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Abstract– In this article, an analytical solution is developed to study the free vibration analysis of 
functionally graded rectangular nanoplates. The governing equations of motion are derived based 
on second order shear deformation theory using nonlocal elasticity theory. It is assumed that the 
material properties of nanoplate vary through the thickness according to the power law 
distribution. Our numerical results are compared with the results of isotropic nanoplates and 
functionally graded macro plates. The effects of various parameters such as nonlocal parameter 
and power law indexes are also investigated.            
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1. INTRODUCTION 
 

Functionally graded material (FGM) may be characterized by the variation in composition and structure 
gradually over volume, resulting in corresponding changes in the properties of the material [1]. In past 
decades the free vibration of functionally graded materials has been studied extensively. Malekzadeh and 
Heydarpour [2] investigated the free vibration analysis of rotating functionally graded cylindrical shells 
subjected to thermal environment based on the first order shear deformation theory (FSDT) of shells. The 
formulation included the centrifugal and Coriolis forces due to rotation of the shell. The differential 
quadrature method was adopted to discretize the thermoelastic equilibrium equations and the equations of 
motion. Ungbhakorn and Wattanasakulpong [3] presented thermo-elastic vibration response of 
functionally graded plates carrying distributed patch mass based on third order shear deformation theory. 
The solutions were obtained by energy method. In addition, forced vibration analysis with external 
dynamic load acting on the sub-domain of the patch mass was also discussed. Kumar and Lal [4] predicted 
the first three natural frequencies of free axisymmetric vibration of two-directional functionally graded 
annular plates resting on Winkler foundation using differential quadrature method and Chebyshev 
collocation technique. Frequency equations for a plate clamped at both the edges and another plate simply 
supported at both the edges were obtained using both the methods. Based on the three-dimensional theory 
of elasticity and assuming that the mechanical properties of the materials vary continuously in the 
thickness direction and have the same exponent-law variations, the three-dimensional free and forced 
vibration analysis of functionally graded circular plate with various boundary conditions was achieved by 
Nie and Zhong [5]. Huang et al [6] investigated the free vibrations of rectangular FGM plates through 
internal cracks using the Ritz method. Three-dimensional elasticity theory was employed, and new sets of 
admissible functions for the displacement fields were proposed to enhance the effectiveness of the Ritz 
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method in modeling the behaviors of cracked plates. Matsunaga [7] analyzed the natural frequencies and 
buckling stresses of plates made of functionally graded materials by taking into account the effects of 
transverse shear and normal deformations and rotatory inertia. By using the method of power series 
expansion of displacement components, a set of fundamental dynamic equations of a two-dimensional 
higher-order theory for rectangular functionally graded (FG) plates was derived through Hamilton’s 
principle. Malekzadeh and Alibeygi Beni [8] presented the free vibration of functionally graded arbitrary 
straight-sided quadrilateral plates under thermal environment and based on the first order shear 
deformation theory. The differential quadrature method was adopted to discretize the equilibrium 
equations. Free vibration of functionally graded micro/nano plates was also considered in recent years. Ke 
et al [9] developed a non-classical microplate model for the axisymmetric nonlinear free vibration analysis 
of annular microplates made of functionally graded materials based on the modified couple stress theory, 
Mindlin plate theory and von Kármán geometric nonlinearity. The non-classical model was capable of 
incorporating the microplate model with the length scale parameter, geometric nonlinearity, transverse 
shear deformation and rotary inertia. Ke et al [10] also studied the the bending, buckling and free vibration 
of annular microplates made of functionally graded materials based on the modified couple stress theory 
and Mindlin plate theory. The material properties of the FGM microplates were assumed to vary in the 
thickness direction and were estimated through the Mori–Tanaka homogenization technique. Asghari and 
Taati [11] presented a size-dependent formulation for mechanical analyses of inhomogeneous micro-plates 
based on the modified couple stress theory. The governing differential equations of motion were derived 
for functionally graded plates with arbitrary shapes utilizing a variational approach. Utilizing the derived 
formulation, the free-vibration behavior as well as the static response of a rectangular FG micro-plate was 
proposed. Natarajan et al [12] investigated the size dependent linear free flexural vibration behavior of 
functionally graded nanoplates using the iso-geometric based finite element method. The field variables 
were approximated by non-uniform rational B-splines. The nonlocal constitutive relation was based on 
Eringen’s differential form of nonlocal elasticity theory.  

In present research, as a first endeavor, the free vibration of functionally graded nanoplates is 
investigated based on second order shear deformation theory using nonlocal elasticity theory. An 
analytical approach is used to study the free vibration of functionally graded nanoplates. It is assumed that 
the material properties are varying through the thickness according to power law distribution. The results 
of present work may be used as bench marks for future works. 
 

2. REVIEW OF NONLOCAL ELASTICITY THEORY 

Up to now, different theories have been developed with considering size effects such as nonlocal and 
strain gradient elasticity theories. In nonlocal theory of elasticity, the points undergo translational motion 
as in the classical case, but the stress at a point depends on the strain in a region near that point [13]. As 
for physical interpretation, the nonlocal theory incorporates long range interactions between points in a 
continuum model. Such long range interactions occur between charged atoms or molecules in a solid [14]. 
Consider a single layer graphene sheet with assumed isotropic material in continuum model. The non-
local constitutive behavior of a Hookean solid can be represented by the following differential constitutive 
equations: 

                                                       ሺ1 െ ߪଶሻ׏ߤ ൌ  (1)                                                                ݐ

where μ is the nonlocal parameter and t is the macroscopic stress tensor at a point which is defined for 
macro structures [15-17]. As an example of studies, by considering size effects which may be potentially 
useful to micro/nano technology and micro/nano design and manufacturing is the bending of a mirco/nano 
cantilever beam, useful for the design of actuators and micro/nano probes for chemical and medical 
applications reported by Aifantis [18]. As another example, experimental test of the radial vibration of 
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spherical nanoparticles made of materials with anisotropic elasticity was theoretically investigated using 
nonlocal continuum mechanics. The suggested model was justified by good agreement between the results 
given by this model and available experimental data [19].  
 

3. GOVERNING EQUATIONS 

According to the second order shear deformation theory [20-22], the displacements of an arbitrary point of 
the functionally graded nanoplate can be defined in terms of seven unknown parameters in Cartesian 
coordinate as follows:   
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Using the displacement form (2), the strain-displacement relations give the following strain field for 
second order shear deformation theory,  
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The equations of motion of the second order shear deformation theory will be derived using the dynamic 
version of the principle of virtual displacements [20] as follows: 
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where 
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On the other hand, it has been previously pointed out that for the free vibration of functionally graded 
nanoplates, the size effects should be considered. So the stress-strain relations can be defined as [23, 24], 
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where ߤ is the nonlocal parameter and the elastic constants for functionally graded nanoplate can be 
expressed as, 
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where ܧ and ݒ are the Young's modulus and Poisson's ratio, respectively. Integrating these results yields 
the stress and moment resultants as follows:  
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Where  
   

 

Now, by combining appropriate equations by taking seven equilibrium Eqs. (4) into consideration, one can 
easily obtain the governing differential equations for functionally graded nanoplate. These equations are 
expressed as,  
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This completes the development of second order shear deformation theory for studying the free vibration 

of rectangular functionally graded nanoplates. It is mentioned that the equations of motion of the first 

order plate theory and Kirchhoff plate theory can be achieved from the above equations for isotropic and 

functionally graded nanoplates. In fact, the above governing differential equations on the basis of second 

order theory are similar to those for first order theory for macro plates [20]. Due to the fact that the 

nonlocal parameter loses its effect at the edges of the plate in view of deflections being zero there, simply 

supported boundary conditions for the nonlocal plate are the same as those of the local plate theory [25]. 

So the Navier solution may be a good assumption for solving the above equations. In the present work, it 

is assumed that,  
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Thus, the governing equations for functionally graded nanoplates are satisfied for simply supported 
boundary condition. To compute the natural frequencies, it is better to rewrite the above equations in the 
following form,	

ሺሾܭሿ ൅ ߱ଶሾܯሿሻࢄ ൌ 0                                                                (27) 

Where ࢄ ൌ ሾ࢛	࢜	࢝	 1Q 	 2Q 1 	 2 ሿࢀ. The components of matrices in Eq. (27) are defined in the appendix. 
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4. NUMERICAL RESULTS 

In this section, first of all, the accuracy of the present formulation is studied through examples of isotropic 
nanoplate and functionally graded macro plate. Then, a parametric study is carried out to show the 
influences of different parameters such as nonlocal parameter and power law index. It is important to 
mention that the material properties of functionally graded are assumed as,  

ܧ ൌ ሺܧ௖ െ ௠ሻሺܧ
ݖ
݄
൅ 0.5ሻ௣ ൅  ௠ܧ

(28) 

ߩ ൌ ሺߩ௖ െ ௠ሻሺߩ
ݖ
݄
൅ 0.5ሻ௣ ൅  ௠ߩ

where ܧ௖ ൌ ,ܽܲܩ380 ௖ߩ ൌ 3800, ௠ܧ	 ൌ ,ܽܲܩ70 ௠ߩ ൌ 2702	ሾ16ሿ.		In Table 1, current results are 

compared with the results of first order shear deformation theory [16] and higher order shear deformation 

theory [16] for functionally graded macro plates. It can be seen that for different power law indexes, the 

non-dimensional frequencies are in good agreement, especially with the results of higher order shear 

deformation theory. In this example, the non-dimensional frequency is defined as,  

࣓ ൌ ݄߱ට
ா೎
ఘ೎

                                                                             (29) 

In Table 2, the present nonlocal second order shear deformation theory is compared with nonlocal 
first order shear deformation theory. It is noted that the nanoplate in this example is isotropic. It is shown 
that for different modes of vibration, the results are in good agreement. In this table the frequency ratio is 
considered as follows:   

Frequency	ratio ൌ
Natural	frequency	using	nonlocal	theory
Natural	frequency		using	local	theory

 

It is shown that with the increase of nonlocal parameter, the frequency ratio decreases for all modes 
of vibration. Figure 1 depicts the effects of power law indexes for different modes. In this figure, the 
nonlocal parameter is assumed to be 0.04 ݊݉ଶ. It can be seen that increasing the power law index will 
cause the non-dimensional frequencies to decrease. It is also shown that the above result is independent of 
the mode of vibration. Figure 2 illustrates the effects of both length to thickness ratio and power law index 
on the non-dimensional frequencies of FG nanoplates. The value of nonlocal parameter is the same as 
Table 1. According to Table 1 and Fig. 2, it is found that with the increase of power law indexes, the 
frequencies decrease for functionally graded macro and nano plates. Moreover, one can easily see that 
increasing the length to thickness ratio will decrease the natural frequencies. In Fig. 3, the influences of 
both nonlocal parameter and power law index are presented for simply supported FG nanoplates. In this 
figure the non-dimensional parameter g is defined as,  

݃ ൌ √ఓ

௔
                                                                               (30) 

where ܽ is the length of nanoplate. It is shown that with increasing the nonlocal parameter and power law 
index, the natural frequencies will decrease. The same result is found for mode (2,2) in Fig. 4. From Figs. 
3 and 4, it is also found that by increasing the nonlocal parameter, the rate of variation of non-dimensional 
frequencies will decrease. From these figures it is shown that in investigating the FG nanoplates, the 
effects of nonlocal parameter cannot be ignored so the theories for macro plates are not suitable for 
nanoplates. Figure 5 shows the influences of both nonlocal parameter and power law index on frequency 
ratios. One can easily find that increasing the parameter g will cause the frequency ratios to decrease but 
the power law indexes do not have a special effect on the frequency ratios. It may be important to note that 
the behaviors of non-dimensional frequency and frequency ratio are not the same and they can be studied 
separately. 
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Table 1. Non-dimensional frequencies of functionally graded square macro plate (ߤ ൌ 0, 
௔

௛
ൌ 20) 

p Present HSDT[16] FSDT[16] 
0 0.0148 0.0148 0.0146 
1 0.0113 0.0113 0.0113 
4 0.0098 0.0098 0.0098 

10 0.0094 0.0094 0.0094 
 

Table 2. Frequency ratios for isotropic square nanoplate 

 ඥߤ 
(1,1) 0.0 0.2 0.4 0.6 

Present 1 0.7475 0.4904 0.3512
FSDT[17] 1 0.7475 0.4904 0.3512 

(1,2)     
Present 1 0.5799 0.3353 0.2308

FSDT[17] 1 0.5799 0.3353 0.2308 
(2,2)     

Present 1 0.4904 0.2708 0.1844
FSDT[17] 1 0.4904 0.2708 0.1844 

 

 
Fig 1. The effects of power law index on non-dimensional frequencies (߱ ൌ ߱ ൈ 10ଷ)  for different modes 

 
Fig 2. The effects of length to thickness ratio and power law index on non-dimensional frequencies  
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Fig 3. The effects of parameter g and power law index on non-dimensional frequencies (mode (1,1)) 

 
Fig 4. The effects of parameter g and power law index on non-dimensional frequencies (mode (2,2)) 

 
Fig 5. The effects of parameter g and power law index on frequency ratios  
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Fig 6. The effects of aspect ratio and nonlocal parameter on frequency ratios (1,1) 

  
Fig 7. The effects of aspect ratio and nonlocal parameter on frequency ratios (2,2) 

 
In Figs. 6 and 7, the effects of aspect ratio and nonlocal parameter on the frequency ratios of 

rectangular nanoplates are shown for different modes of vibration. It is shown that with the increase of 
aspect ratio, the frequency ratios increase. It is illustrated that for lower aspect ratios, the influence of 
nonlocal parameters decreases. From these figures, it seems that the frequency ratios for mode (2,2) are 
less than those for mode (1,1). Finally, it is noted that the present methodology can be used for 
investigating other nano structures, too [26, 27].  

 
5. CONCLUSION 
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results from this method agreed with those of FSDT and HSDT for FG macro plates. The present results 
were also in good agreement for isotropic nanoplates based on nonlocal FSDT.  It was shown that,  

 Increasing the power law index will cause the non-dimensional frequencies to decrease. 
 Increasing the length to thickness ratio will decrease the natural frequencies. 
 Increasing the parameter g will cause the frequency ratios to decrease.  
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APPENDIX A 

The components of matrices in equation (27) are defined as follow, 

ଵଵܭ ൌ 66
2

11
2 AA   ଺ଶܭ  ൌ 6612 DD    

ଵଶܭ ൌ െ 6612 AA   ଺ଷܭ  ൌ 552 B  

ଵସܭ ൌ 66
2

11
2 BB   ଺ସܭ  ൌ 5566

2
11

2 2BEE    

ଵହܭ ൌ 66
2

11
2 DD   ଺ହܭ  ൌ 5566

2
11

2 4DFF    

ଵ଺ܭ ൌ 6612 BB   ଺଺ܭ  ൌ 6612 EE    

ଵ଻ܭ ൌ 6612 DD   ଺଻ܭ  ൌ 6612 FF    

ଶଵܭ ൌ 6612 AA   ଻ଵܭ  ൌ 6612 DD    

ଶଶܭ ൌ 66
2

22
2 AA   ଻ଶܭ  ൌ 66

2
22

2 DD    

ଶସܭ ൌ 6612 BB   ଻ଷܭ  ൌ 442 B  

ଶହܭ ൌ 6612 BD   ଻ସܭ  ൌ 6612 EE    

ଶ଺ܭ ൌ 66
2

22
2 BB   ଻ହܭ  ൌ 6612 FF    

ଶ଻ܭ ൌ 66
2

22
2 DD   ଻଺ܭ  ൌ 4466

2
22

2 2BEE    

ଷଷܭ ൌ 44
2

55
2 AA   ଻଻ܭ  ൌ 4466

2
22

2 4DFF    

ଷସܭ ൌ 55A ଵଵܯ  ൌ ))(()( 22
00   II  

ଷହܭ ൌ 552 ଵସܯ  ൌ ))(()( 22
11   II  

ଷ଺ܭ ൌ 44A ଵହܯ  ൌ ))(()( 22
22   II  

ଷ଻ܭ ൌ 442 B ଶଶܯ  ൌ ))(()( 22
00   II  

ସଵܭ ൌ 66
2

11
2 BB   ଶ଺ܯ  ൌ ))(()( 22

11   II  
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ସଶܭ ൌ 6612 BB   ଶ଻ܯ  ൌ ))(()( 22
22   II  

ସଷܭ ൌ 55A ଷଷܯ  ൌ ))(()( 22
00   II  

ସସܭ ൌ 5566
2

11
2 ADBD  ସଵܯ  ൌ ))(()( 22

11   II  

ସହܭ ൌ 5566
2

11
2 2BEE   ସସܯ  ൌ ))(()( 22

22   II  

ସ଺ܭ ൌ 6612 DD   ସହܯ  ൌ ))(()( 22
33   II  

ସ଻ܭ ൌ 6612 EE   ହଶܯ  ൌ ))(()( 22
11   II  

ହଵܭ ൌ 6612 BB   ହ଺ܯ  ൌ ))(()( 22
22   II  

ହଶܭ ൌ 66
2

22
2 BB   ହ଻ܯ  ൌ ))(()( 22

33   II  

ହଷܭ ൌ 44A ଺ଵܯ  ൌ ))(()( 22
22   II  

ହସܭ ൌ 6612 DD   ଺ସܯ  ൌ ))(()( 22
33   II  

ହହܭ ൌ 6612 EE   ଺ହܯ  ൌ ))(()( 22
44   II  

ହ଺ܭ ൌ 4466
2

22
2 ADD   ଻ଶܯ  ൌ ))(()( 22

22   II  

ହ଻ܭ ൌ 4466
2

22
2 2BEE   ଻଺ܯ  ൌ ))(()( 22

33   II  

଺ଵܭ ൌ 66
2

11
2 DD   ଻଻ܯ  ൌ ))(()( 22

44   II  

 


