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Abstract – The coherent anomaly method and a cluster mean-field approach combined with finite-size 
scaling extrapolation were used to determine the critical temperature and the critical exponents of a 

1=S  Ising chain with a long-range interaction in the form of σr +1/1 . The results of critical 
temperature are in good agreement with the recent results of the finite-range scaling method and are 
more accurate in the classical region. The critical exponents are in agreement with the results of spin-

2
1  

Ising chains and indicate that the critical exponents are independent of the magnitude of spin in Ising 
models with long-range interactions. 

 
Keywords – Coherent anomaly, critical phenomena, critical exponents, Ising model 
 

1. INTRODUCTION 
 

The spin Ising ferromagnet chains with a long-range interaction proportional to σ+1/1 ijr  ( r is the 
distance between spins at sites i  and j ) are known rigorously to exhibit long-range order for 

10 << σ  [1]. There are different interests in the study of the critical phenomena in the systems with 
long-range interactions. A problem that is of particular interest is the 1=σ  case. Under this form of 
interaction, the 2/1=S  can be mapped onto the spin-

2
1  Kondo problem [2] and generally, 2/1>S  

may be related to the higher spin generalization of the Kondo problem [3].  
In the present work, a cluster mean-field approach combined with the finite-size scaling 

extrapolation [4] is used to determine critical temperature of a spin chain with a long-range 
interaction in the form of σr +1/1  for 1=S . For determining the critical exponents of these chains, we 
employ the Coherent Anomaly Method (CAM) [5] with an appropriate extrapolation procedure based 
on Van den Broeck and Schwartz transformation (VBS) [6] and Least Squares Approximation (LSA).  
 

2. COMPUTATIONAL METHOD 
 
The Hamiltonian of the system under consideration can be written as 
  
                                                           { } ∑ ∑

<

−=
ji i

ijiijs shssJH
i

,                                                     (1) 

 
where 1,0,1−=is  and 

σ+−= 1/ jiJJ ij  in which the lattice spacing is one unit and { }is  denotes a 
configuration of the system. The thermal average of a spin defined as 
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where Z  is the partition function. Hereafter we set kJ /  equal to one.  

Our approach in section 3 requires a sequence of critical temperature estimates for the above 
system in which 0=h , and we achieve this by use of the cluster mean-field approach. In this 
approach, we specifically treat all interactions among the spins making up a cluster and we replace all 
interactions between a spin in the cluster and one outside the cluster with a mean-field interaction [4]. 
We denote this critical temperature as ( )LTc , with L  representing the number of sites. Here we look 
at clusters with an odd number of sites. For the estimation of critical exponents we use the CAM [5]. 
Since our results are mean-field type, the spontaneous magnetization and the zero-field susceptibility 
are  
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The CAM method makes use of ( )m L  and ( )Lχ  to determine the true critical exponent values 

of β  andγ . The values are given by  
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where 1L  and 2L  denote two different cluster sizes and cT  is the true critical temperature for the 
infinite chain. 1L  and 2L  must be two closed integers for better convergency.  

After obtaining the mean-field critical temperatures ( )LTc , we now use a finite-size approach to 
first get an approximation for the true critical temperature[4] and then we use Eqs(4) and (5) to obtain 
values for β  andγ . We use the finite-size approach to again get the approximation for the true 
critical exponent β  andγ .  

From the scaling hypotheses one expects to observe a power-law convergency for the critical 
temperature and critical exponents [7]. For the sequence of LA , the relation of convergency can be 
written as  
 
                                                          "+++≅ −−

∞ LLbAAL
21

1
λλ ,                                                 (6) 

 
where ∞A  is the value of A  in the limit of ∞→L . In this study we use two approaches to determine 
the value of ∞A . In the first approach we apply a procedure due to the Van den Broeck and Schwartz 
method (VBS) [6]. The procedure is a generalization of the Pade approximation method. Successive 
approximations are given by the following recurrence relations 
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where [ ]NL,  is the N th-order extrapolation of LA . In particular [ ] LAL =0,  and [ ] ∞=−1,L .  

In the second approach, we have used one simple extrapolation procedure, fitting the curve in the 
Least-Squares Approximation (LSA) to a power law form.  
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3. RESULTS AND DISCUSSION 

 
The calculations of the mean-field critical temperature ( )LTc  by the cluster mean-field method are 
performed in the classical ( 5.00 ≤<σ ) and nonclassical ( 15.0 ≤<σ ) regions for S=1 Ising chains 
with a high numerical precision. For this purpose, the calculation was achieved using the Maple 
package. The mean-field critical temperatures were determined for 17,,3,1 …=L , and by the VBS 
method the true critical temperature was obtained. The significant digits of the data presented in this 
section was determined by the stable digits between the two last columns of VBS approximants. The 
results of critical temperatures in both the classical and nonclassical regions are presented in Table 1, 
and for comparison, we have shown the critical temperatures obtained by the Finite-Range Scaling 
method (FRS) [8, 9]. As is seen, the results of both methods are almost in good agreement, but as is 
expected, in the mean-field region our results are more accurate. It must be mentioned that the FRS 
method is an approach based on range-scaling in the nonclassical region, but our results based on the 
cluster mean-field are very near to the FRS results in the nonclassical region. 
 
Table 1. The critical temperature estimates based on cluster mean-field approach and the VBS transformations 

and the results of FRS method in (a) the classical region and (b) nonclassical region 
 

 
 
    
  

(a)   
σ  0.6 0.7 0.8 0.9 1 

VBS 2.5031 2.1062 1.7899 1.525 1.29 
FRS [8] 2.499 2.103 1.789 1.530 1.317  

(b) 
 

After determination of the critical temperature, we use Eqs (4) and (5) to calculate estimates for 
β  and γ  respectively. It must be remarked that the accuracy of these estimates is lower because of 
the logarithmic form of these equations. Therefore, we use both the VBS and LSA methods in 
extrapolation. In the LSA method, the estimates of β  and γ  for 15,13,11=L  and 17 are fitted to the 
a power law form in the least-squares approximations. The results of the CAM method with both 
extrapolation procedures were presented in Tables 2 and 3, and the results of the other methods for 
spin-

2
1  Ising chains also were shown for comparison.  

 
Table 2. The β critical exponent values were obtained by CAM method with VBS transformations 

 and LSA extrapolation. Other results are from various analytical and numerical methods for  
spin-1/2 Ising chains in (a) the classical region and (b) nonclassical region 

                  
(a)            

σ  0.1 0.2 0.3 0.4 0.5 
VBS 14.0279 7.2819 4.9766 3.7806 3.0296 

FRS [8] 14.0 7.32 4.99 3.78 3.026 
FRS [9] 14.06 7.2801 4.9561 3.748 2.991 

σ  0.6 0.7 0.8 0.9 1 
CAM  with VBS 0.3640 0.3086 0.2504 0.2007 0.1541 
CAM with LSA 0.36294 0.29385 0.2135 0.16417 0.13812 

Ref [12] 0.381 0.354 0.328 0.299 0.265 
Ref [13] 0.33 0.26 0.18 0.10 0.0 



A. Ramazani 

Iranian Journal of Science & Technology, Trans. A, Volume 29, Number A2                                                  Summer 2005 

322   
Table 2. (Continued) 

  
σ  0.1 0.2 0.3 0.4 0.5 

CAM  with VBS 1.0006 1.0045 1.0172 1.045 1.090 
CAM with LSA 1.0002 1.0007 0.999   

Ref [4] 1.0008 1.0060 1.023 1.064 1.137 
Ref [10] 1.0 1.0 1.0 1.0 1.0 
Ref [12] 1.014 1.040 1.097 1.167 1.264 
Ref [13]  1.0 1.01 1.06 1.11  

(b) 
 

Table 3. The γ critical exponent values were obtained by CAM method with VBS transformations  
and LSA extrapolation. Other results are from various analytical and numerical methods  

for spin-1/2 Ising chains in (a) the classical region and (b) nonclassical region 
 

σ  0.6 0.7 0.8 0.9 1 
CAM with VBS 1.209 1.3686 1.490 1.65 1.84 

Ref [10] 1.19 1.29 1.50 1.78 2.2 
Ref [12] 1.360 1.463 1.584 1.701 1.846 
Ref [13] 1.176 1.440 1.790 2.226 2.750  

(a)   
σ  0.1 0.2 0.3 0.4 0.5 

CAM  with VBS 0.4991 0.4939 0.4803 0.4545 0.4098 
CAM with LSA 0.50001 0.50224    

Ref [4] 0.499507 0.49610 0.46458 0.43994 0.40843 
Ref [10] 0.5 0.5 0.5 0.5 0.5 
Ref [11] 0.494 0.482 0.497 0.51 0.51 
Ref [12] 0.495 0.482 0.460 0.435 0.408 
Ref [13]  0.5 0.48 0.45 0.39  

(b) 
 

As is seen, the critical exponents obtained in our approach for small values of σ  in the classical 
region are in good agreement with the results of the RG method [10] and the extensive Monte Carlo 

method for spin-
2
1

 Ising chains [11]. In the nonclassical region, there are no reliable results for 
critical exponents, however there are some different results with low accuracy originating from the 
complicated nature of critical phenomena in this region. In this region, the comparison of our results 
and coherent anomaly results for spin-

2
1  Ising chains [4, 12] indicates a relatively good agreement. 
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