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Abstract – In this paper, strong laws of large numbers (SLLN) are obtained for the sums ∑
=

n

i
iX

1
, under 

certain conditions, where }1,{ ≥nX n is a sequence of pairwise negatively dependent random variables. 
 
Keywords – Strong law of large numbers, pairwise negatively dependent random variables 
 

1. INTRODUCTION AND PRELIMINARIES 
 

In many stochastic models, the assumption of independence among random variables (henceforth 

r.v.’s) is not plausible. In fact, increases in some r.v.’s are often related to decreases in other r.v.’s, 

and the assumption of pairwise negative dependence is more appropriate than the independence 

assumption. Let }1,{ ≥nXn  be a sequence of integrable r.v.’s defined on the same probability space, 

and put ∑
=

=
n

i
iXnS

1
)(  and nnSX n /)(= . Chandra and Goswami [1] modified Kolmogrov 's SLLN 

(Theorem 5.4.2 of Chung [2]) and the SLLN of Landers and Rogge [3] for pairwise independent r.v.’s 

which are not necessarily identically distributed and satisfy certain moment conditions. Matula [4] has 

proved the SLLN for pairwise negatively dependent r.v.’s with the same distribution. Bozorgnia et al. 

[5] obtained the SLLN for weighted sums of an array of rowwise negatively dependent r.v.’s under 

certain moment conditions. Amini [6] has proved the SLLN for special negatively dependent r.v.’s 

and for weighted sums of uniformly bounded negatively dependent r.v.’s. He has also proved the 

WLLN for special pairwise negatively dependent r.v.’s. In this paper, we extend some of the 

theorems of SLLN of Chandra and Goswami [1] for pairwise negatively dependent r.v.’s which are 

not necessarily identically distributed, but satisfy certain moment conditions. 
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Definition 1: The random variables )2(,,1 ≥nXX nL  are said to be pairwise negatively dependent 
(henceforth pairwise ND) if  
   
                                         )()(),( jjiijjii xXPxXPxXxXP >>≤>> ,                                    (1) 
 
for all ix , jiRx j ≠∈ , . It can be shown that (1) is equivalent to   

               
                                        )()(),( jjiijjii xXPxXPxXxXP ≤≤≤≤≤ ,                                     (2) 
 
for all ix , jiRx j ≠∈ , .  
 
Definition 2: The random variables )2(,,1 ≥nXX nL  are said to be negatively associated (NA for 
short) if for every pair of disjoint nonempty subsets 21 , AA  of },...,1{ n ,  
 
                                              0)),(,),(( 2211 ≤∈∈ AiXfAiXfCov ii                                             (3) 
 
whenever 1f and 2f  are coordinatewise increasing (or decreasing) such that this covariance exists. 

An infinite collection of }1,{ ≥nXn  is said to be pairwise ND (negatively associated) if every 
finite subcollection is pairwise ND (negatively associated). 

It can be shown that NA implies pairwise ND and for 2=n ,  pairwise  ND  is  equivalent to NA 
(See Property 3P  of Joag-Dav and Proschan [7]). 
 
Lemma 1([6]): Let }1,{ ≥nXn  be a sequence of pairwise ND r.v.’s. If }1,{ ≥nfn  is a sequence of 
Borel functions, all of which are monotone increasing (or all are monotone decreasing), 
then }1,)({ ≥nXf nn  is a sequence of pairwise ND r.v.’s. 
 
Corollary 1: Let }1,{ ≥nXn  be a sequence of pairwise ND r.v.’s. Then { }1, ≥+ nX n  and 

}1,{ ≥− nX n are two sequences of pairwise ND r.v.’s where +
nX  and −

nX  are the positive and the 
negative parts, respectively, of the random variable nX . 
The theorem below can be obtained from the arguments of Csörgo et al. [8]. 
 
Theorem 1([1]): Let }1,{ ≥nX n be a sequence of non-negative r.v.’s with finite )( nXVar . If 
 

   (i)  ∞<=






∑
=≥

CnfXE
n

k
k

n 11
)(/)(sup , 

    

(ii) there is a double sequence }{ ijρ of non-negative real numbers such that 
            ∑∑

= =

≤
n

i

n

j
ijnSVar

1 1

))(( ρ  for each 1≥n , 
  

  (iii)  ∑∑
∞

=

∞

=

∞<∨
1 1

2))(/(
i j

ij jifρ ,  ),max( jiji =∨ . 

 
Then 
 
                                            0)(/))](()([ →− nfnSEnS  a.s.            as ∞→n . 
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2. MAIN RESULTS 

 
In this paper, C stands for a generic constant not necessarily the same in each appearance. Also, 

)}({ nf will stand for an increasing sequence such that 0)( >nf  for each n and ∞→)(nf .  
In this section, we extend some limited theorems for pairwise ND random variables with finite 
variances and certain conditions.  
 
Theorem 2: Let { }1, ≥nX n  be a sequence of pairwise ND r.v.’s with finite )( nXVar . If 
 

                                  (a)  ∞<







−∑

=≥

n

k
kk

n
nfXEXE

11
)(/))((sup ,  

 
and 
 

                                          (b)      ∑
∞

=

− ∞<
1

2 )())((
n

nXVarnf . 

 
Then  
 

[ ] 0)(/))(()( →− nfnSEnS  a.s.              as ∞→n . 
 
Proof: We put +−= ))(( nnn XEXY  and −−= ))(( nnn XEXZ , 1≥n . It is sufficient to show that 
as ∞→n , 
 

                          ∑
=

− →−
n

i
ii YEYnf

1

1 0))(())(( a.s, and ∑
=

− →−
n

i
ii ZEZnf

1

1 0))(())(( a.s.             (4) 

 
Since )()( nnn XEXEYE −≤  )1( ≥n , it follows that condition (i) of Theorem 1 is valid for 

}{ nY . Similarly, it is valid for }{ nZ . Under the pairwise ND condition we have  
 

          ∑ ∑∑∑∑
= = ===

=≤≤
n

i

n

i

n

j
iji

n

i
i

n

i
i XVarYVarYVar

1 1 111

)()()( ρ                 1≥n , 

 
where jiXVar iii == ,)(ρ  and 0=ijρ  for ji ≠ . It follows from Theorem 1 that 
 

∑
=

→−
n

i
ii YEY

nf 1
0))((

)(
1

      a.s. 

 
Replacing nX by nn XW −= and −−= ))(( nnn XEXZ by +−= ))(( nnn WEWZ one gets the second 
part of (4). Since  
 

   
)(

))(()(
nf

nSEnS −
)(

))(())((
1 1

nf

ZEZYEY
n

i

n

i
iiii∑ ∑

= =

−−−
=

)(

))()((
1 1

nf

ZEYE
n

i

n

i
ii∑ ∑

= =

−
+ , 

 
we have 0

)(
))(()(
→

−
nf

nSEnS
 a.s. 
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Example 1: Let }1,{ ≥nX n be a sequence of iid random variables and ,)( nnf α=  1>α . It is 

obvious that conditions of Theorem 2 hold and we have 0
)(

))(()(
→

−
nf

nSEnS
 a.s. 

 
Example 2: Let }1,{ ≥nXn  and )(nf be as above, 0, >−= nnnn aXaY  and ),( βnOan =  0>β . Put 

,2 nn XZ = nn YZ =−12  and ∑
=

=
n

i
iZnS

1
)( . It is obvious that }{ nZ is a sequence of pairwise ND  

r.v.'s. 
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It is easy to show that Condition (a) of Theorem 2 holds. Also  
 

∑∑∑
∞

=
−

−
∞

=

−
∞

=

− −+=
1

12
2

1
2

2

1

2 )())12(()())2(()())((
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n
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n
n

n ZVarnfZVarnfZVarnf  

 

∑∑
∞

=

−
∞

=

− ∞<−+=
1

1
22

1
1

2 .)())12(()())2((
n

n
n

XVaranfXVarnf  

 
Then, by Theorem 2, 0

)(
))(()(
→

−
nf

nSEnS
 a.s. 

 
Theorem 3: Let }1,{ ≥nX n be a sequence of pairwise ND integrable r.v.’s and }1,{ ≥nBn  be a 
sequence of semi intervals ),( nx−∞  ( ],( nx−∞ , ),[ ∞nx  or ),( ∞nx ) satisfying the following 
conditions: 
 

          (a)  ∑
∞

=

∞<∈
1

)(
n

c
nnn BXPC                   where        2)

)(
(1

nf
x

C n
n ∨=  , 

 

                                    (b) ,))(())((
1

nfoBXIXE c
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n
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                                 (c)           ∞<∈∑
∞

=

−

1

2 ))(())((
n

nnn BXIXVarnf , 

 
and                         
 

                             (d)       ))(([sup
11

kk

n

k
k

n
BXIXE ∈∑

=≥
,)](/ ∞<nf  

 
here c

nB  is the complement of nB . Then 
 

           [ ] 0)(/))(()( →− nfnSEnS a.s.                     as ∞→n . 
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Proof: Let )()( c
nnnnnnn BXIxBXIXY ∈+∈= , 1≥n . By Lemma 1, }{ nY  is a sequence of pairwise 

ND r.v.’s. By (a), (c) and (d), Theorem 2, applied to }{ nY , yields ∑
=

− →−
n

i
ii YEYnf

1

1 0))(())((  a.s. 

as ∞→n . By (a) and (b), we get ∑
=

−
n

i

nf
1

1))((  0))(( →− ii XEY  a.s. as ∞→n . Since, by 

condition (a) the r.v.’s }1,{ ≥nX n  and }1,{ ≥nYn are equivalent, hence by (a) and the first Borel-

Cantelli lemma, the desired result follows.  
The next theorem is an analogue to Kolmogrov's classical SLLN for independent and identically 

distributed r.v.’s. Our intention is to replace the conditions of independent and identical distribution 
by suitable weaker conditions of simple nature. 
 
Theorem 4: Let }1,{ ≥nX n  be a sequence of pairwise ND r.v.’s and set  

)(sup)(
1

xXPxG n
n

≥=
≥

 for 0≥x . If  
 

                                                                       ∫
∞

∞<
0

)( dxxG ,                                                              (5)     

 
then ∑

=

− →−
n

i
iii XEXn

1

1 0))((γ  a.s. as ∞→n  for each bounded non-negative (or non-positive) 

sequence }{ nγ . 
 
Proof: Put += nn XY and −= nn XZ ( 1≥n ). It is sufficient to show that as ∞→n , 
 

                           ∑
=

− →−
n

i
iii YEYn

1

1 0))(()( γ a.s, and ∑
=

− →−
n

i
iii ZEZn

1

1 0))(()( γ a.s.                (6) 

 
Also, it is sufficient to prove the first part of (6) for 1=nγ . To this end, we use Theorem 3 with 

],( nBn −∞=  for all 1≥n . It is obvious that 1=nC  for all 1≥n . Since  
 

           ∑ ∑
∞

=

∞

=

>=∈
1 1

)()(
n n

n
c
nn nYPBYP ∑

∞

=

>≤
1

)(
n

n nXP ∑
∞

=

∞<≤
1

)(
n

nG , 

 
it follows that condition (a) of Theorem 3 is valid for }1,{ ≥nYn . To verify condition (b), note that for 
any non-negative random variable Z  and 0≥α , 
 

                                                ))(( α≥ZZIE +≥= )( αα ZP ∫
∞

≥
α

)( dxxZP . 

 
Hence  
 

        )())(())(( nXPnnXIXEnYIYE nnnnn >≤>≤> ∫
∞

+
n

dxxG )( 0→ , 

 
so that condition (b) holds for }1,{ ≥nYn . Obviously, condition (d) holds for }1,{ ≥nYn . To obtain 
the first part in (6), it remains to verify condition (c).  
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                                                                 ∞<≤ ∑ ∫
∞

= −1 1

)(12
i

i

i

dyyyG
i

C . 

 
The next theorem is an analogue of SLLN of Chung [9]; for other related results, it may be 

interesting to review Chung’s paper [9]. 
 
Theorem 5: Let }1,{ ≥nX n  be a sequence of pairwise ND r.v.’s, }{ na be a sequence of positive 
constants such that }

)(
{

nf
an  is a bounded sequence and 

 

                                               .))((
)(

1sup
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∞<



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
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n
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kkk

n
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nf
 

 
Let ),0(),0(: ∞→∞ng  be a sequence of functions, )0(ng  being defined arbitrarily, such that 

for each 1≥n  
 

                                       i) ↑
x

xgn )(
        and          ;

)(
2 ↓

x
xgn  

 
and 
 

                                                 ii) ∞<∑
∞

=1 )(
))((

n nn

nn

ag
XgE

. 

 
Then   
 
                                     [ ] 0)(/))(()( →− nfnSEnS a.s.                     as ∞→n . 
 
Proof: We use Theorem 3 with =nB 0,],( >−∞ nn aa . Put += nn XY  and −= nn XZ , 1≥n . It 
suffices to show that as ∞→n , 
 

                       ∑
=

− →−
n

i
ii YEYnf

1

1 0))(())(( a.s,    and    ∑
=

− →−
n

i
ii ZEZnf

1

1 0))(())(( a.s .         (7) 

 
It is obvious that CCn <  for all 1≥n . Also it is sufficient to prove the first part of (7). To verify 

condition (a) note that  
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Next, note that  
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so that condition (b) is followed by Kronecker lemma (see Page 123 of Chung [2]). Condition (c) 
follows, since  
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It follows that the first part of (7) holds. 
 
Corollary 2: If }1,{ ≥nX n  is a sequence of NA r.v.’s, then Theorems (2-5) are valid. 
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