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Abstract – In this paper, the dual area vector of a closed dual spherical curve is kinematically generated 
and the dual Steineer vector of a motion are extensively studied by the methods of differential geometry. 
Jacobi’s Theorems, known for real curves, are investigated for closed dual curves. The closed trajectory 
surfaces generated by an oriented line are fixed in a moving rigid body in 3IR , in which the closed dual 
curves from E. Study’s transference principle is studied. The integral invariants of these closed ruled 
surfaces are calculated by means of the area vector. Moreover, some theorems, results and examples are 
given. 
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1. INTRODUCTION 
 

The kinematic geometry of the infinitesimal positions of a rigid body in spatial motions is not only 
important, but interesting as well. In a spatial motion, the trajectory of the oriented lines and points 
embedded in a moving rigid body are generally ruled surfaces and curves, respectively. Thus the 
spatial geometry of ruled surfaces and curves is important in the study of rational design problems in 
spatial mechanisms. As an example, some characteristic invariants of ruled surfaces were applied to a 
mechanism theory by A. T. Yang et al., [1]. Also, using the geometry of curves and developable ruled 
surfaces, some spatial design problems were investigated by H. Pottmann et al., [2], J. A. Schaaf et 
al., [3] and Wang et al., [4]. 

Rather unexpectedly, dual numbers have been applied to study the motion of a line in space; in 
3IR , they even seem to be the most appropriate apparatus for this purpose. It was first done by 

E.Study [5], and since his time dual numbers have had an established place in kinematics as a tool to 
solve problems dealing with lines in space. Vast literature on the subject can be found in [6-8].  

The application of dual numbers to the lines of the Euclidean 3-space is carried out by the 
principle of transference which was formulated by E.Study. It allows a complete generalization of the 
mathematical expression for the spherical point geometry to the spatial line geometry by means of 
dual number extension, i.e. replacing all ordinary quantities by the corresponding dual number 
quantities [9].  

Jacobi [10] showed that the indicatrix of a tangent vector of any real closed spherical curve 
divides the surface area of a unit sphere into two equal parts. In the same paper, he also showed that 
the indicatrix of the principal normal vector of any closed space curve also divides the surface area of 
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the unit sphere into two equal parts. Then, Fenchel [11] and Avaqumovic [12], using Jacobi 
Theorems, showed the unit spherical closed curve is the principal normal indicatrix of a closed space 
curve if the closed spherical curve divides the surface area of the unit sphere into two equal parts. 
Also, Yapar [13] showed that the spherical indicatrix of each unit vector lying in the osculating plane 
of a closed spherical curve which is fixed to the curve divides the surface area of the unit sphere into 
two equal parts.  

The angle and length of the pitch, which are the integral invariants of a closed ruled surface, are 
very important in the study of the geometry of lines from the perspectives of instantaneous space 
kinematics and mechanisms. In recent years several authors have used these invariants in their 
investigations concerning the generalization of some of the theorems of plane kinematics to spatial 
kinematics [7-9, 14-19]. 

In this study, the integral invariants of closed ruled surfaces kinematically generated are 
calculated and Jacobi’s Theorems are stated by means of the area vector and some relations and 
theorems are given. 
 

2. PRELIMINARIES 
 
A dual number has the form a +ε a*, where a and a* are real numbers and ε  is the dual unit with the 
property 2ε  = 0. The set of all dual numbers is a commutative ring over the real numbers field and 
denoted by ID, [8]. The set 
 

ID3 = {A = (A1 ,, A2 , A3) : Ai∈ID; 1 ≤  i ≤  3} 
 

is a module over the ring ID which is called an ID-module or dual space. We call elements of ID3 
dual vectors. A dual vector A may be written as A=a+ε a*, a*=p∧ a, where a, p and a* are real 
vectors in 3IR . The inner product of two dual vectors A and B is defined as  
 

 ( )ba*,*ba,ba,BA, ++= ε , 
 

Where 
 

ϕcosba, =  and ϕϕ sin*ba*,*ba, −=+ , πϕ ≤≤0 . 
 

The cross-product of two dual vectors, A  and B, is given by  
 

( )b*a*babaBA ∧+∧+∧=∧ . 
 

Let Φ  be the dual angle between the unit dual vectors A and B , then 
 

ϕεϕϕ sin*coscosB,A −=Φ=  
 

where IR∈≤≤+=Φ *,0*, ϕπϕεϕϕ , is a dual number. Here, the real numbers ϕ  and *ϕ  are 
the angle and the minimal distance between the two oriented lines A and B, respectively. The 
geometric place of the points satisfying the equality ||A||=(1,0), when A≠  (0,a*) is called a unit dual 
sphere in ID-module. 

E. Study established a theorem which states "there is a one to one mapping between the dual 
points of a unit dual sphere and the oriented lines in 3IR ". According to E.Study’s Theorem; a unit 
dual vector A=a+ε a* corresponds to only one oriented line in 3IR , where the real part a shows the 
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direction of this line and the dual part a*  shows the vectorial moment of the unit vector a with respect 
to the origin. 

Let a moving orthonormal trihedron { }321 e ,e ,e  be made a closed spatial motion along a closed 
curve x(t))( =xc  in 3IR . During a closed spatial motion, an oriented line fixed in 3IR  generates a 
closed trajectory surface. 

The parametric equation of a closed trajectory surface formed with 1e -axis can be expressed as 
follows: 
 
                                          ),2(),(),(uex(t)),( 1 ututtut π+Ψ=Ψ+=Ψ                                     (1) 

 
for all t, u∈ IR . 
If we take the moving orthonormal trihedron as 
 













∧== )(e)(e)(e,
)(e
)(e)(e),(e 213

1

1
21 ttt

t
ttt , 

 
then the axes intersect at the striction point of 1e -generator of the closed ruled surface given by 
equation (1). In this case, )(tx  is the striction point; e2 and e3 are called central normal and central 
tangent, respectively. 

The structural equations of closed spatial motion described above are 
 

                                 ∑
=

=≤≤−==
3

1

3
1ii 0)(,3,1),()(,ee

j

i
j

j
i

j
i twjitwtwwd ,                             (2) 

 
where the differential forms 2

1w  and 3
2w  are the natural curvature and the natural torsion of e1-closed 

trajectory surface, respectively. Equation (2) can be written in the following form 
 
                                                         )3,2,1(,ew)(e ii =∧= itd ,                                                    (3) 

 
where 3

2
11

3
2 e e ww w+=  is the Darboux vector of the motion. If 0w ≠ , then the Pole vector and 

the Steiner vector are given by: 
 

                                                               ∫== w,
w
w sP                                                              (4) 

 
respectively, where w  is the instantaneous angular velocity of the motion and integration is taken 
along the closed curve c(x) on fixed space in R′ . 

The length of the pitch (Öffnungsctracke) of an e1-closed trajectory surface is defined by: 
 

                                                             ∫ ∫−== 1,:
1

exdude .                                                      (5) 
 

The orthogonal trajectory of an e1-closed trajectory surface starting from point PO on the e1-generator 
intersects the same generator at point P1 which is generally different from PO. Thus, 11

PPOe = . 
Let us consider a unit vector 

 
32 e sine cosm θθ +=  

 
on the ( )32 ,ee -plane, such that an m-oriented line generates a developable ruled surface (torse) along 
the orthogonal trajectory of an e1-closed trajectory surface during the closed motion. Then the total 
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change of θ  is called the angle of pitch (Öffnungswinkel) of the e1-closed trajectory surface and 
given by one of the following forms 
 
                                                  seeedde ,,: 1321

−=−== ∫ ∫θλ .                                              (6) 
 

The length of the pitch and the angle of the pitch are well-known integral invariants of a closed 
trajectory surface [7-19]. 

There is a one-to-one correspondence between spherical curves and space curves. Hence, the 
structural equation (2) is also valid for the spherical curves. 

Then, the spherical area bounded by a closed spherical curve c(x) is given by 
 

                                                               xs,)1(2 −−= νπxf ,                                                        (7) 
 

where the vector x is the position vector of the point x  and ν  is the rotation number around point x 
of the Pole curve c(P), [20-22]. 

The area vector of a closed space curve c(x) in R′  is defined by 
 

                                                                      ∫ ∧= xx:vx d ,                                                             (8) 
 

where the integration is taken along the closed curve c(x). The projection area of a closed space curve 
c(x) in the direction of a unit vector n, which is normal to the projection plane, is given as follows 
[20]: 
 

                                                                       n,v
2
1

x=nx
f .                                                            (9) 

 
3. THE INTEGRAL INVARIANTS AND THE AREA VECTORS 

 
Let K  be a moving dual unit sphere generated by a dual orthonormal trihedron 
 

            ,3,2,1*),e,e()(E,)(E)(E)(E,
)(E
)(E)(E),(EE iii213

1

1
211 ==













∧=== itttt
t
ttt   (10) 

 
and K ′  be a fixed dual unit sphere with the same center in 3ID . Then the differential equations of 
the dual spherical closed motion, denoted by KK ′/  are: 
 

        ∑
=

Ω=
3

1
ji EE

j

j
id , 0)(),3,2,1(),()(),(*)()( 3

1 =Ω=Ω−=Ω+=Ω titttwtwt i
j

j
i

j
i

j
i

j
i ε ,    (11) 

 
where the differential forms )(*)()( 2

1
2
1

2
1 twtwt ε+=Ω  and )(*)()( 3

2
3
2

3
2 twtwt ε+=Ω  are the dual 

natural curvature and torsion, respectively. The dual Steiner vector of the closed motion is defined by  
  

                                                    ∫= WS , *wwW,
W
WP ε+== ,                                           (12) 

 
where 3

2
11

3
2 EEW Ω+Ω=  and P are instantaneous Darboux vector and the dual pole vector of the 

motion, respectively. As known from the E. Study’s transference principle, the dual equation (11) 
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correspond to the real equation (2) of a closed spatial motion in 3IR . In this sense, the differentiable 
dual closed curve, IRttEE ∈= ),(11 , is considered as a closed trajectory surface in 3IR . 

Let us consider a differentiable unit dual spherical closed curve 
 

                                            c(X) = X(t), X(t + 2π ) = X(t), IRt ∈= ,1X .                                    (13) 
                          

We know from E.Study’s transference principle that the dual curve defined by (13), which shows a 
unit dual spherical closed curve, corresponds to an x-closed trajectory surface generated by an x-
oriented line fixed in a moving rigid body in 3IR . Thus the curve (13) is called the unit dual spherical 
image (or indicatrix) of an x-closed trajectory surface. The dual angle of the pitch, XΛ , of the closed 
ruled surface X=X(t) is equal to the dual projection of the generator on to the dual Steiner vector of 
the motion KK ′/ , that is [16]: 
 
                                                   xxXX A ελπ −=−=−=Λ 2SX,  ,                                         (14) 

 
where *xxX aaA ε+= , the dual spherical surface area of the dual spherical image of X-closed 
trajectory surface. 

Let c(X) be the dual spherical indicatrix on K ′  of an arbitrary fixed dual point X on K . The 
dual spherical area FX surrounded by the dual closed curve c(X) is 

 
                                                             SX,)1(2 −−= νπXF .                                                     (15) 

 
Here ν  is the rotation number of the rotation of the centrode c(P) at the point X, and X denotes the 
dual position vector of an arbitrary point of the dual closed curve c(X) on K ′  [16]. 

The dual area vector of an X(t)-closed spherical curve can be defined by 
 

                                                                   ∫ ∧= XX:V dX                                                             (16) 
 

as an analogue to the definition in [22], where  
 

XWX ∧=d  
 

is the differential velocity of an X-dual point fixed of the moving sphere K . 
From equations (13) and (16), the dual area vector may be developed as 
 
                                                                   XSX,-SVX =                                                             (17) 

 
or 
 
                                                                    XSVX XΛ+=                                                               (18) 

 
This statement shows that there is a relationship between the dual angle of the pitch of an X-closed 
trajectory surface and its dual area vector. On the other hand, if a scalar product is made with the 
vector S on both sides of equation (17), then we may write 
 
                                                               X

22 VS
XVX Λ−Λ= ,                                                      (19) 

 
where 

XVΛ  is the dual angle of the pitch of the VX-trajectory surface generated by the area vector of 
c(X)-closed spherical indicatrix of X-closed trajectory surface. 
It follows from (18) that 
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                                                                  22
X SV XΛ−=                                                         (20) 

 
Thus, with the aid of (19) and (20) the dual angle of the pitch of the VX-unit area vector trajectory 
surface is obtained as 
 

                                                                22S XVX
Λ−−=Λ                                                          (21) 

 
So, we may give the following theorem. 
 
Theorem 3. 1. There is the relationship 
 
                                                                    222S XVX

Λ+Λ=                                                            (22) 
 

between the dual angle of pitches of XV  and X-closed trajectory surfaces. 
By separating equation (22) into real and dual parts, we have 

 
222s xvx

λλ +=  
 

and 
 

xxvv xx
λλ −−=*ss, . 

 
In the case of the axes of the unit area vector VX and the Steiner vector S are perpendicular to 

each other, we get 0=
xvλ  and 0=

xv . Thus the following result may be given. 
 

Result 3. 2. During the closed spherical motion, the axes of VX ≠ 0 dual area vector and the dual 
Steiner vector S are perpendicular to each other if and only if 0=Λ

XV . 
Also, from (14) we have 0=Λ

XV  if and only if 2 ,
xva π= and * 0

xva = . Thus, the following result 
can be given. 

 
Result 3. 3. The dual spherical indicatrix of the unit dual area vector VX divides the measure of the 
spherical surface area into two equal parts if and only if 0=Λ

XV . 
A ruled surface )(uvx(t)),( x tut +=Ψ  is given by 

  
VX(t)=vx(t)+ε v*x(t), 

 
where vx is the unit area vector and v*x=x∧ vx is the vectorial area vector of vx with respect to the 
origin point. Since the spherical image of vx(t) is the unit area vector, the dual area vector VX(t) also 
has unit magnitude. Thus, the ruled surface can be represented by a dual curve on the surface of a unit 
dual sphere. The dual arc-length of the ruled surface VX(t) is given by  
 

)d1(vV xX ε+= , 
 

where 2
x

*
xx

v

v,v
d =  is the distribution parameter (drall) of this ruled surface. 

According to E. Study's transference principle, the following theorem can be given. 
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Theorem 3. 4. In the lines space, the trajectory surface of the closed spherical indicatrix generated by 
the unit dual area vector VX, formed along a unit dual closed curve in a closed spherical motion, is a 
developable ruled surface. 

On the other hand, the oriented dual projection area of a planar region which occured by taking 
orthogonal projection onto a plane in the direction of a fixed unit vector N of the curve c(X) is given 
by 

 
XVN,2 =nXF . 

 
The position vector of the point X fixed in the moving sphere K , in terms of the dual 

orthonormal vectors E1, E2 and E3 can be written as 
 
                                                 )(EX)(EX)(EXX(t) 332211 ttt ++= ,                                          (23) 

 
where X1, X2 and X3  are constant coordinates of X. 

 Let c(E1), c(E2) and c(E3) be the closed dual spherical indicatrix of the dual orthonormal vectors 
E1, E2 and E3, respectively. Thus, we can give the following result. 

 
Result 3. 5. The dual area vector of the closed dual curve c(X) drawn on a fixed unit sphere K ′ , by a 

fixed point X of moving dual unit sphere K , during the closed spherical motion is 
  

∑∑
=
<

=

+=
1ki,

ki,i

ki

E

3

1
E

2
X V2VV ki

i
i XXX , 

 
where  
 

∫ ∧= dttEtE ii )()(V
iE  and ( )∫ ∧+∧= dttEtEtEtE ikki )()()()(

2
1V

ki,E . 

 
Since the motion is closed, we get 
 

∫ = 0)(Ei dtt . 
 

Thus we have 
 

Result 3. 6. The dual Steiner vector S of the motion in terms of the dual area vectors 
1EV , 

2EV  and 

3EV  is 
  

∑
=

=
3

1
Ei

V
2
1S

i
. 

 
The relation between the orthogonal projection area and the parallel projection area can be given 

by the following proposition. 
 
Proposition 3. 7. Let nXF  be the oriented dual projection area of the planar region formed by taking 
the orthogonal projection of closed dual spherical curve c(X) onto the plane, and pXF  be the oriented 
dual projection area of the planar region formed by parallel projecting of the closed dual spherical 
curve c(X) onto the same planar region in the direction of a unit dual vector P. Then  
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pn XX FF Θ= cos , 
 

where Θ  is the dual angle between two image planes [19]. 
Thus we can give the following theorem. 

 
Theorem 3. 8. The oriented dual projection area, pXF , of the planar region formed by parallel 
projection of the dual closed curve c(X) drawn by a fixed point X, of the moving sphere K , is 
 

∑ ∑
=

<
=

+=
3

1

3
2

1, ,
2

i ki
EkiEiX

ki
p
ki

p
i

p FXXFXF . 

 
Example 3. 9. Let us consider the dual point ( )0(t),sin(t),cosX(t)X ΦΦ== , where )(*)()( ttt εθθ +=Φ . 
Now, Let’s calculate the oriented dual projection area of the dual closed spherical curve c(X) formed 
during the closed spherical motion. Since  
 

( ) ( )0),(cos)(*)(sin),(sin)(*)(cos0(t),sin(t),cosX(t)X tttttt θεθθθεθθ +−=ΦΦ== , 
 

we have 
  







 +−++= *00)),(sin)(*)(cos*()(cos)),(cos)(*)(sin*(-(t)sin-X εθθθθεθθθθθεθ ttt

dt
dtttt

dt
dd  

 
and 
 







 +=∧

dt
dd *10,0,XX θε . 

 
Thus the dual area vector of closed spherical curve c(X) is 

 

∫ =∧=
π

π
2

0
X )2,0,0( (t)XX(t)V dt . 

 
Using equations (15) and (16), the oriented dual projection area of the closed dual spherical 

curve c(X), we get 
 

3X enN,2)2,0,0(),1,0,0(VN,2 ===== ππnXF . 
 

Thus the oriented dual projection area is obtained as 
 

π=nXF . 
 

From the Blaschke area formula and equation (7), the following theorem can be given. 
 
Theorem 3. 10. Let c(X) be the dual spherical indicatrix of a fixed point X, and also c(E1), c(E2) and 
c(E3) be the closed dual spherical indicatrixies of the dual orthonormal vectors E1, E2 and E3 during 
the closed spherical motion, respectively. Then the dual spherical area bounded by the closed 
spherical curve c(X) in terms of the dual spherical areas

1EF , 
2EF  and 

3EF  bounded by the closed 
spherical indicatrixies c(E1) , c(E2) and c(E3) is 
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∑∑
==

+







−−=

3

1

3

1

1)1(2
i

Ei
i

iX i
FXXF νπ , 

 
where ν  is the rotation number of motion. 
  

4. THE JACOBI THEOREMS 
 
Let us have a closed dual curve c(X) of class C2 on a unit dual sphere K ′  in ID3. At the initial time, 
assume that the unit dual sphere K  corresponding with K ′  to be K = K ′ , where K ′  is a fixed 
sphere and K  is a moving sphere with respect to K ′ . The curve c(X) describes a closed dual 
spherical motion. Let us consider the dual moving frame E1, E2 and E3 be firmly linked to any point 
X(t) of the curve c(X). Here, E1, E2 and E3 are tangent, principal normal and binormal unit dual 
vectors, respectively. While drawing the closed dual spherical curve c(X) during the dual closed 
spherical motion, the end points of vectors E1, E2 and E3 on K  also draw closed spherical curves 
c(E1), c(E2) and c(E3) on K ′ , respectively. Now let us carry these vectors to the origin point of the 
unit dual sphere K. Thus, from equations (10), (11), and (16) we have the following theorem. 
 
Theorem 4. 1. Let c(E1), c(E2) and c(E3) be the spherical indicatrixies of the unit dual vectors E1, E2 
and E3 during the closed dual spherical motion, respectively. The dual area vectors of these closed 
spherical indicatrixies are 
 

                                                                 

,EES,V

S,V

,EES,-SV

11E

E

11E

3

2

1

=

=

=

                                                         (24) 

 
where ∫= WS  is the dual Steiner vector of motion KK ′/ . 
If the expression (24) is separated into its real and dual parts, we have the following equalities: 
 

                                            

11313

22

11111

1
*
1

*
e1e

**
ee

1
*
1

**
e1e

eev,ev

sv,          sv

eesv,esv

eee

eee

+−=−=

==

−+=+=

λλ

λλ

                                 (25) 

 
where 

321 eee v,v,v  and *
e

*
e

*
e 321

v,v,v  are real and dual area vectors, respectively. From theorem 
(4.1) we can give the following results. 
 
Result 4. 2. The dual area vector 

2EV  is equal to the sum of the dual area vectors 
1EV  and 

3EV , i.e. 

312 EEE VVV += . 
 
Result 4. 3. The unit dual vector E2 is perpendicular to the dual area vectors 

1EV  and 
3EV . 

As a special case of equation (21) we have 
 

22

11
S EVE

Λ−−=Λ . 
 

Thus, we can give the following theorem. 
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Theorem 4. 4. There is the relationship 
 

22

11
S EVE

Λ−−=Λ  
 

between the dual angle of the pitches of 
1EV  and E1-closed trajectory surfaces, where S is the dual 

Steiner vector of the motion. 
Also, from equations (14) and (24) we have 

 
                                                                        S

2
−=Λ

EV                                                                (26) 
 

and 
 
                                                                         

13 EVE
Λ=Λ                                                                 (27) 

 
on the other hand, since 
 

312 EEE VVV += , 
 

from equations (10), (24), (26) and (27) we have 
 

                                                                 1
SS

2

3

2

1

22

=
Λ

Λ
−

Λ

Λ

E

E

E

E

V

V

V

V
                                                     (28) 

 
and  
           

                                                                     1
SS 2

2

2

2
13 =

Λ
−

Λ
EE VV

.                                                          (29) 

 
Thus we can give the following theorem. 

 
Theorem 4. 5. There are the relations (28) and (29) between the dual angle of pitches of 

1EV , 
2EV  

and 
3EV -closed trajectory surfaces. 

On the other hand, the dual angles of pitch of ruled surfaces corresponding to the closed dual 
spherical curves c(E1), c(E2) and c(E3), respectively, are: 
 

                                                         

3323

22

1121

E3

E2

E1

V,E

,0V,E

,V,E

eeE

E

eeE

ελ

ελ

−=−=Λ

=−=Λ

−=−=Λ

                                               (30) 

 
Now, let us consider the spherical indicatrix c(E1) of the unit dual vector E1 formed during the 

closed motion. If the area of the region surrounded by the curve c(E1) denoted by 
1EF , then from 

equations (14) and (25),  
 
                                                          

111
)1(2 eeEF ελνπ −+−= .                                                  (31) 

 
Since the above area should be π2

1
=EF  according to the Jacobi Theorem, we obtain 
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                                                             02
11
=−+− ee ελπν ,                                                        (32) 

 
where 0 is a dual number. 

From equation (31), according to the equality of two dual numbers we have 
 
                                                                 0,2

11
== ee πνλ .                                                         (33) 

 
Thus we can give the following theorem. 
 

Theorem 4. 6. Let c(X) be a closed dual spherical curve on the unit dual sphere. Let A be the ruled 
surface corresponding to the spherical indicatrix of the tangent vector E1 of the closed dual curve 
c(X). Let the real angle of the pitch and length of the pitch of the closed ruled surface A be 

1eλ  and 

1e , respectively, then we have 
 

πνλ 2v,e
21 e1 =−=e , 0v,ev,e

221 e
*
2

*
e1 =+= . 

 
From theorem (4.6), since 0v,ev,e

221 e
*
2

*
e1 =+= , we have the following result. 

 
Result 4. 7. The oriented lines )e;e(E *

111 =  and )v;v(VV *
ee

1

EE 2222
==

−
V  are intersected. 

From equation (14) we obtain the integral invariants of the closed ruled surface corresponding to the 
spherical indicatrix c(E2) of the unit dual vector E2, in the lines space, as the following 
 
                                                                   0,0

22
== eeλ .                                                           (34) 

 
If the area of the region surrounded by the curve c(E2), denoted by 

2EF , then from equations (14) and 
(25) we obtain 
 
                                                                     )1(2

2
νπ −=EF                                                             (35) 

 
Since the above area should be π2

2
=EF  according to the Jacobi Theorem, we obtain  

ν = 0. Thus we can give the following theorem. 
 
Theorem 4. 8. In the Euclidean 3-space 3IR , the closed ruled surface corresponding to the spherical 
indicatrix of the principal normal vector E2 of the closed dual curve c(X) is a cone, that is: 
 

0,0
22
== eeλ . 

 
Let C be the closed ruled surface corresponding to the spherical indicatrix of the binormal vector E3 
of the closed dual curve c(X). The area of the spherical region surrounded by c(E3) is 
 
                                                          

333
)1(2 eeEF ελνπ −+−= .                                                  (36) 

 
In addition, the length of the pitch is 

223 e
*
3

*
e3 v,ev,e +=e . Thus we can give the following 

theorem. 
 
Theorem 4. 9. In the lines space, the spherical indicatrix of a binormal vector of any closed dual 
spherical curve c(X), on the unit dual sphere, corresponds to a closed ruled surface. The length of the 
pitch of this ruled surface only depends on the curve c(X), and  
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223 e
*
3

*
e3 v,ev,e +=e . 

 
Now, let us consider all the unit dual vectors firmly attached to the curve which lies in the 

osculating plane of the closed spherical curve c(X). Let U be one of these vectors and *εθθ +=Θ  
be the angle between the unit dual vector U and the unit dual tangent vector E1. Thus the vector U can 
be written as follows: 
 
                                                               21 EsinEcosU Θ+Θ= .                                                    (37) 

 
If the unit dual vector U is separated into its real and dual parts, then we obtain 

 
                       21

*
2

*
1

*
21 ecos*esin*esinecosu,esinecosu θθθθθθθθ +−+=+= .       (38) 

 
In the lines space, let U be the ruled surface corresponding to the unit dual spherical indicatrix of 

the unit dual vector U. The dual angle of pitch of this ruled surface, from equations (33), (37) and 
(38), is obtained as follows: 
 

Θ=−=−=Λ cossin*cosSU,
111 eeeU λθθελθλ . 

 
Thus, the real angle of the pitch and the length of the pitch of the ruled surface U corresponds to 

closed spherical curve c(U) drawn by the unit dual vector U during the motion, in the lines space, are 
 
                                                     θθλθλλ sin*,cos

11 eueu == .                                              (39) 
 

On the other hand, from equations (14), (15) and (37), the area of the spherical region 
surrounded by the closed spherical curve c(U) is obtained as 

 
Θ+−= cos)1(2

1eUF λνπ . 
 

Since this area should be π2 , [13], we have 
 

0sin*,2cos
11

== θθλπνθλ ee . 
 

By taking 
2

0 πθ <<  and 0* ≠θ  we get 
 

0
1
=eλ . 
 

So, we can give the following theorems: 
 

Theorem 4. 10. The ruled surface corresponding to the spherical indicatrix of the tangent vector E1 of 
closed dual curve c(X) is a cone, that is: 
  

0,0
11
== eeλ . 

 
Thus we have  

 

                                                            

3323

22

21

E3

E2

E1

V,E

,0V,E

,0V,E

eeE

E

E

ελ −=−=Λ

=−=Λ

=−=Λ

                                             (40) 
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Theorem 4. 11. Let E1 and E2 be the tangent and the principal normal vectors of the closed curve 
c(X), respectively. The unit dual vector E1 is perpendicular to the area vector

2EV . 
Substituting equalities in the theorem (4.10) into equation (39), we can give the following theorem: 
 
Theorem 4. 12. Let U be the unit dual vector which lies in the osculating plane of closed unit dual 
curve c(X). Then the ruled surface corresponding to the spherical dual curve c(U) is a cone, that is 
  

0,0 == uuλ . 
 

Example 4. 13. Let us consider a unit closed spherical curve c(x) is given by 
 

( ) IRkktttxxc ∈+≠== ,
2

)12(,sin),secsin(cos),seccos(cos)()( πθθθθθθ . 

 
 The differential equations of this curve in matrix form can be written as  

 
































−=

















)(e
)(e
)(e

000
00sec
0sec0

)(e
)(e
)(e

3

2

1

3

2

1

t
t
t

t
t
t

θ
θ

. 

 
Thus, we get 

 
s (0,0, t sec )θ= . 

 
Using equation (8), the unit area vector of the unit closed curve c(x) is obtained as 

 
( )θθθθθ cos),secsin(sin),seccos(sinvx −−= tt  

 
Let the direction vx of a line L be given by 
 

( )θθθθθ cos),secsin(sin),seccos(sinvx −−= tt . 
 

Then we have the parametric equation of the ruled surface generated by L: 
 

( ) IRuututu
tutut x

∈+−−=
+=Ψ

,cossin),secsin()sin(cos),seccos()sin(cos
)(v)(x),(

θθθθθθθθ
 

 
The unit dual area vector function representing ).( utΨ  is given by 

 

( ) ( ),0),seccos(),secsin(cos),secsin(sin),seccos(sin
vv)vx(v)(V~ *

θθεθθθθθ
εε

tttt
tX xxxxX

−+−−=
+=∧+==

 

 
where v *

x =x∧ v x  is the area vectorial moment of the unit area vector vx. 
The differential equations of the unit dual closed spherical curve c(VX)= VX(t) in matrix form are 

obtained as 
  

,,2,
)(E
)(E
)(E

000
00csc
0csc0

)(E
)(E
)(E

3

2

1

3

2

1

IRkk
t
t
t

t
t
t

∈≠































−=

















πθθ
θ
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where θtantt =  is the dual arc-length of the dual closed curve )~(Xc . 
Thus, we get 

 
)csct0,(0,S θ= . 

 
From equation (14) the dual angle of the pitch of a VX -closed trajectory surface is obtained as 

 
t−=Λ

XV . 
 

From equations (14) and (24), the dual angles of the pitch of ruled surfaces corresponding to the 
closed dual spherical curves c(E1), c(E2) and c(E3), respectively, are obtained as  
 

.cscV,E

,0V,E

,0V,E

23

22

21

E3

E2

E1

θtE

E

E

−=−=Λ

=−=Λ

=−=Λ

 

 
Also, from theorem (4.4) and the equations (26) and (27) the dual angles of the pitch of 

1EV , 

2EV  and 
3EV -area vectors trajectory surfaces are found as 

 

,0

,csc

,csc

3

2

1

22

22

=Λ

−=Λ

−=Λ

E

E

E

V

V

V

t

t

θ

θ

 

 
respectively. If the distribution parameter of the closed ruled surface ),( utΨ  is denoted by d, then 
the distribution parameter d is obtained as  
 

0
v

v,v,x
d 2

x

xx == . 

 
Hence, the closed ruled surface ),( utΨ  is developable. (see Fig. 1) 

 

 
 

Fig.1. A developable ruled surface 
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5. CONCLUSIONS 
 

1. The starting points of this paper are the definitions of the area vector of a given closed space 
curve, and the projection area of this curve in the direction of a unit vector given in [17]. 
2. Using the area vector of a closed dual spherical curve, the integral invariants of the ruled surfaces 
in the lines space corresponding to the closed spherical curve with the E. Study transference principle 
are investigated and Jacobi’s Theorems are given with a different method. These closed curves and 
ruled surfaces are an important and effective tool in studying spatial kinematics.  

It is hoped that this study will bring a different interpretation to the studies in this field and will 
contribute to the study of rational design problems of space mechanisms. 

 
Acknowledgements- The authors would like to thank the anonymous referees for their valuable 
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