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Abstract – In this paper the general relatively isotropic L -curvature Finsler metrics are studied. It is 
shown that on constant relatively Landsberg spaces, the concepts of weakly Landsbergian, Landsbergian 
and generalized Landsbergian metrics are equivalent. Some necessary conditions for a relatively 
isotropic L -curvature Finsler metric to be a Riemannian metric are also found.  
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1. INTRODUCTION 
 

There are several notions of curvature in Finsler geometry. If ijg  is the fundamental tensor of Finsler 
metric F , the vertical derivative of ijg  on tangent space gives rise to the Cartan tensor C, and the 
horizontal derivative of C along geodesics is called the Landsberg tensor L. It is natural to consider 
/L C  as the relative growth rate of the Cartan torsion along geodesics. This leads to a study of 

general relatively isotropic Landsberg metrics which was first considered by Izumi [1]. There are lots 
of Finsler metrics in this class of metrics, such as the Funk metric on strongly convex domains in nR . 
Therefore it is natural to study this class of Finsler metrics, especially Randers metrics in this class, 
where there are many contributions to this class of Finsler metrics [2-5].  

Landseberg metrics belong to this class of Finsler metrics. As a generalization of Landsberg 
metrics, Bejancu and Farran introduced the generalized Landsberg metrics [5]. Here we show that on 
constant relatively Landsberg spaces, this generalization does not lead to a new class. 
  
Theorem: Let ( )M F,  be a constant relative isotropic Landsberg space. Then the following are 
equivalent:  
1) F  is Landsbergian.  
2) F  is generalized Landsbergian.  

Finally, we find some necessary conditions for a relative isotropic L -curvature Finsler metric to 
be a Riemannian metric. More precisely we have  
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Theorem: Let ( )M F,  be a complete Finsler manifold with bounded Cartan torsion.Suppose that F  
is a non-zero constant relative Landsberg manifold, then F  must be Riemannian metric. In particular, 
non-zero constant relatively compact Landsberg manifold must be Riemannian.  

Throughout this paper, we make use of the Einstein convention, that is, repeated indices with one 
upper index and one lower index which denote summation over their range. We also set the Chern 
connection on Finsler manifolds.  
 

2. PRELIMINARIES 
 
Let M  be an n-dimensional C ∞  manifold. The tangent space at x M∈  is denoted by xT M , and 
the tangent bundle of M by x M xTM T M∈= ∪ . Each element of TM has the form (x,y), where 
x M∈ and xy T M∈ .  Let 0 {0}TM TM= .  The natural projection TM Mπ : →  is given by 

( )x y xπ , = . The pull-back tangent bundle TMπ ∗  is a vector bundle over 0TM  whose fiber 

vTMπ ∗  at 0v TM∈  is just xT M , where ( )v xπ = . Then  
 

0{( ) }x xTM x y v y T M v T Mπ ∗ = , , | ∈ , ∈ .  
 

A Finsler metric on manifold M  is a function [0 )F TM: → ,∞ , which has the following 
properties:  
(i) F  is C ∞  on 0TM ;  
(ii) ( ) ( ) 0F x y F x yλ λ λ, = , > ;  
(iii) For any tangent vector xy T M∈ , the vertical Hessian of 

2

2
F  given by  

 

21( ( ))
2 i j

ij
y y

g x y F
           

, =  

 
is positive definite.  

If g  is a Riemannian metric on M , then ( )F g y y= ,  defines a Finsler metric on M , so 
every Riemannian metric can be considered a Finsler metric.  

Suppose ( )M F,  is a Finsler manifold. The global vector field G  is induced by F  on 0TM , 
which in a standard coordinate ( )i ix y,  for 0TM  is given by  
 

2 ( )i i
i iG y G x y

x y
∂ ∂

= − , ,
∂ ∂

 

 
where ( )iG x y,  are local functions on 0TM  satisfying  
 

2( ) ( ) 0i iG x y G x yλ λ λ, = , > .  
 

G is called the associated spray to ( )M F, . The projection of an integral curve of G  is called a 
geodesic in M . In local coordinates, a curve ( )c t  is a geodesic if and only if its coordinates ( ( ))ic t  
satisfy 2 ( ) 0ii G cc + = . F  is said to be positively complete (resp. negatively complete), if any 
geodesic on an open interval ( )a b,  can be extended to a geodesic on ( )a,∞  (resp. ( )b−∞, ). F  is 
said to be complete if it is positively and negatively complete. 

The notion of Riemann curvature for Riemann metrics can be extended to Finsler metrics. For a 
vector 0xy T M∈ , the Riemann curvature y x xR T M T M: →  is defined by  
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( ) ( )i k
y k iR u R y u

x
∂

=
∂

 

 
where  
 

2 2

( ) 2 2
i i i i j

i j j
k k j k j k j k

G G G G GR y y G
x x y y y y y
∂ ∂ ∂ ∂ ∂

= − + −
∂ ∂ ∂ ∂ ∂ ∂ ∂

 

 
Suppose xP T M⊂  (flag) is an arbitrary plane and y P∈  (flag pole) is a non-zero vector. The 

flag curvature ( )K P y,  is defined by  
 

( ( ) )
( )

( ) ( ) ( ) ( )
y y

y y y y

g R v v
K P y

g y y g v v g v y g v y
,

, =
, , − , ,

 

 
where v  is an arbitrary vector in P  such that ( )P span y v= , . 

A Finsler metric F is said to be of scalar curvature if for any non-zero vector xy T M∈  and any 
flag xP T M⊂ , x M∈ , with y P∈ , ( ) ( )K P y yλ, =  is independent of P , or equivalently,  
 

2( ) ( ){ ( ) }y y xR y F y I g y y y T M x Mλ= − ,. , ∈ , ∈  
 
where x xI T M T M: →  denotes the identity map and 21

2( ) [ ] i
i

y y
g y F dx,. = . F is also said to be 

of constant curvature λ  if the above identity holds for the constant λ .  
Let 1{ }n

i ie =  be a local orthonormal (with respect to g ) frame field for vector bundle TMπ ∗  and 

1{ }i n
iω =  be its dual co-frame field. The Chern connection is a linear connection on TMπ ∗ , which is 

defined by the following.  
 
Theorem: ([6]) There is a unique set of local 1-forms { }i

jω  on 0TM  such that  
 

i j i
jdω ω ω= ∧  

 
2k k n k

ij kj i ki j ijkdg g g Cω ω ω += + +  
 

n k k j k
jdy yω ω+ = + .  

 
where 21

4 [ ] ( )i j kijk y y y
C F y= . We obtain a symmetric tensor C defined by 

  
( ) ( ) i j k

ijkU V W C y U V W, , := ,C  
 
where i

i
x

U U ∂
∂

= , i
i

x
V V ∂

∂
=  and i

i
x

W W ∂
∂

= . We call C  the Cartan tensor. It was E. Cartan 
who first gave a geometric interpretation of this quantity. The Cartan tensor characterizes Riemannian 
metrics among Finlser metrics.  
 
Theorem: C=0 if and only if F  is Riemannian.  
Put  
 

2ijk l l l l l
ijk ijkl ljk i ilk j ijl kl

C
L y C G C N C N C N

x
∂

:= − − − − ,
∂

 

 
where 21

4 [ ] ( )i j k lijkl y y y y
C F y:= . It is easy to show that, 
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0i j k
ijk ijk ijkL y L y L y= = =  

 
From the above argument we obtain the symmetric tensor L  on TMπ ∗  defined by  

 
( ) ( ) i j k

ijkU V W L y U V W, , := ,L  
 
where i

i
x

U U ∂
∂

= , i
i

x
V V ∂

∂
=  and i

i
x

W W ∂
∂

= . We call L the Landsberg tensor. The Landsberg 
tensor plays an important role in Finsler geometry. A Finsler metric is called a Landsberg metric if 

0L = .  
Let ( )c t  be an arbitrary geodesic in ( )M F, . Take arbitrary parallel vector fields ( )U t , ( )V t , 

and ( )W t  along c . Then by definition of the Landsberg tensor  
 

( ) ( )( ( ) ( ) ( )) [ ( ( ) ( ) ( ))]c t c t
dL U t V t W t C U t V t W t
dt

, , = , , .  

 
Thus the Landsberg curvature measures the rate of changes of the Cartan torsion along 

geodesics. 
Now we introduce two important non-Riemannian curvatures for Finsler spaces. Let 1{ }n

i ib =  be 
an arbitrary basis for xT M . We define the mean of L  (resp. C ) by  
 

1
( ) ( ) ( )

n
ij

y y i j
i j

J u g y L u b b
, =

:= , , ,∑  

 

(resp. 
1

( ) ( ) ( ))
n

ij
y y i j

i j
I u g y C u b b

, =

:= , ,∑  

 
where ( ) ( )ij y i jg y g b b= , . The family 

0
{ }y y TMJ J ∈=  (resp. 

0
{ }y y TMI I ∈= ) is called the mean 

Landsberg curvature (resp. mean Cartan curvature ). A Finsler metric is called a weak Landsberg 
metric if 0J = . In dimension two, J  completely determines L .  
 
Theorem: ([6]) 0I =  if and only if F  is Riemannian.  
 
Definition: (C-reducible)  
A Finsler metric is said to be C-reducible if the Cartan tensor of F  is in the following form  
 

1 { }
1ijk ij k jk i ki jC h I h I h I

n
= + +

+
, 

 
where ij ij i jh g= −  is the angular metric tensor [7, 8].  
 
Definition: (Douglas tensor)  
Let F  be a Finsler metric, and G  be its associated spray. In a standard coordinate ( )i ix y,  for 

0TM , we define  
 

i
i i
jkl jk jkij k l

GB E B
y y y
∂

= , = .
∂ ∂ ∂

 

 
Now the Douglas tensor is given by  
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2 { }
1

jki i i i i i
jkl jkl jk l jl k kl j l

E
D B E E E y

n y
δ δ δ

∂
= − + + + .

+ ∂
 

 
Definition: (Isotropic mean Berwald metric)  
A Finsler manifold ( )M F,  is said to be isotropic mean Berwald metric  if  
 

1
2 i jij y y

nE cF+
= .  

where ( )c c x=  is a scalar function on M .  
 
Definition: (Generalized Landsberg metrics)  
We say that a Finsler metric F  is a generalized Landsberg metric if the h -curvature of the Berwald 
and Chern connections coincide [5].  
 
Remark 1. Every Landsberg manifold is a generalized Landsberg manifold, but the opposite is not 
true.  
 
Definition: (Funk metrics)  
The Funk metric on a strongly convex domain nRΩ⊂  is a nonnegative function on nT RΩ = Ω× , 
which satisfies the following  
 

i ix y
F FF= .  

 
Then for every Funk metric we have  

 
k i i

k
x y x

F y F=  
 
and the geodesic coefficients iG  of F  are given by  
 

1( ) ( )
2

i iG y F y y= .  
 
Definition: (Randers metrics)  

Let ( ) i j
ija x y yα =  be a Riemannian metric, and ( ) i

ib x yβ =  be a 1-form on M  with 

1ij
i jb a b b:= < . The Finsler metric F α β= +  is called a Randers metric. This class of Finsler 

metrics is very important in Finlser geometry, and can be seen in many areas such as mathematics, 

physics and biology [9]. Randers metrics were first studied by physicist G. Randers in 1941, from the 

standard point of general relativity [9, 10]. Since then, many Finslerists have made efforts to 

investigate the geometric properties of Randers metrics. 
  
Theorem A: The Finlser metric nF , ( 3)n ≥  is C -reducible if and only if the metric is a Randers 
metric [7, 8]. 
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3. GENERAL RELATIVE ISOTROPIC L -CURVATURE METRICS 
 
Definition A: A Finlser metric F  is said to be General Relative Isotropic Landsberg Metric if 
L Cλ= , for some scalar function λ  on TM , and to be brief we call it G.R.I Landsberg metric. In 
the case cFλ =  for some scalar function c  on M , it is also said to be Relatively Isotropic 
Landsberg metric or briefly R.I Landsberg metric.  
 
Remark 2. It is proved that in this case the scalar ( )x yλ ,  is given by [1] 
 

.
i

i
j

j

J I
I I

λ =  

 
Definition B: A Finlser metric F  is said to be General Relative Isotropic J-curvature Metric if 
J Iλ= , for some scalar function λ  on TM , and to brief we call it G.R.I J-curvature metric. In the 
case cFλ =  for some scalar function c  on M , it is also said to be Relatively Isotropic J-curvature 
Metric or briefly R.I J-curvature metric. 
   
Remark 3. Every R.I Landsberg metric is a G.R.I Landsberg metric, every R.I J-curvature metric is a 
G.R.I J-curvature metric, every G.R.I Landsberg metric is a G.R.I J-curvature metric and every R.I 
Landsberg metric is a R.I J-curvature metric.  
 
Theorem B: Let nF , ( 3)n >  be a C-reducible G.R.I Landsberg metric and 3n > . Then F  is a R.I 
Landsberg metric [1, 3].  
 
Lemma 1. Every C-reducible G.R.I J-curvature metric F  is a G.R.I Landsberg metric.  
 
Proof: Since F  is C-reducible, then 
  

1 { }
1ijk ij k ik j jk iC h I h I h I

n
= + + .

+
 

 
By taking the horizontal covariant derivation of the above identity with respect to the Chern 

connection we get  
 

1 { }
1ijk s ij k s ik j s jk i sC h I h I h I

n| | | |= + + .
+

 

 
By contracting the last identity with ( )sy  and using s

k s kI y J| =  we have  
 

ijk ijkL Cλ= − .  
 

This means that F  is G.R.I Landsberg metric. 
 
Corollary 1. Let nF  be a C-reducible G.R.I J-curvature metric and 3n > . Then F  is a R.I J-
curvature metric.  
 
Proof: By Theorem B and remark 3 the result is obtained.  
 
Theorem C: Let nF , ( 3)n >  be a C-reducible G.R.I Landsberg metric and 3n > . Then F  is a 
Douglas metric [3]. 
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Corollary 2. Let nF , ( 3)n >  be a C-reducible G.R.I J-curvature metric. Then F  is a Douglas 
metric.  
 
Proof: By lemma 1 and Theorem C, we have the above corollary. 
 
Corollary 3. Let nF , ( 3)n >  be a C-reducible R.I J-curvature Finsler metric. Then F  is a Douglas 
metric.  
 
Proof: It is a consequence of Remark 3 and corollary 3. 
 
Corollary 4. Let nF , ( 3)n >  be a Randers metric which is R.I J-curvature Finsler metric. Then F  
is a Douglas metric. 
 
Proof: Theorem A and corollary 4 lead to the result.   
 
Definition E: A R. I Landsberg metric is said to be a constant relatively Landsberg metric if 0c c= , 
where 0c  is a constant. In this case we write 0c=L .  
 
Example 1. Let F  be the Funk metric on a strongly convex domain Ω  in nR . Then we have  
 

1
2ijk ijkL FC−

= ,  
 
so Funk metric is a constant relatively isotropic Landsberg metric with 1

0 2c −= .  
Let nF α β= +  be a Randers metric with 3n > , which is also a G.R.I Landsberg metric. S. 

Bacso and I. Papp say that if F  is Douglas space, then F  must be a Riemannain metric [2]. But 
example 1 shows this claim is not correct. Here, in some way, by theorem 1.2 of [11], remark 3 and 
corollary 2, we state the correct version of the above claim.  
 
Example 2. Let nF α β= +  be a Randers metric with 3n >  which is also a G. R. I Landsberg 
metric. Suppose F  has constant flag curvature λ=K , then 2 0cλ = − ≤ . F  is either locally 
Minkowskian 2( 0)cλ = − =  or in the following form after a scaling ( 0)λ < :  
 

2 2 2 2

2 2

( )
1 1 1

n
a x

y x y x y x y a yF y T R
x x a x

| | − | | | | − < , > < , > < , >
= ± ± , ∈

− | | − | | + < , >
 

 
where a∈ nR  is a constant vector with 1a| |< , and <>  is the Euclidean inner product on nR .  
 
Remark: Let F α β= +  be a Randers metric on a manifold M . There is a pair ( )h W,  
corresponding to F  by Zermelo’s navigation problem [12], where h  is a Riemannian metric and W  
is a vector field on M  with ( ) 1h W W, < . Suppose F  is Douglas, i.e. β  is closed, then it is proved 
that F  is G.R.I Landsberg curvature metric if and only if W  is a homotetic vector filed with respect 
to h . Moreover, L cFC=  if and only if ( ) 4WŁ h ch= − , where WŁ  is the Lie derivation with 
respect to W . On the other hand, it has recently been proven that on Douglas spaces, relatively 
isotropic Landsberg metrics and isotropic mean Berwald metrics are the same [13].  
 
Theorem 5. Let ( )M F,  be a constant relative isotropic Landsberg space. Then the following are 
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equivalent:  
1) F  is Landsbergian.  
2) F  is generalized Landsbergian.  
 
Proof: Let F  be a Finsler metric. By remark 1, it is sufficient to prove that every generalized 
Landsberg metric is Landsberg metric. The relation between h-curvatures of Berwald and Chern 
connections is given by  
 

[ ]i i i i i s i s
jkl jkl jl k jk l sk jl sl jkR L L L L L L| |= + − + −R  

 
where R and R  are h-curvatures of Berwald and Chern connections, respectively [14]. By definition 
of generalized Landsberg metric we have 
  

0i i i s i s
jl k jk l sk jl sl jkL L L L L L| |− + − =  

 
Since ijk ijkL cFC= , then the above result becomes the following  
 

2 2{ } { } 0i i i s i s
jl k jk l sk jl sl jkcF C C c F C C C C| |− + − =  

 
By contracting with ky , we have  
 

0ijlL =  
 
This means that F  is a Landsberg metric.  

By using the above theorem and remark 2, we have the following  
 
Corollary 6. Let ( )M F,  be a constant relative isotropic Landsberg space. Then the following are 
equivalent:  
1) F  is weakly Landsbergian.  
2) F  is Landsbergian.  
3) F  is generalized Landsbergian.  
 
Proposition ([4]): Let F  be a Finsler metric of scalar curvature on an n-dimensional manifold with 
=L c , then 

  
3

12 ( ) nK c x e
τ

σ
−
+= − + ,  

 
where ( )xσ  is a scalar function on M , and τ  is a scalar function on 0TM .  

With the above notations and conditions, we have the following  
 
Corollary 7. If ( 3n > ) and 0σ ≠  then F  is a Randers metric.  
 
Proof: By [3], since 

3
12 0nK c e
τ

σ
−
++ = ≠  then F  is C-reducible, so by theorem A the result is 

obtained.  
 

4. REDUCTION TO A RIEMANNIAN METRIC 
 
Theorem: Let F  be a Finsler space of scalar curvature ( )k x y= ,K  [15] then 
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1{ 3 }
3

s
ijk s i jk j ik k ij ijkL y k h k h k h kC| , , ,

−
= + + + .  

 
Corollary 8. Every R -flat and non-zero constant relative Landsberg manifold is a Riemannian 
manifold.  
 
Theorem 9. Let ( )M F,  be a complete non-zero constant relative Landsberg manifold with bounded 
Cartan torsion. Then ( )M F,  is a Riemannian manifold.  
 
Proof: Let p  be an arbitrary point of M , and py u v w T M, , , ∈ . Let ( )c M: −∞,∞ →  is the unit 
speed geodesic passing from p  and (0)dc

dt y= . If ( ) ( )U t V t,  and ( )W t  are the parallel vector 
fields along c  with (0) (0)U u V v= , =  and (0)W w= , we put ( ) ( ( ) ( ) ( ))C t C U t V t W t= , ,  and 

( ) ( ( ) ( ) ( ))C t C U t V t W t= , , . By definition, we have the following ODE, 
 

0( ) ( )C t C tλ= .  
With a general solution of  

 
0( ) (0) tC t C e λ= .  

 
Using C|| ||< ∞ , and letting t →+∞  or t →−∞ , we have (0) ( ) 0C C u v w= , , = , so 0C =  

i.e. ( )M F,  is a Riemannian manifold.  
 
Corollary 1. Every non-zero constant relative isotropic compact Landsberg metric is a Riemannian 
metric.  
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