudes-frequency and phase-frequency characteristics were presented with obvious 

interaction of the nonlinear component modes. For the case of the external excitation by two frequency 

forces and resonant range of the frequencies, we conclude complexity in the system nonlinear response, 

depending on initial conditions and also on other system kinetic parameters and on the corresponding 

relation between these sets of the kinetic parameters.   

For the system of two circular plates connected with nonlinear rolling visco-elastic layer on the basis 

of obtained results in this paper we can conclude that nonlinearity in the interconnecting distributed layer 

introduced in the system resonant jumps, as well as resonant oscillatory jumps, trigger of coupled 

singularities, as well as coupled triggers of coupled singularities, which are characteristic phenomena of 

passing through resonant regime. Passing through resonant frequency  ranges of the external excitation, 

unique values of the amplitudes and phases lose stability and splits into trigger of the coupled three 

singularities,  two stable values and one unstable, saddle type of the amplitudes (or phases) for simple case 

without nonlinear interactions between time modes. But, in the case when there are resonant interactions 

between modes more than one pair of the resonant jumps appear, and there are possibilities for appearance 

of the coupled triggers of the coupled singularities  containing an odd number of the alternating coupled 

stable and unstable singularities.  

The presented model of new features in interconnected layer introduced with rolling elements with its 

inertia of rolling without sliding and of translation of mass center is the novelty in modeling of the 

rheological elements. The presence of rolling elements in the interconnected layer introduces the part of 

the dynamic coupling into system of obtained PDE’s. On the basis of the presented numerical comparison 
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we consequently conclude that dynamic coupling intensifies the phenomena of the resonant transition 

caused by the mutual interaction of the harmonics. 
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