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Abstract – An improved MIT bag model with hyper central interactions is used to calculate the static 
properties of hadrons containing u, d, s and c quarks. We present a theoretical approach to the internal 
structure of three-body hyper central interacting quarks in a hadron, in which we take hadron as a bag. 
We discuss a few of the results obtained using a six-dimension harmonic oscilator (h.o) potential, having 
a two-body character, which turns out to be a hyper central confinement part. The other potential is six-
dimensional, which is attractive for small separation, originating from the color charge of hyper color 
term. However the potential can easily be generalized in order to allow a systematic analysis. We 
calculate the relativistic wave function for quarks in a scalar-vector hyper central potential, analytically. 
Finally, vanishing the normal component of vector current at the surface of the baryon bag as a boundary 
condition equivalent to confinement, results in the static properties and the strength of hyper Coulomb 
like potential parameter. This depends on the mass parameters contrary to almost all previous versions. 
The calculated static properties for baryon are better than in the uncorrected versions of the model. 
PACS index 12.39 .Ba, 12.39. Ki, 12.39. nP  

 
Keywords – Hyper central interaction, hadron, static properties, dirac equation, charge radius, magnetic 
moment  
 

1. INTRODUCTION 
 

Because of its simplicity, the MIT bag model [1] is rather convenient for calculating various hadronic 
properties. The MIT bag model possesses many desirable features inspired by QCD and relativity. 
However, so far there is no derivation of the bag model from the first principles. Thus, it is important 
to test the model in a situation other than those in which the dynamics of the model were originally 
formulated. The success of the first attempts to calculate the static properties of hadrons lend credence 
to the bag model approach to hadronic phenomenology by using the normalized spin 

2
1 positive parity 

solution of the MIT bag model for studying the nuclear matter saturation mechanism based on the 
quark structure of the nucleon [2], and also recently, a quark- meson coupling QMC mechanism for 
the saturation of the nuclear was initially proposed by Guichon [3] and generalized by Fleck et al [4], 
Satio and Thomas [5] and Song and Su [6]. In the QMC model, the baryon is described by the static 
spherical MIT bag model using the normalized ground state for quark in the baryons. 

Although the MIT bag model gives results which are within an acceptable range that shows the 
correctness of its essential ingredients, obviously it has short comings. One of the short comings is the  
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neglecting of inter-quark interactions. The MIT bag model uses a free quark wave function with a no-

current boundary condition in the bag’s wall. Certainly quarks interact as a three-body force among 

themselves within the bag, which will change the standard results. In the past, certain modifications of 

the model were introduced, giving rise to a better agreement with experimental values [7, 8]. In this 

paper, a modification is proposed by extending the model to include certain residual hyper central 

interaction among quarks. In our model, each quark moves inside the bag in the effective field of the 

other quarks and gluons. The relativistic Dirac equation is considered, but with the above mentioned 

effective hyper central potential. In Tables 1 and 2 the static properties of the nucleon derived in the 

modified model are compared with the standard bag model and experimental results [7, 8]. As can be 

seen from the tables, the results show considerable correction over the standard results. The 

agreement is much better, especially for the magnetic moment. Now using 
V

A

g
g

as input we derive 

other values given in Tables 1 and 2. The improvement is rather remarkable. For example, it gives 

much more acceptable values for proton compared to the standard model. Further improved results 

can be found in Table 2. 
 

Table 1. Comparing static properties of proton in our model and MIT bag model with experiments 
 

 
Proton 

 
MIT bag model Our model Experiment 

qm  
 

0 012.0241.186 ± Mev ~100~350 Mev * 

VA gg /  1.09 006.0254.1 ±  
 

006.0254.1 ±  
 

2
12 >< emr  0.73   f m 003.0842.0 ± fm 

 0.88± 0.03 fm 

pµ  1.9 n.m 016.0693.2 ±  n.m 2.792 n.m 
 

xb 1.5 f m 000.0234.1 ± fm -- 
 

sα  0 002.0753.0 ±  
10 ≤≤ sα   * 

  
*The values are not directly measured but inferred from experiment 
 
Now the different interactions that are considered are briefly discussed. The effective interaction 

of quarks due to gluon exchange is assumed to be given by hyper central potential for each quark. It is 
assumed that the internal quark motion is described by the Jacobi coordinates ρ and λ [9, 10]. In order 
to describe the three quark dynamics it is convenient to introduce the hyper spherical coordinates, 
which are obtained by substituting the absolute values of ρ  and λ  in 22 λρ +=x , where x is the 
hyper radius. If it is assumed that the confining potential is hyper central, and hence depending only 
on x , there are two kinds of hyper central potentials in this model, which leads to analytical solutions 
based on a suitable ansatz [11]. The first is six-dimensional harmonic oscillator (h.o) potential, which 
has a two-body character, and turns out to be exactly hyper central since  
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The second one is the six–dimensional hyper Coulomb potential [10, 11], which is attractive for small 
separations originating from the color charge: 
 

                                                                  
x
c

x
kxV s

hyC −==
α)(                                              (2) 

 
However there have been some interesting attempts to interpolate between (1) and (2), [12-17]. 

In Section 2 we have calculated the relativistic wave function for valence quarks. The potential 
parameters can be found by fitting as in Section 3.1. The results indicate that this potential is useful 
for quarks having masses in the range used in the phenomenological analysis of the quark model. In 
Section 3.2 charge radius, and in Section 3.3 the magnetic moment have been found for different 
quark masses. In our model it is concluded that there is a reasonable consistency between the 
calculated values and the experimental results. 
 

Table 2. Comparing magnetic moment of different baryons based on the  MIT bag  
model and the model developed in this paper  with experiment 

 
 

Baryon 
 

MIT bag model Our model Experiment 

P 90.1 n.m 016.0693.2 ± n.m 782.2 n.m 
n  -1.273 n.m - 008.0884.1 ±  n.m 912.1−  n.m 

Λ  -0. 494 n.m 009.0618.0 ±−  n.m 
 

614.0− n.m 
 

−∑  0.684 n.m 006.0149.1 ± n.m 
 156.1 n.m 

+∑  1.843 n.m 123.0485.2 ±  n.m 418.2 n.m 

≡  
 -1.064 n.m 007.0243.1 ±− n.m 256.1− n.m 

 
−≡  -0.437 n.m - 005.0681.0 ±  n.m 689,0− n.m 

 
In the following section, by solving the Dirac equation, the relativistic wave function for valence 

quarks has been calculated analytically. The nucleon masses and the ratio 006.0254.1 ±=
V

A

g
g [18] are 

taken as our inputs. These inputs fix the parameters in the potentials and the quark mass, and from 

them several other nucleon properties are derived. The numerical values and static properties of our 

model with three quarks potential, suitable for constituent quark’s masses, which are in the range of 

)350~100(~ Mev show remarkable improvement over previous results obtained by the MIT bag 

model quarks potential. 
In Section 3.4 the strong coupling constant sα  has been found. Finally, in section (4) we give our 

conclusion.  
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2. HYPERCENTRAL RELATIVISTIC WAVE FUNCTION 
 FOR THREE QUARKS IN A HADRON 

 
The constituent quark model based on a hyper central approach takes into account three body force 
effects and the standard two-body potential contributions. 

Let’s represent the quark wave function satisfying the Dirac equation by )(x
r

ψ , so 
  
                                                   0)())]((.[

0
=+−∇+ xxUmi rrr

ψγεγ                                                      (3) 

 
The hyper central potentials, which lead to analytical solution in our model would be 

      

                                               )()1(
2
1)( 0 xAexU γ+=                                    (4) 

 
The parameter e  can take any value [19-21]. In this investigation it is taken as 1.  
Hence, from Eq. (1, 2) the interaction potential can be taken as  
 

                                                       
x
caxxA −= 2)(                                           (5) 

 
This potential has interesting properties and yields good physical results. The solution of the Dirac 
equation can be worked out analytically. The quark potential, )(xU , is assumed to depend on the 
hyper radius x  only. The Dirac equation may transform in various ways under a Lorentz 
transformation. The form in common use for Scalar Hyper Central Potential ))(( 0 xU and vector Hyper 
Central Potential ))(( 0 xV  is often taken as follows: 
 

                        [ ] )()()()()()( 00 xxxVxxUmxi ψεψψβψα =+++∇⋅−
rr                   (6) 

 
From Eqs. (3, 4 and 5)  
 

                                               )(
2
1)()( 00 xAxUxV ==                                                  (7) 

 
The eigenspinor of (5) denoted by )(

3
xjjψ is rewritten as  

 

                                     
εχχϕσ
εϕϕχσ

=−+−
=+++

))()(().(
))()(().(

00

00

xVxUmP
xVxUmP                                                  (8) 

 
Here 

)ˆ()()ˆ()( 33 xYxifandxYxg j
lj

j
jl

′
′== γγ χϕ . Now we combine with two equations (8) for the Dirac upper 

component and from Eqs. (7, 8) we have  
 

                                     0)())((
)(2

=+−+
+

xgxAm
m

xgP
γ

γ ε
ε

                                             (9) 

 
The internal quark motion is usually described by means of the Jacobi relative coordinates. After 

separating the common motion, the P2 operator of a quark in the 3q system becomes ( )1== ch  [10] 
            

                        ))(5()( 2

2

2

2
222

x
L

dx
d

xdx
dP Ω

++−=∇+∇−= λρ                                     (10) 
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Hence  
 

       0)())()((
)()(

)(5)( 2
2

2
2

=+−−+
Ω

+′+′′ xgxAmm
x

xgL
xg

x
xg γ

γ
γγ εε                     (11) 

 
with )(xA  given by (5), where )4()(2 +−=Ω γγL is the grand orbital operator and γ  is the grand 
angular quantum number given by λργ lln ++= 2 . Using the method used by Znojil [21, 22] we find 
the upper component )(xgγ  of the Dirac hyper central spinor. Now for the eigenfunction )(xgγ  we 
make an ansatz [11, 23- 26]. 

        
                                                               [ ])(exp)()( xZxhxg =γ                                          (12) 
 
With )(xh  and )(xZ  given by  
  

                                                






+−=
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xxxZ

xxh

ln
2
1)(

1)(

2

1

δα

α
                                    (13)                  

 
This implies  
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)(
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Then our purpose is to find the fraction of the power of x to the one on the left hand side of Eq. (11) 
corresponding to the potential and energy. A comparison of Eq. (14) with Eq. (11) yield α  1,α  and 
γ . 
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                                           (15) 

 
Taking γδ = leads to the wave function, which is well behaved at the origin. 
The potential parameters a  and c  in the absence of the center of mass correction are as follows: 

 

                                                    2

2

)4(4
))((

+
−+

=
γ

εε mma                                (16) 

 

                                                                  
2
1

)
4
52)(( 







+
+

+
−

=
γ
γ

ε
ε

m
mc                      (17) 

 
We try to solve this problem in the presence of the center of mass correction, where we have  
 

                                                         ε3=+=′ cmEMM                             (18) 
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Here M ′ is the corrected nucleon mass with center of mass energy cmE . 
For three quarks with energy ε  and mass m , from Eq. (9) we have 
 

                                           0)(3)()(
3

1

3

1

22
3

1
2

2

=







+−++ ∏∑∑

=== i
i

i
i

i i

mrAm
dr
d ϕεε .                           (19) 

 
From Jacobin coordinates this separates into three equations for λρ ,  and R, where one of them 

determines the center of mass 
 

                                                        )(
3
1

321 rrrR rrrr
++=                                                (20) 

 
And the other two equations, ρ  and λ , have been combined as hyper central equations which were 
discussed previously. Let R3=η then 
 

                                      0)()()( 22
12

2

=







−−+− ηϕεη

η
mA

d
d .                                           (21) 

 
Now it is obvious that the center of mass energy is  
 

                                                                   2
1

22 )( mEcm −= ε .                                                      (22) 
 
From Eq. (18), and using Bogoliuabv’s assumption ε3=′M , and assuming

ε
ξ m
= , then 

  

                                         
213

3
ξ

ε
−−

==+=′
MEMM cm .                                          (23) 

 
Now the potential parameters a  and c and the parameter 1α in the presence of the center of 

mass correction are as follows: 
 

                                                         
[ ]22

3
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)1(
22

1

2
1
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1

ξγγ

ξα
−−++

−−
=

M
                                            (26) 

 
Eq (24) is a relationship between quark energy and the nucleon mass M and the potential parameters 
a . Eqs. (12, 13, 15, 24, 25) are used to find the upper component of the Dirac hypercentral spinor 

)(xgγ of the nucleon with mass M  and the parameter ξ  as follows: 
 

                                           4
1

22

2
1

)52(
)(

xy

eyxxxg
−+



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
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

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+
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γ
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γ
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where  

                                                           
)13)(4(3

)1(
2

2 2
1

ξγ
ξ

−−+

−
=

My                               (28) 

 
The lower component )(xfγ  of the Dirac hypercentral spinor can be found from (8). The 

normalized spin
2
1 positive parity solution of the quark under standard hyperspherical potential (4, 5) 

is introduced by the following form:  
 

4
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ξ
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γ
ψ

γ
γγ

γ
γ

γ r
       (29)             

 
This wave function is different from the standard MIT bag wave function. From Eq. (29), the bag 

radius bx  is determined by solving the boundary equation. This shows that the normal component of 
vector current vanishes at the surface of the baryon bag, just like as in the MIT bag model [1].  
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where  

                                       

                                                       
M)1(

)13(3 2

ξ
ξ

β
+

−−
=                              (31) 

 
The bag radius is determined by solving the above equation. In order to solve this equation for 

different values of ,...)2,1,0( =γγ , first of all let’s put 0=γ  for the ground state.  
 

                               0)5(
2
52 222 =−−








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


+− yxyyxy bb βββ                (32) 

 
The bag radius )( bx  is determined by solving the above equation. 

 

                                    2

322 )5()
2
5(

2
5

y

yyyyyy
xb β

ββββ −++−+
=                                  (33) 

 
From equations (28), (31) and (33) the bag radius ( )bx directly depends upon the quark and the 

nucleon masses. 
 

3. 1. RATIO OF Ag  TO Vg  FOR NUCLEON 
 

In this section, it is explained how the ratio 
V

A
g
g  is used as an input .The ratio of axial vector coupling 

constant Ag  to vector coupling constant Vg  in the relativistic case satisfies [1] 
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                                    )21(
3
5)21(

3
5

〉〈−=〉〈−= γγ ψψ zz
V

A ll
g
g                          (34) 

 
Eq (34) contains unknown parameters ξ and the hadrons mass M . In order to find the parameter ξ for 

proton (M=938 Mev), as an example, 
V

A

g
g

can be taken as 006.0254.1 ±  (or 002.0123.0 ±=〉〈 zl ). This 

value is measured experimentally [18], so we get 012.0597.0 ±=ξ and from Eqs. (16) and (17) the 

parameters of the potential a  and c can be found for 0=γ . Now from these we can get 

)012.0241.186( ±=qm Mev. This result is well within the expected range.  
 

3. 2. NUCLEON CHARGE- RADIUS 
 
The mean-square charge radius for a hadron >< 2

emr is defined as: 
 
                                                                   ∑ 〉〈=〉〈 qqem rer 22                                                           (35) 
 
where  
 

                                             rdrrrr
bagq

3*22 )()( rr
γγ ψψ∫=〉〈                                                   (36) 

 
By using the upper and lower components of the spinor (29) and 012.0241.186 ±=qm MeV from 

the above, the charge-radius of proton Eq. (36) we obtained 003.0842.02
1

2 ±=>< emr fm. This result is 
closer to the observed value fm03.088.0 ±  than the previous one of the MIT bag model by 13%. 

From Eq. (33) and 012.0597.0 ±=ξ  the bag radius for proton is 008.0112.1 ±=bx fm 
 

3. 3. NUCLEON MAGNETIC MOMENT 
 
By using the standard definitions of the magnetic moment, it can be shown that the general expression 
for the magnetic moment of a quark in its ground state is as follows: 
 

                                       drrgrfrNe
bagqq )()(

3
2 3

 

2
γγµ ∫−=                               (37) 

 
From the upper and lower components of the spinor (29), the magnetic moment of a proton for 

0=γ  would become 016.0693.2 ±=pµ nm, close to the experimental value 782.2 nm [8]. There is a 
considerable improvement over the result of the MIT bag model as shown in Table 1. 

The magnetic moment results of our model and the MIT bag model for several baryons are 
summarized in Table 2. In all cases the values of our model are much closer to observed ones. 
 

3. 4. THE STRONG COUPLING CONSTANT sα  
 
The strength of hyper Coulomb potential was calculated with regard to the parameter ξ  and the grand 
angular quantum number γ . The short hyper Coulomb-like term in our potential (1) is 

r
c  where c is 

the color factor, which is 
3
2

sα for the nucleon, assuming 3 flavors for quarks. Using Eqs. (2) and (17) 
the effective strong coupling constant sα is obtained: 
 

                                                   
2
1

)
4
52)(

1
1(

2
3
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+
+

+
−
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γ
γ

ξ
ξαs .                                                 (38) 
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In the model for the proton where 012.0241.186 ±=qm Mev, it is found that 

002.0753.0 ±=sα for a ground state in which 0=γ . This is in the acceptable range, 10 ≤≤ Sα . It 
should be noted that sα is an effective coupling constant in our model and is not a fundamental 
quantity. 
 

4. CONCLUSIONS 
 
We present a theorical approach to the internal structure for three valance quarks in a bag with 
residual hypercentral interaction, among them are asymptotic freedom and confinement. Hence, the 
results have been improved from the MIT bag model to get better results than many of the improved 
bag models to a large extent. From Table 1 the static properties of proton, as an example, is seen to be 
very close to the experimental results. This method, just like MIT bag model, can be applied to a wide 
variety of baryons and mesons. In general we have considered the proton only, however, in all cases 
our results are much closer to the experimental values than the other improved bag models. For a few 
other hadrons we have checked the magnetic moments which show a remarkable improvement. 

Comparing Tables 1 and 2 with the MIT bag model and experimental results shows that our 
model certainly improves the MIT bag model, and hence, can also improve the models in references 
[2, 3]. 
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