EXISTENCE RESULTS FOR A CLASS OF SEMILINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS^{*}

G. A. AFROUZI** AND M. JAFARI

Department of Mathematics, Faculty of Basic Sciences Mazandaran University, Babolsar, I. R. of Iran

Abstract - We consider the semilinear elliptic boundary value problem

$$\begin{cases} -\Delta u(x) = \lambda f(u(x)); & x \in \Omega \\ u(x) = 0; & x \in \partial \Omega \end{cases}$$

where $\lambda > 0$ is a parameter, Ω is a bounded region in \mathbb{R}^N with a smooth boundary, and f is a smooth function. We prove, under some additional conditions, the existence of a positive solution for λ large. We prove that our solution u for λ large is such that $|| u || := \sup_{x \in \Omega} |u(x)| \to \infty$ as $\lambda \to \infty$. Also, in the case of N = 1, we use a bifurcation theory to show that the solution is unstable.

Keywords - Semilinear elliptic problem, positive solution, unstable solution

1. INTRODUCTION

Here we consider the semilinear elliptic boundary value problem

$$\begin{cases} -\Delta u(x) = \lambda f(u(x)); & x \in \Omega \\ u(x) = 0; & x \in \partial \Omega \end{cases}$$
(1) & (2)

where $\lambda > 0$ is a constant, Ω is a bounded region in $\mathbb{R}^{\mathbb{N}}$ with a smooth boundary and f is a smooth function.

First we state the following Theorems, then we establish these Theorems in Section 2.

Theorem 1. 1. If f(0) < 0, $\lim_{t\to\infty} f(t)/t = 0$, and f is a smooth function such that f'(t) is bounded below, then, there exists $\lambda_0 > 0$ such that for $0 < \lambda < \lambda_0$, problem (1) and (2) have a solution u where $u \le 0$ in Ω .

Remark 1. 1. We assume that there exists c > 0, M > 0 such that

^{*}Received by the editor April 12, 2003 and in final revised form February 7, 2005

^{**}Corresponding author

G. A. Afrouzi / M. Jafari

$$f(x) \ge M, \quad \forall x \ge 0$$
 (3)

and prove that for problem (1) and (2) there is a non-negative solution for large λ . This result has been established in [1], but our method further established that our solution u is such that $|| u || \rightarrow +\infty$ as $\lambda \rightarrow +\infty$. Here we use a recent result by Clement and Sweers [2] to create an appropriate sub-solution.

Theorem 1. 2. Assume the hypotheses of Theorem 1.1, and furthermore assume that f satisfies (3). Then there exists a λ^* such that for $\lambda > \lambda^*$ the problem (1), (2) has a non-negative solution u such that $|| u || \to +\infty$ as $\lambda \to +\infty$.

Theorem 1.3. Let f(0) = 0, f'(0) < 0, $\lim_{t\to\infty} f(t)/t = 0$ and f is eventually increasing.

Also, assume that there exists $\beta > 0$ such that f(t) < 0 for $t \in (0, \beta)$ and f(t) > 0 for $t > \beta$. Then, there exists $\overline{\lambda}$ such that for $\lambda \ge \overline{\lambda}$, the problem (1), (2) has at least two positive solutions.

Theorem 1. 4. Let f satisfy the same hypotheses as in Theorem 1.3. Then there exist λ^* such that for $\lambda < \lambda^*$, the problem (1), (2) has no positive solutions.

Remark 1. 2. Theorem 1.3 is established by using sub-super solutions arguments and results from the so-called semipositone problems. Theorem 1.4 follows easily from the fact that f is negative near zero and is sublinear at infinity.

Remark 1.3. We note here that if u is a non-negative $(u \ge 0 \text{ for } x \in \Omega)$, non-trivial solution then u is necessarily positive $(u > 0 \text{ for } x \in \Omega)$. This follows from the fact that there exists $c(\lambda) > 0$ such that $\lambda f(u) + c(\lambda)u \ge 0, \forall u \ge 0$ and so $u \ge 0$ satisfies $-\Delta u + c(\lambda)u \ge 0, \forall x \in \Omega$ and hence u > 0 by the maximum principle [3].

Remark 1. 4. Here we deal with sublinear nonlinearities satisfying f(0) = 0 and f'(0) < 0. For an existence result via the variational method for the superlinear nonlinearities satisfying f(0) = 0, f'(0) < 0 and f being superlinear at infinity [4], and for an instability result for convex nonlinearities see [5].

Remark 1. 5. We note that for classes of nonlinearities of f, that f(0) = 0, f'(0) < 0, and there exist $\beta_2 > \beta_1 > 0$ such that f(t) < 0 for $t \in (0, \beta_1) \cup (\beta_2, +\infty)$ and f(t) > 0 for $t \in (\beta_1, \beta_2)$. Theorems 1.3 and 1.4 can be easily established by using the ideas given in this paper.

Now we consider the boundary value problem

$$u''(x) + \lambda f(u(x)) = 0; \quad x \in (-1,1)$$
(4)

$$u(-1) = 0 = u(1). \tag{5}$$

Where λ is a positive parameter (the case of N = 1).

For any solution u(x) of (4), (5) let $(\mu, w(x))$ denote the principal eigenpair of the corresponding linearized equation, i.e. w(x) > 0 satisfies

Existence results for a class of...

$$w'' + \lambda f'(u)w + \mu w = 0; \quad x \in (-1,1), \quad w(-1) = 0 = w(1)$$
(6)

Recall that solution u(x) of (4) and (5) is called unstable if $\mu < 0$, otherwise it is stable. Recall also that a solution of (4) and (5) is called degenerate (or singular) if for $\mu = 0$ there is a non-trivial solution of (6). It is easy to see that for a positive degenerate solution any solution w of (6) is of one sign, i.e. $\mu = 0$ can only be the principal eigenvalue. In fact, if u is a positive degenerate solution, then u is an even function, u' < 0 in (0,1) and u' satisfies $(u')'' + \lambda f'(u)u' = 0$. Then by Sturm comparison Lemma, w must be of one sign. It follows that unstable solutions are non-degenerate.

Let
$$F(u) = \int_{0}^{u} f(t)dt$$
, $h(u) = 2F(u) - uf(u)$.

We establish the following results in section 3.

Theorem 1. 5. Assume that $f \in C^1[0,\infty)$, f(0) > 0, and for some $\alpha > \beta > 0$ we have

$$h'(u) \ge 0; \quad 0 < u < \beta, \quad h'(u) \le 0; \quad \beta < u < \alpha, \tag{7}$$

$$h(\alpha) \le 0. \tag{8}$$

297

Then the solution of (4) and (5) with $u(0) = \alpha$ is unstable if it exists.

Remark 1. 6. Theorem 1.5 is stated in a way that we assume the existence of a solution with $u(0) = \alpha$. In fact, if f(u) > 0 for all $u \in [0, \alpha]$, then for any $d \in (0, \alpha]$, there exists a unique $\lambda(d)$ such that (4) and (5) have a positive solution with $\lambda = \lambda(d)$ and u(0) = d, see [6].

Remark 1. 7. It is easy to see that condition (7) holds if

$$f''(u) > 0; \quad 0 < u < \alpha \tag{9}$$

and (8) is also satisfied. So Theorem 1.5 still is true if we replace (7) with (9).

Remark 1. 8. It is well-known that if for some $\beta > 0$, f(u) > 0 and $h'(u) \ge 0$ or $0 \le u \le \beta$, then the solutions of (4) and (5) with u(0) = d and $0 < d \le \beta$ are all stable ([7], Theorem 6.2). Thus Theorem 1.5 implies that if f is convex and positive, and satisfies (8), then the unique degenerate solution u satisfies $\beta < u(0) < \alpha$.

Remark 1.9. Note that any solution of (4) and (5) is symmetric with respect to any point $x_0 \in (-1,1)$ such that $u'(x_0) = 0$, so any positive solution of (4) and (5) is a reflection extension of a monotone decreasing solution of

$$u'' + \lambda f(u) = 0; \qquad x \in (0,1)$$
(10)

$$u'(0) = u(1) = 0; \tag{11}$$

G. A. Afrouzi / M. Jafari

$$u'(x) < 0; \qquad x \in (0,1).$$
 (12)

So the study of all positive solutions is reduced to the study of (10)-(12). On the other hand, all solutions of (10)-(12) can be parameterized by their initial values $u(0) = \rho$.

In fact, by integrating the equation we obtain

$$u'(x) = -\sqrt{2\lambda[F(\rho) - F(u(x))]}; \qquad x \in (0,1),$$
(13)

where $u(0) = \rho$, and

$$\sqrt{\lambda} = \frac{1}{\sqrt{2}} \int_{0}^{\rho} \frac{du}{\sqrt{f(\rho) - F(u)}} \coloneqq G(\rho).$$
(14)

So for each $\rho > 0$, there is at most one (if the integral in (14) is well defined and convergent) λ such that (10)-(12) have a solution. Thus the solution set of (10)-(12) can be represented by $\lambda = \lambda(\rho) = [G(\rho)]^2$, which we call bifurcation diagram.

Remark 1.10. In view of Remark 1.9 and equation (6), at a degenerate solution, we have w as a nontrivial solution of the linearized equation [8, 9]

$$w'' + \lambda f'(u)w = 0; \quad x \in (0,1), \quad w'(0) = 0 = w(1).$$
 (15)

Lemma 1.1. Suppose that $(\lambda(\rho), u(., \rho))$ is a degenerate solution of (10)-(12), and w is the corresponding solution of linearized equation (15). Then $w(x) \neq 0$ for $x \in [0,1)$, so we can choose w as positive in [0,1).

Lemma 1.2. Assume that $f \in C^2[0,+\infty)$, f(0) < 0, f(u) < 0 for $u \in (0,b)$ for some b > 0, f(b) = 0 and f'(b) > 0, and there exists $\theta > b$ such that $f(\theta) > 0$, F(u) < 0 for $u \in (0,\theta)$, and

$$F(\theta) = 0. \tag{16}$$

Then $u(., \theta)$ is an unstable solution.

Lemma 1. 3. ([10], [11]) we have

$$\int_{0}^{1} f(u(x,\rho))w(x)dx = \frac{u'(1)w'(1)}{2\lambda(\rho)}$$

Although it is possible that u'(1) = 0 for a solution u(.) of (10)-(12), (in fact, $u_x(1, \rho) = 0$ if and only if $\rho = \theta$), we can show that u'(1) < 0 if u(.) is a degenerate solution.

2. PROOFS OF THEOREMS 1. 1-1. 4

Proof of Theorem 1. 1. Suppose u is a solution of (1) and (2) such that it is positive somewhere in Ω . Then there exists $\Omega^* \subset \Omega$ such that u > 0 in Ω^* , u = 0 on $\partial \Omega^*$. Let $\lambda_1(\Omega^*)$ be the smallest eigenvalue of

Existence results for a class of...

 $-\Delta\phi = \lambda_1\phi; \qquad x \in \Omega^*$ $\phi = 0; \qquad x \in \partial\Omega^*$

and $\phi > 0$ in Ω^* , a corresponding eigenfunction. Now by assumptions in Theorem 1. 1, there exists a $\beta > 0$ such that

$$f(t) \le \beta t; \qquad \forall t \ge 0.$$

Now *u* satisfies

$$-\Delta u - \lambda \beta u = \lambda \{ f(u) - \beta u \}; \qquad x \in \Omega^*.$$

Hence multiplying by ϕ and integrating over Ω^* we have,

$$\int_{\Omega^*} (-\Delta u - \lambda \beta u) \phi dx = \int_{\Omega^*} (\lambda_1(\Omega^*) - \lambda \beta) u \phi dx \le 0.$$

This is impossible if $\lambda < \lambda_1(\Omega^*) / \beta$. But we know that $\lambda_1 = \lambda_1(\Omega) \le \lambda_1(\Omega^*)$ if $\Omega^* \subset \Omega$. Hence the result holds for $\lambda_0 = \lambda_1(\Omega) / \beta$.

Proof of Theorem 1. 2. Consider the boundary value problem

$$-\Delta w(x) = \lambda g(w(x)); \qquad x \in \Omega$$
(17)

$$w(x) = 0; \qquad x \in \partial \Omega \tag{18}$$

where

$$g(s) = g(s, \alpha, \delta) := \begin{cases} \left[\frac{M}{(\alpha - 1)c}\right]s - \frac{M}{\alpha - 1}; & 0 \le s \le c \\ -\frac{M(s - c)(s - \alpha c)}{[(\alpha - 1)c]^2}; & c \le s \le (\alpha + 1)c/2 \\ \frac{-M(-s[(\alpha + 1)c - \delta])(s - \delta)}{[s\delta - (\alpha + 1)c]^2}; & s \ge (\alpha + 1)c/2. \end{cases}$$

Here $\alpha > 1$ and $\delta > \alpha c$. Note that $g \in C^1([0,\infty))$, max $g = g(\frac{(\alpha+1)c}{2}) = \frac{M}{4}$ and $g'(c) = \frac{M}{(\alpha-1)c} \to +\infty$ as $\alpha \to 1^+$.

Thus by (3) there exists $\alpha = \alpha_0$ such that

$$f(s) \ge g(s); \qquad \forall s \ge \alpha_0. \tag{19}$$

Now, for $\alpha = \alpha_0$ there exists a δ_0 such that

$$\int_{0}^{s} g(s) ds > 0$$

299

for every $\delta \ge \delta_0$. Let $g(s, \alpha_0, \delta)$ with $\delta \ge \delta_0$. Then by the result of Clement and Sweers ([2, Theorem 2]), problem (17) and (18) have a non-negative solution $0 \le w < \delta$ for λ large, say for $\lambda \ge \hat{\lambda}(\delta)$, such that $||w|| \to \delta$ as $\lambda \to +\infty$. But by (19) this solution is a sub-solution of (1), (2).

Now let v(x) to be the unique positive solution of

$$-\Delta v(x) = 1;$$
 $x \in \Omega$
 $v(x) = 0;$ $x \in \partial \Omega$

and consider $\phi(x) = Jv(x)$; J > 0 (to be chosen). Then ϕ satisfies

$$-\Delta \phi(x) = J;$$
 $x \in \Omega$
 $\phi(x) = 0;$ $x \in \partial \Omega$

But by $\lim_{t\to+\infty} f(t)/t = 0$, there exists a $J_0 > 0$ such that for $J > J_0$,

$$-\Delta\phi(x) = J \ge \lambda f(Jv(x)); \qquad x \in \Omega$$

and thus $\phi(x)$ will be a super-solution for (1) and (2). Consequently, given $\lambda \ge \hat{\lambda}(\delta)$, there exists $J_0(\lambda)$ such that $J > J_0(\lambda)$

$$\phi(x) = Jv(x)$$

will be a super-solution of (1), (2) satisfying

$$\phi(x) \ge w$$
.

Hence there exists a solution u for $\lambda \ge \hat{\lambda}(\delta)$ such that $w \le u \le \phi(x)$. But $||w|| \to \delta$ as $\lambda \to +\infty$ and δ can be chosen arbitrarily large. Hence Theorem 1.2 is proven.

Remark 2. 1. We first recall the following sub-super solutions result which will be used to establish Theorem 1.3.

Theorem 2. 1. Suppose there exists a sub-solution φ_1 , a strict super-solution ϕ_1 , a strict sub-solution φ_2 and a super-solution ϕ_2 for the problem (1), (2) such that $\varphi_1 < \phi_1 < \phi_2$, $\varphi_1 < \varphi_2 < \phi_2$ and φ_2 is not less than or equal to ϕ_1 [12].

Then the problem (1), (2) has at least three distinct solutions u_s (s=1, 2, 3) such that

$$\varphi_1 \le u_1 < u_2 < u_3 \le \varphi_2$$

Note that a weaker form of Theorem 2.1 (under the assumption $\phi_1 \le \phi_2$) was established in [13]. However, we require this stronger version to establish our multiplicity result.

Proof of Theorem 1. 3. Clearly $\varphi_1 \equiv 0$ is a solution to (1), (2). Consider $\phi_1(x) = \varepsilon v(x)$ where v(x) > 0; $x \in \Omega$ is an eigenfunction satisfying

$$-\Delta v(x) = \lambda_1 v(x); \qquad x \in \Omega \tag{20}$$

$$v(x) = 0; \qquad x \in \partial \Omega \tag{21}$$

corresponding to the principal eigenvalue $\lambda_1 > 0$. Now $H(z) = \lambda_1 z - \lambda f(z) > 0$ for small positive z since f'(0) < 0. Thus $-\Delta \phi_1 = \lambda_1 \varepsilon v(x) > \lambda f(\varepsilon v(x))$ for $x \in \Omega$ if $\varepsilon > 0$ is small, and hence ϕ_1 is a strict super-solution of (1) and (2).

Next consider a C^1 function g as in Theorem 1.2 such that g(u) < f(u) for all $u \ge 0$. This is clearly possible by the hypotheses on f. Let $\varphi_2 = \varphi_2(x, \lambda)$ be a positive solution for large λ described in Theorem 1.2 of $-\Delta w = \lambda g(w)$ in Ω , w = 0 on $\partial \Omega$. Then $-\Delta \varphi_2 = \lambda g(\varphi_2) < \lambda f(\varphi_2)$ for $x \in \Omega$, and hence φ_2 is a strict sub-solution of (1), (2) for large λ .

Finally, consider $\phi_2(x) = MZ(x)$ where Z(x) is the unique positive solution of $-\Delta w = 1$ in Ω , $w \equiv 0$ on $\partial \Omega$, and M > 0 is a constant.

Then $-\Delta\phi_2(x) = M \ge \lambda f(MZ(x))$ for $x \in \Omega$, provided that $M \ge M_1(\lambda)$ for some $M_1(\lambda)$ large enough so that $M \ge \lambda f(M || Z ||_{\infty})$, which is possible since $\lim_{u\to\infty} \frac{f(u)}{u} = 0$ and f is eventually increasing. Now also choose $M \ge M_2(\lambda)$ where $M_2(\lambda)$ is large enough so that $MZ(x) > \phi_2(x, \lambda)$ and $MZ(x) > \phi_1(x)$ for $x \in \Omega$, which is possible since Z(x) > 0 for $x \in \Omega$ and $\frac{\partial Z}{\partial n} < 0$ for $x \in \partial \Omega$ where n denotes the outward normal. Choose $M \ge \max\{M_1(\lambda), M_2(\lambda)\}$. Further, choose $\varepsilon > 0$ small enough so that the set $S = \{x \in \Omega : \phi_2(x) - \phi_1(x) > 0\}$ is non-empty.

Now applying Theorem 2.1, the existence of at least two distinct positive solutions for λ large easily follows. In particular, a positive solution u_1 such that $\varphi_2(x) \le u_1(x) \le \phi_2(x)$ for $x \in \Omega$, and a second positive solution u_2 such that $0 < u_2(x) \le \phi_2(x)$ for $x \in \Omega$, $S_1 = \{x \in \Omega : u_2(x) - \phi_1(x) > 0\} \neq \phi$ and $S_2 = \{x \in \Omega : u_2(x) - \phi_2(x) < 0\} \neq \phi$ exist.

Proof of Theorem 1. 4. Let u be a positive solution of (1), (2). Multiplying (19) by u and (1) by v, where v(x) is as defined in problem (19) and (20), and subtracting we obtain

$$\int_{\Omega} (\lambda f(u) - \lambda_1 u) v dx = 0.$$
⁽²²⁾

Here we have used the fact that $\int_{\Omega} [(-\Delta u)v - (-\Delta v)u] dx = 0$, which easily follows by applying Green's identity and boundary conditions. But since f(0) = 0, $\lim_{u \to 0} \frac{f(u)}{u}$ exists and $\lim_{u \to \infty} \frac{f(u)}{u} = 0$, there exists K > 0 such that $f(u) \le Ku$ for all $u \ge 0$. Thus, if λ is small enough so that $\frac{\lambda_1}{\lambda} > K$, equation (22) cannot hold. Hence, for λ small, the problem (1) and (2) has no positive solution and Theorem 1.4 is proven.

3. PROOFS OF THEOREM 1. 5 AND LEMMAS 1.1 AND 1. 2

Proof of Theorem 1.5.

We have h(0) = 0, h'(0) = f(u) - uf'(u), h'(0) = f(0) > 0. It follows that h(u) is unimodular on $[0, \alpha]$, and it takes its positive maximum at $u = \beta$. Define $x_0 \in (0,1)$ by $u(x_0) = \beta$. We then conclude

$$\begin{cases} f(u(x)) - u(x)f'(u(x)) \le 0 & on & (0, x_0), \\ f(u(x)) - u(x)f'(u(x)) \ge 0 & on & (x_0, 1). \end{cases}$$
(23)

We also remark that by condition (8),

$$\int_{0}^{1} [f(u) - uf'(u)]u'(x)dx = \int_{0}^{1} \frac{d}{dx}h(u(x))dx = -h(\alpha) \ge 0.$$
(24)

Assume now that u(x) is stable, i.e., $\mu \ge 0$ in (6). Without loss of generality, we assume that w > 0 in (-1,1). By the maximum principle, u'(1) < 0, so near x = 1 we have -u'(x) > w(x). Since -u'(0) = 0, while w(0) > 0, the functions w(x) and -u'(x) change their order at least once on (0,1). We claim that the functions w(x) and -u'(x) change their order exactly once on (0,1). Observe that -u'(x) satisfies

$$(-u')'' + \lambda f'(u)(-u') = 0$$
⁽²⁵⁾

on (0,1). Let $x_3 \in (0,1)$ be the largest point where w(x) and -u'(x) change the order. Assuming the claim to be false, let x_2 , with $0 < x_2 < x_3$, be the next point where the order changes. We have w > -u' on (x_2, x_3) , and the opposite inequality to the left of x_2 . Since w(0) > -u'(0), there is another point $x_1 < x_2$, where the order is changed. We multiply (6) by -u', multiply (25) by w, subtract and integrate from x_1 to x_2 , then we obtain

$$w(x_2)[w'(x_2) + u''(x_2)] - w(x_1)[w'(x_1) + u''(x_1)] + \mu \int_{x_1}^{x_2} (-u'(x))w(x)dx = 0, \quad (26)$$

since $w(x_i) = -u'(x_i)$ for i = 1, 2. Let t(x) = w(x) - (-u'(x)). Then $t(x) \le 0$ for $x \in (x_1, x_2)$ and $t(x) \ge 0$ for $x \in (x_2, x_3)$. Thus $t(x_1) = w'(x_1) + u''(x_1) \le 0$ and $t(x_2) = w'(x_2) + u''(x_2) \ge 0$. Because w(x) > 0 and -u'(x) > 0 on (0,1), we get a contradiction in (26).

Since the point of changing of order is unique, by scalling w(x) we can achieve

$$\begin{cases} -u'(x) \le w(x) & on & (0, x_0), \\ -u'(x) \ge w(x) & on & (x_0, 1). \end{cases}$$
(27)

Using (23), (27), and also (24), we have

$$\int_{0}^{1} [f(u) - uf'(u)]w(x)dx < \int_{0}^{1} [f(u) - uf'(u)](-u'(x))dx \le 0.$$
(28)

On the other hand, multiplying equation (6) by u, Eqs. (4) and (5) by w, subtracting and integrating over (0,1), we have

$$\int_{0}^{1} [f(u) - uf'(u)]w(x)dx = \frac{\mu}{\lambda} \int_{0}^{1} uwdx \ge 0,$$

which contradicts (28). So $\mu < 0$.

Proof of Lemma 1. 1. The function $u_x(x, \rho)$ satisfies

$$v'' + \lambda f'(u)v = 0; \quad x \in (0,1), \quad v(0) = 0, \quad v'(x) < 0; \quad x \in (0,1).$$
 (29)

Suppose that w has a zero $x_0 \in (0,1)$. Since w and u_x satisfy the same differential equation (not the same boundary conditions), then by the Sturm comparison Lemma, there is a zero of u_x in the interval $(x_0,1)$, that is a contradiction. So w is of one sign in [0,1).

Proof of Lemma 1. 2. We recall from (6) that a solution $(\lambda(\rho), u(., \rho))$ of (10)-(12) is stable if the principal eigenvalue μ_1 of

$$\phi'' + \lambda(\rho)f'(u(.,\rho))\phi = -\mu_1\phi; \quad x \in (0,1), \quad \phi'(0) = \phi(1) = 0, \tag{30}$$

is non-negative, otherwise it is unstable. Let ϕ be the eigenfunction corresponding to μ_1 , the principal eigenvalue for $u = u(., \theta)$. From the equation of u_x and (30), we obtain

$$[\phi' u_x - (u_x)' \phi]_0^1 + \mu_1 \int_0^1 \phi u_x dx = 0.$$
(31)

Using the boundary conditions and $u_x(1,\theta) = 0$, we have

$$u_{xx}(0,\theta)\phi(0) + \mu_1 \int_0^1 \phi u_x dx = 0.$$
 (32)

We can assume that $\phi(x) > 0$ for $x \in [0,1)$, and we also have $u_{xx}(0,\theta) = -\lambda f(\theta) < 0$ and $u_x \le 0$, thus $\mu_1 < 0$.

REFERENCES

- 1. Smoller, J. & Wasserman, A. (1987). Existence of positive solutions for semilinear elliptic equations in general domains. *Arch. Rational Mech. Anal.*, *98*(3), 229-249.
- Clement, P. & Sweers, G. (1987) Existence and multiplicity results for a semilinear elliptic eigenvalue problem. *Ann.Scuola Norm.Sup.Pisa Cl.Sci.*, 4(14), 97-121.
- Gidas, B., Ni, Wei-Ming & Nirenberg, L. (1979). Symmetry and related properties via the maximum principle. *Comm. Math. Phys.* 68, 209-243.
- Castro, A., Cossio, J. & Neuberger, J. M. (1997). A sign-changing solution to a superlinear boundary value problem. *Rocky Mountain J. Math.*, 27(4), 1041-1053.
- Maya, C. & Shivaji, R. (1998). Instability of nonnegative solutions for a class of semilinear elliptic boundary value problems. J. Comput. Appl. Math., 88, 125-128.
- 6. Korman, P. & Ouyang, T. (1993). Exact multiplicity results for two classes of boundary-value problems. *Differential and integral equations*, *6*, 1507-1517.
- Ouyang, T. & Shi, J. (1999). Exact multiplicity of positive solutions for a class of semilinear problems, II. Jour. Diff. Equa., 158, 94-151.
- Crandall, M. G. & Rabinowitz, P.H. (1973). Bifurcation, perturbation of simplen eigenvalues and linearized stability. *Arch.Rational Mech.Anal.*, 52, 161-180.
- 9. Shi, J. (1999). Persistence and bifurcation of degenerate solutions. Jour. Func. Anal., 169, 494-531.
- Korman, P., Li, Y. & Ouyang, T. (1996). Exact multiplicity results for boundary-value problems with nonlinearities generalising cubic, *Proc. Royal Soc. Edinburgh*, Ser. A. 126A, 599-616.
- Ouyang, T. & Shi, J. (1998). Exact multiplicity of positive solutions for a class of semilinear problem. *Jour. Diff. Equa.*, 146, 121-156.

G. A. Afrouzi / M. Jafari

- 12. Shivaji, R. (1987). A Remark on the existence of three solutions via sub-super solutions. In: V. Lakshmikantham (Ed.), Lecture notes in pure and applied mathematics. Vol. 109, Berlin, Springer.
- 13. Amann, H. (1976). Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces. SIAM Rev., 18(5), 620-709.