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Abstract: In the present study, the microstructural changes of a Nickel based superalloy Nimonic 
80A during a non-isothermal deformation were studied. Therefore, microstructure evolution 
during hot side pressing test was predicted with combined methods of finite element analysis and 
processing map of the material. The predicted results were validated through experimental 
microstructural studies. The results show that the distribution of deformation parameters (i.e. 
strain, strain rate, and temperature) is non-uniform in the deformed samples. The severity of this 
non-uniformity depends on the amount of sample reduction. High reduction value at one step 
forging can cause flow localization and non-uniform dynamic recrystallization, which results the 
formation of adiabatic shear bands, while using the lower reduction value at each forging step, 
leads to more uniformly distribution of the deformation parameters and thus uniform the dynamic 
recrystallization with the stable flow. Hence the workability and microstructure of the Nimonic 
80A alloy are mainly depends on the deformation path.           
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1. Introduction 

Nimonic 80A is a wrought, age-hardenable nickel-based superalloy which is strengthened by the addition 
of titanium, aluminum and carbon that is developed for parts used in high temperature applications [1-3]. 
Nimonic 80A due to its specific material properties such as high strength at elevated temperatures was 
used for turbine blades in some industrial gas turbine engines [3, 4]. Turbine blade is one of the most 
important mechanical components of turbine engines. Hot forging is extensively used for producing these 
blades [5]. However, hot working of Nimonic alloys is difficult because of limited workability and 
presence of complex phase system in these alloys [1-2]. Moreover, complicated geometry of turbine 
blades causes inhomogeneous distribution of deformation parameters such as strain, strain rate and 
temperature. Deformation inhomogeneity  is more critical when the hot forging is done in non-isothermal 
condition, due to large surface contact of deforming hot material with the cold die [6]. The deformation 
inhomogeneity may cause flow localization and shear band formation [6, 7]. The severity of these flow 
localization mainly depend on specimen preheat temperature, die temperature, and forging speed [6]. On 
the other side, weak workability and high flow stress at low temperatures and incipient melting at high 
temperatures results in relatively narrow allowable temperature ranges for deformation of these alloys [8].  
However, non-isothermal forging due to both lower cost and higher production rate is still extensively 
used in the metal forming industry [9, 10].  

Since mechanical properties of the hot deformed material greatly depend on homogeneity of 
microstructure, it is needed to predict the effects of hot deformation parameters on the final 
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microstructure. Therefore, it is very important to control the dynamic metallurgical phenomena occurring 
during the deformation such as recrystallization and recovery [2]. Processing maps, in which maps the 
power efficiency of the deformation of the material in a strain rate/temperature space, are very helpful 
tools for this purpose [11]. According to these maps, processing parameters should be designed to operate 
in the region identified as stable or the safe region of deformation.  

In this research, in order to study the microstructure evolution during the non-isothermal hot 
deformation of Ni80A alloy, laboratory side pressing tests with different deformation paths have been 
performed on the samples with different thermo-mechanical histories.  Side-pressing is a type of open die 
forging in which a long cylindrical specimen lies on the bottom die surface and presses material between 
two flat dies in such a way that the longitudinal axis of the specimen (cylinder axis) is parallel to the die 
surfaces. This test is used to empirically simulate the plane-strain deformation condition of turbine blade 
forging. The variation of deformation parameters such as strain, strain rate and temperature in the 
deforming material were predicted by the finite element analysis. The processing maps with instability 
criteria, along with optical microscopy investigations were used to study the microstructural changes 
during deformation. 
  

2. Experimental Procedure 

Cylindrical specimens of 14 mm diameter and 60 mm height were machined from the received 
commercially rolled bar of Ni80A alloy. Non-isothermal hot side-pressing tests were done on the 
preheated samples using a mechanical press of crank type with 40 nominal storks per minute and 300 mm 
connecting rod length. The die made from H13 tool steel and was used at room temperature. In order to 
study the effects of thermo-mechanical parameters on the microstructure, four samples were considered as 
listed in Table 1. The samples were cut and the cross section of each sample was polished and etched with 
an aqueous solution containing picric acid and then studied via optical microscopy. 

Table 1. Thermo-mechanical route of side-pressed samples. 

Sample code Description  
A1 Preheated at 1175 Ԩ,	then	35 % reduction (final thickness: 9mm) and finally air-

cooled. 
A2 Preheated at 1175 Ԩ,	then	35 % reduction (final thickness: 9mm), then 5 minute 

heating at 1175Ԩ and finally air-cooled. 
A3 Preheated at 1175 Ԩ,	then	35 % reduction (final thickness: 9mm), then 5 minute 

heating at 1175Ԩ, then 44% reduction (final thickness: 5mm) and finally air-
cooled. 

A4 Preheated at 1175 Ԩ,	then 64 % reduction (final thickness: 5mm) and finally air-
cooled. 

 
3. Modeling Approach 

3.1. Processing map  
During plastic deformation, most of the consumed energy dissipated as heat which cause to increase the 
temperature of the deforming material. The remained energy served for metallurgical phenomena inside 
the material such as dynamic recovery and dynamic recrystallization. The power dissipation 
characteristics of the material during the hot deformation can be related to microstructural changes [11]. 
The efficiency of power dissipation occurring through microstructural changes (the ratio of dissipated 
energy due to metallurgical changes (dissipater co-content) to maximum dissipater co-content) can be 
related to the strain rate sensitivity of the flow stress (݉) by; 
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