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Abstract – Analysis of time series data can involve the inversion of large covariance matrices. For the 
class of ARMA (p, q) processes there are no exact explicit expressions for these inverses, except for the 
MA (1) process. In practice, the sample covariance matrix can be very large and inversion can be 
computationally time consuming and so approximate explicit expressions for the inverse are desirable. 
This paper offers some of these approximations.  
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1. INTRODUCTION 
 

Let  }{ tε  be a sequence of independent random variables with zero mean and variance 2σ . An 
ARMA (p,q) process }{ tx  is defined by 
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We assume that stationary and invertibility conditions are held. When p and q are equal to unity 

the parameter subscript is dropped according to usual practice. In the covariance matrix Σ  of 
),,,( 21 Txxx K=′x , Σ  is a Toeplitz matrix with the additional property of symmetry. Symmetric 

Toeplitz matrices arise frequently in statistical work as covariance matrices of wide-sense stationary 
processes. The inversion of Σ  is required for many features in time series such as estimation of 
parameters, calculation of the likelihood in normal processes, and linear and quadratic discrimination 
(See [1]). The motivations behind the inversion of Σ  are twofold in literature. Firstly, as a 
computational problem, it is to find numerical procedures that operate faster than general inversion, 
and secondly, as a mathematical problem, to find the components of the inversion explicitly. It has 
been noted that the covariance matrices of the time series as was given in (1) can be very large with 
the dimension equal to the number of observations. As an example, consider speech data or 
seismology records with more than two thousand observations. In this case, the computational method 
for inverting Σ  is both difficult and time consuming. It is desirable to find an explicit form of 
covariance matrices, possibly with suitable and analytic components of inversion. For convenience, 
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the value of 2σ  is taken as unity. For non-unit values expressions for 1−Σ  must be multiplied 
by 2−σ .  

A necessary and sufficient condition in order for a tridiagonal symmetric matrix, (MA (1) 

covariance matrix structure) to have an inverse is given by [2, 3]. This theorem was invoked later by 

[4] to find an exact form for the inverse of the covariance matrix, 1−Σ , for MA(1) processes. A 

solution for 1−Σ  by different methods has been given by [5&6]. The method given in [5] involves 

obtaining the inverse of an approximate matrix and adjusting this inverse to obtain the inverse of the 

given matrix. This method was simplified by [7] by eliminating ( )11Σ  and ( )TTΣ  from Σ , where 

( )rsΘ is denoted for (rs) th element Θ  matrix. Recently [8] expressed Σ  as the product of the 

covariance matrix of the dual autoregressive process of order one and a near identity matrix to deduce 

its inverse. The method of [5] was extended to MA (q) processes by [9]. It was shown that the inverse 

of Σ can be approximated with an AR (q) and with an inverting a matrix not larger than 



×





22
qq

 

dimension. For an AR (1) process, [10] gave a method of finding 1−Σ  using the spectral density 

function. However, it leads us to consider infinite dimension vector x. Another method was suggested 

by [11, 12] based on the symmetric property of Σ and quadratic forms. [11] also gave 1−Σ for AR(2) 

processes explicitly. For an ARMA (1, 1) process, 1−Σ  has been investigated by [10, 13, 14]. One 

problem with the suggested methods is that they can involve manipulation of very large matrices. In 

this paper an approximation of 1−Σ  for ARMA (p,q) processes is suggested based on  symmetric 

band matrices. Then the inversion of Σ is approximated via LΛLΣ ′≈−1 . The paper is organized in 

four sections as follows: in section 2, Σ  in the MA (q) process is approximated with a polynomial of 

the band matrix of band width 3 and then an inverse is obtained. This leads to an exact inverse for the 

MA (1) process. The method is extended in section 3 to obtain an approximation to the inverse of Σ  

for AR (p) processes. The fourth and final section is devoted to the inverse of the covariance matrix 

of ARMA (p, q) processes. 
 

2. INVERSE OF THE COVARIANCE MATRIX FOR MA (Q) PROCESSES 
 
A symmetric band matrix of dimension T and of band width (2q+1), q integer, is defined by 
 

                                              ( )
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qsrx
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where || srx −  is real, Tsr ,,1, K= . It is clearly a finitely correlated equation of order q.  
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Some of the spectral properties of symmetric band matrices have been investigated by [15] (see also 
[16]. It can be shown that  iB3  is an approximate symmetric band matrix of band width (2i+1), but 
with some of the elements in the upper left corner and the lower right corner slightly different. Then 
Σ  can be approximated by a polynomial in 3B , i.e. 
 
                      q

qccc 3310 BBIΣ +++≈ L           (3) 
         

where I is the identity matrix and qcc ,,0 K  are constants  that can be obtained by equating Σ  to (3), 
(see also [17]). In a numerical study, [18] has shown that the best matrix for use in this polynomial 
approximation is 3B  given in (2) with 00 =x , and .111 −== −xx  For example, the covariance matrix 
of an MA(2) process is approximated by 
 
                 .)()1({ 2

323211
2

2
2

1 BBIΣ ββββββ ++−++≈     (4) 
 

The only error in the approximation is that ( )11Σ  and ( )TTΣ  have the approximate value 
2

2
2

2
11 βββ +++ . All the other elements take their true values. 

The rth eigenvalue of band matrix 3B  is given by )(cos2 ωλ rr −= , where )1/( += Tπω . The 
rth normalized eigenvector associated with rλ , denoted by rξ , is given by  
 

).)(sin,,)2(sin,)((sin)}1/(2{ 2
1

ωωω TrrrTr K+=′ξ  
 

The TT ×  symmetric matrix of eigenvectors is ),,( 1 TξξL K=  and ΛLLΣ =′  where Λ  is a 
diagonal matrix given by ( ) ).cos(2 ωrrr −=Λ   

Since ii ΛLBL =′3 , then for the MA (q) process LLΣ ′ is an approximate diagonal matrix with 
elements 
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and hence ( ) LLΣLLΣ 1 ′=′ −−1  is also an approximate diagonal matrix with elements  
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Thus the approximate inverse of the covariance matrix,Σ , for an MA(q) process is given by 

LΛL 1
β
−′ with the (rs)th element of 1−Σ  given by 

 

( ) ∑ ∑
=

−

=

− −
+

≈
T

j

q

i

i
isr TsjTrjTjc

T 1

1

0

1 ).(sin)(sin}))(cos2({
1

2 ωωωΣ  

 
As an example for q=1, ββ −=+= 1

2
0 ,1 cc , 3

2 )1( BIΣ ββ ++=  and the exact inverse 
matrix Σ  for MA(1) process is given by 
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It should be noted that the ( )rs

1−Σ  given in [9] are more complicated than that given in (6). For 
an MA(2) process using (4),  
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It should be pointed out that the most common used result for inversion of matrix of covariance 

of ARMA process is given by [19] as 
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where )(λf  is a spectral density function. It is assumed that Σ  is circulated and differs from the true 
Σ  in the MA (q) process by blocks in the corners. The method given in this section suggests an exact 
inverse of the Σ  matrix which differs from the required covariance matrix by at most 

)1()1( −×− qq  blocks at the upper left and lower right corners. This corner effect can be easily 
obtained for small q. The method also leads to an exact form of  1−Σ  with q=1 and with more 
appropriate elements given in [11] for MA (2). 
The next section is devoted to covariance matrix of autoregressive processes. 
 

3. INVERSE OF THE COVARIANCE MATRIX FOR AR (P) PROCESSES 
 
The inverse of the covariance matrix for an AR (1) process can be approximated by the covariance 
matrix of an MA (1) process [8, 20]. For AR (p) processes the Yule-Walker equations allow the 
covariance matrix to be expressed as 
 
                           ppaa ΘΘΣ ++= L11        (7) 
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−=θΘ  , the jθ ′ s are the roots of 01

1 =+++ −
p

pp aa Lθθ  and the ja′ s are constants 
determined from initial conditions (for example see [21, 22]). Σ  can be approximately diagonalised 
by employing an L matrix. In [18] it is shown that 
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where ( )rsiΛ  is given in (8) and hence LLΣ ′  is an approximate diagonal matrix. This gives the 
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Now, the last two sections can be combined to generalize the method to autoregressive moving 

average processes. 
  

4. INVERSE OF THE COVARIANCE MATRIX FOR ARMA (P, Q) PROCESSES 
 
Following [21, 23], express the ARMA (p,q) process (1) as 
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where B is the backward shift operator and 1=0β . Hence ∑ = −=
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Hence, it can then be shown that the covariance matrix, Σ , for the ARMA (p,q) process can be 

approximately expressed as the product of the covariance matrix, αΣ , of the AR(p) process, 
∑ = − =+

p

j tjtjt xx
1

εα , and the covariance matrix, βΣ , of the MA(q) process, ∑ = −=
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which is given in (10). Now .1111111 LΛΛLLΛLLΛLΣΣΣ −−−−−−− ′=′′≈≈ αβαβαβ  Hence from (6) and 
(9) it is easily seen that ( )rs

1−Σ  is approximately equal to 
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In particular for the ARMA (1, 1) process  
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where 1,,1,0|,| −=−= Tsr Kττ . This matrix can be approximately expressed as the product of 
the covariance matrix of an AR (1) process and that of an MA (1) process, i.e. 
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