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Abstract – A generalized Heckman model is used for the joint modeling of longitudinal continuous 
responses and dropout in order to see the influence of a small perturbation of the elements of the 
covariance structure on displacement of the likelihood. The perturbation from random dropout in the 
direction of informative dropout is considered for Mastitis data.  
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1. INTRODUCTION 
 

Recently joint modeling of response and non-response in cross-sectional and longitudinal data has 
been extensively used [1]. Examples of such models for cross sectional data with selection and 
longitudinal data with dropout are the selection model of Heckman [2] (hereafter, SMH) and the 
dropout model of Diggle and Kenward [3] (hereafter DK). DK [3] use a selection model where they 
decompose the joint distribution of response and dropout into a marginal distribution for longitudinal 
continuous responses and a conditional distribution of dropout given previous and current responses. 
In the DK [3] model, based on the observed likelihood function, dropout is completely random (CRD) 
if dropout neither depends on the previous response nor on the current response. Dropout is at random 
(RD) if, given the previous response, dropout is not dependent on the current response, and dropout is 
informative (ID), and so nonignorable (NID), if dropout depends on the current response. 

However, the DK [3] model rests on strong assumptions (see the review paper of Little [4] and 
discussion of DK [3]). Thus it has been suggested that when using joint modeling, a sensitivity 
analysis should be performed [5-8]. Assessment of the influence of a small perturbation model 
component which links the two models of response and dropout is an important consideration. To this 
end, several tools have been discussed in the literature, such as the informal sensitivity analysis of 
Kenward [9] and a formal local influence based approach [7]. Molenberghs et.al [10] use DK's model 
and the approach of Cook [11] for measuring the influence of a small perturbation of the model 
components. This involves studying the curvature of the likelihood displacement resulting from the 
perturbation. 

In this paper we start with the SMH [2] and study the influence of perturbation of the model 
components (which link the response model and dropout model) to likelihood displacement. As there 
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is just one parameter in the link between dropout and response mechanisms, this approach will help 
us to provide a picture of the global influence. 

Furthermore, we shall use the generalized Heckman model (GHM) presented by Crouchley and 
Ganjali [12] and the local influence of Cook [11] for measuring the influence of small perturbations 
of the model components for longitudinal data with dropout. 

In the next section, the SMH and its generalization will be reviewed. In Section 3, likelihood 
displacement and global and local influence will be discussed and the approach will be explained for 
measuring the influence of a small perturbation of the covariance structure of the Heckman and 
generalized Heckman models. In Section 4, we use the Mastitis data and consider the perturbation 
from RD in the direction of ID. In Section 5 conclusions are given. 
 

2. SELECTION MODEL AND ITS GENERALIZATION 
 
a) Selection model 
 
Heckman [2] proposed a joint model for a continuous response )( iy  and a sample selection 
mechanism. Sample selection is the complement to missing data and dropout. The Heckman [2] 
model is defined by the means of two equations,  
 
                                                                               

*
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T
i vR += Wα                                                            (1) 

 
                                                                             *

ii
T

iy εβ += X                                                                    (2) 
 
where α  and β  are vectors of parameters, iW  and iX  are vectors of covariates ( iW usually 
contains covariates not present in iX ), ),( iiv ε are i.i.d drawings from a bivariate normal distribution 
with zero means, variances ,12 =RRσ  2

00YYσ  and covariance
0RYσ . It is assumed that only the sign of 

*
iR  is observed and that *

iy  is observed only when 0* >iR . Define  
 

*
ii yy =  if 0* >iR  

0=iy  if 0* ≤iR , 
 

for ni ,...,1= . And also define  
 

1=iR  if 0* >iR  
0=iR  if 0* ≤iR  

 
so that ),( ii Ry  constitute the observations for subject i . A joint analysis of ),( ii Ry  is required 
when 0≠RYσ . Heckman [2] provides a two step estimator for this model. 
 
b) Generalized selection model 
 

The Heckman [2] model has been generalized by Crouchley and Ganjali [12] to the situation of 
repeated responses with dropout. This is 
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where t=1,...,T. Now  
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where *

11 ii yy =  for i=1,...,n, 
 

 *
itit yy =  if 0* >itR  
0=ity  if 0* ≤itR  

 
for i=1,...,n and t=2,...,T and also  
 

1=itR  if 0* >itR  
0=itR  if 0* ≤itR . 

 
It is assumed that all the subjects at the start of the study are observed, i.e. .,11 iRi ∀=  The 

observations for subject i  take the form  
 

[ ]* *
1 1( , ) ( ,..., ,0,...,0 , 1,...,1,0,...,0 ),i i i ity y − =  y R  

 
if dropout occurs at time t and  
 

[ ]* *
1( , ) ( ,..., , 1,...,1 )i i i iTy y =  y R  

 
if responses of a subject are completely observed. Dropout is a monotone missing data pattern, i.e. 

1)0|0Pr( 1 === −itit RR  and 0)0|1Pr( 1 === −itit RR , i.e. a subject cannot re-appear once they 
have dropped out. 

For the vector of errors iε , let Var( iε )= YYΣ . Let YYΣ be unstructured so that 
Var( itε )= tYY

2σ and tYYsitis ,),cov( σεε = . It is also assumed that the subjects are independent of 
each other so that 0),cov( ' =tiis εε  for i≠  i '  for all s and t. Write Var( iv )= ,RRΣ where diag( RRΣ ) 
=1. The off diagonal elements of RRΣ are unstructured so that

tsts RRitisRR vv
,,

),cov( σ==Σ . 
Subscript RR is used to indicate the non-response sub matrix of the joint response and non-response 
variance-covariance structure for the stochastic errors. Let [ ]),cov( itisYR vε=Σ . In this GHM both 

YRΣ  and the off diagonal elements of RRΣ  are unstructured. 
 
c) The dropout mechanism 
 

When dropout occurs *
ity  is not observed. We need a slightly different notation if we want to 

study the relationship between the unobserved response *
ity  and the dropout mechanism. Rubin [13] 

and Little and Rubin [1] note that for CRD the dropout process must be independent of both the 
observed responses ),...,( *

1
*
1

*
−= itiio yyy  and *

ity , while for RD the dropout process, conditional on 
*
ioy , must be independent of *

ity . 
If we let f(.) denote a multivariate normal distribution then  
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We have CRD if )(),|( ****

itioiit yfyf =yR  and )()|( ***
iioi ff RyR = . We have RD 

if )|(),|( *****
ioitioiit yfyf yyR = . With either CRD or RD the joint probability of ),( **

ii Ry factors so 
that we can use )( iof y  on its own for unbiased inference about β . If ),|( ***

ioiityf yR  does not 
simplify for CRD or RD we have NID. 
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Crouchley and Ganjali [12] denote the variance-covariance matrix GHΣ  for the elements of 
),,( ***

iitio y Ry , i.e. 
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and they found that if both 0=Σ RYt

 (missing at random) and 0=Σ RY0
 (observed at random) we 

have CRD, i.e. 0=Σ
ot YRY |  and  
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Therefore we can estimate a model under CRD by imposing constraints 0=Σ RYt

 and 0=Σ RYo
. 

It can be seen that if  
 
                                                          0=ΣΣΣ−Σ −

RYYYYYRY oooott

1                                       (6) 
 

We have RD and  
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So we can estimate a model under RD by imposing the constraint RYYYYYRY oooott

ΣΣΣ=Σ −1 . Note 
that neither CRD nor RD impose any constraints on the off diagonal elements of RRΣ . ID or NID 
occurs when neither of the CRD or RD conditions applies. Consider as an example the case of two 
period longitudinal data where the response at the first time is observed for all individuals. In this case 
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and let, for simplicity, GHΣ  be 
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where 1221 ),cov( σ=ii yy  and 32 ),cov( jiij Ry σ=  for j=1,2. Consequently, for 

0,0 13122322 =−> ρρρσ  gives the conditions for ignorable dropout where 
2211

12
12 σσ

σ
ρ =  and 

for j=1,2, 
jj

j
j σ

σ
ρ 3

3 = . This can occur in the following ways: 

1. ,01323 == ρρ  which is completely random dropout (CRD). 
2. 023 =ρ  and ,012 =ρ  where the latter implies there is no correlation between the two responses. 
3. .131223 ρρρ =  
In the next section we shall examine the likelihood displacement as a measure of sensitivity for 
perturbations of the CRD and RD model. 
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3. LIKELIHOOD DISPLACEMENT AND LOCAL INFLUENCE 
 
We are interested in the influence that selection exerts on the parameters of interest in the GHM. If 

0=ΣΣΣ−Σ −
RYYYYYRY oooott

1 , we have an RD process and in this case, measurement model parameters 
can not be influenced by selection. Modification of RYYYYYRY oooott

ΣΣΣ−Σ= −1H  may lead to large 
differences in the model parameters. Denote the log-likelihood function corresponding to GHM by  
 

                                                             ∑
=

=
n

i
ill

1
)|()|( HH γγ                                                      (7) 

 
in which )|( Hγil  is the contribution of the i -th individual to the log-likelihood and 

),( TT βαγ = is the parameter vector for the measurement and dropout mechanisms. Let 
)|()( 0H == γγ ll . Here )(γl  is the log-likelihood function which corresponds to a RD model. 

Suppose H  can be perturbed around 0 . Let γ̂  be MLE for γ  obtained by maximizing )|( 0H =γl  
and let Hγ̂  denote the MLE for γ  under )|( Hl γ . Now one can compare Hγ̂  and γ̂  as local 
influence. If Hγ̂  and γ̂  are similar, parameter estimates are robust to the perturbation of RD in the 
direction of ID. Strongly different estimates show that the estimation procedure is highly sensitive to 
such modification. We can quantify the differences using Cook’s likelihood displacement defined as 
 
                                                          [ ].)ˆ()ˆ (2)( HllLD γγ −=H                                                   (8) 
 

)(HLD  will be large if )|( 0H =γl  is strongly curved at γ̂  which means that γ  is estimated with 
high precision, and small otherwise. A graph of )(HLD  versus H  can be used to assess the 
influence of perturbations. As it is shown in the following paragraph, for cross sectional and 
longitudinal data with two periods, LD(H) can be plotted against H (which is a scalar in these cases) 
and it gives a global sensitivity analysis. For longitudinal data with more periods, the local influence 
of Cook [11] can be used in the same way as Molenberghs et al. [10] and Jansen et al. [14] to find 
more influential elements of H . 
For example, if we have cross-sectional data, the selection model of Heckman gives the following 
likelihood displacement  
 
                                                            [ ].)ˆ()ˆ (2)( ργγρ llLD −=                                                     (9) 
 
where ρ  (with values in [-1,1]) is the correlation between iv  and iε  in system (1 & 2). In this case 
LD( ρ ) can be plotted against ρ . With two-period longitudinal data with dropout, the likelihood 
displacement for 131223 ρρρ −=H  can be obtained by equation (8) and in this case LD(H) can be 
plotted against H. 
 

4. MASTITIS DATA: MODEL AND RESULTS 
 
Mastitis is the occurrence of the infectious diseases of the udder and can reduce the milk yield of 
infected animals. We shall use data of the total milk yield for 107 cows from a single herd, in two 
consecutive years, to investigate the relationship between yield and mastitis. Of 107 animals, 27 were 
infected in their second year which will be treated as missing.  

Table 1 shows the number of the observations and the sample mean of the milk yield of non-
infected animals in the j th year for 5,...,2,1=j  and for both responses ( 1Y  and 2Y ).  
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Table 1. Descriptive summary of the data 
 

Selected year 1 2 3 4 5 
No. of cows for year 1 9 27 25 23 23 

Sample mean of 1Y  5.875 5.568 6.007 5.915 5.541 

No. of cows for year 2 6 19 19 15 21 

Sample mean of  2Y  6.064 6.563 6.319 6.579 6.460 
 

As Table 1 suggests, there may be no significant effect of the selected year on the mean of the 
responses, but there may be the effect of time on the responses (neglecting the selected year, sample 
mean of 1Y =5.765 and sample mean of 2Y =6.444). However, as dropout may be informative, no final 
conclusion can be reached before a joint and sensitivity analyses are done. For these data the GHM is 
in the form 

  
                                 ,101

*
iiy εβ +=                        (10) 

 
                             ,202

*
iiy εηβ ++=                      (11) 

 
                              302

*
ii vR +=α                         (12) 

 
where η  gives the effect of time on the mean of the response. We omit the effect of explanatory 
variable, selected year, as a previous analysis [12] showed no significant effect of this variable on 
response. We used NAG [15] routine E04UCF to obtain the likelihood displacements for these data. 

Results from the GHM, System (10-12) for ID, RD, and CRD models are presented in Table 2. 
 

Table 2: Results for mastitis data ( I : Informative dropout model, II : Random dropout model, 
III : Complete random dropout model and IV : Informative 

 dropout model for data without outliers) 
 

 ID model I  RD model II  CRD model III  IDWO model IV  
Par Est Se Est Se Est Se Est Se 

0β  5.765 0.090 5.765 0.090 5.765 0.090 5.798 0.086 
η  0.315 0.138 0.719 0.107 0.719 0.107 0.617 0.434 

12ρ  0.470 0.087 0.581 0.071 0.581 0.071 0.727 0.054 

13ρ  -0.157 0.125 -0.149 0.013 - - -0.127 0.131 

23ρ  0.676 0.117 - - - - -0.127 0.934 

11σ  0.931 0.064 0.931 0.064 0.931 0.064 0.872 0.060 

22σ  1.274 0.113 1.138 0.088 1.138 0.087 1.044 0.100 

0α  0.634 0.130 0.667 0.131 0.667 0.132 0.645 0.133 
-logL 308.771 311.389 312.013 275.998 

 
We get an increase in deviance of 6.484 for 2 d.f. (p=0.039) for a test of CRD ( 02313 == ρρ ) 

in System (10-12) and an increase in deviance of 5.236 for 1 d.f. (p=0.022) for a test of RD 
( 131223 ρρρ = ) in System (10-12). Table 2 shows that for the ID model, dropout is informative 
because of the stochastic dependency ( 23ρ =0.676) between the dropout process and the response in 
the second period. The value of 23ρ  implies that a large value of the response in the second period 
(which may be missing) will increase the probability of being present in that same second period. All 
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the models give a significant change in mean response in the second period, but the CRD and RD 
model overestimate it. 

Using Pearson residuals Crouchley and Ganjali [12] found 3 outliers in responses (cows 4, 5, 
66). Deleting these observations shows no sign of ID (see results of IDWO in Table 1). Figure 1 
shows the LD against different values of H for full data and data without outliers. 
 

  
Fig. 1. Likelihood displacement against values of H 

 
Figure 1 shows that there is no major difference between LD for full data and LD for data 

without outliers. This suggests that only some outliers are the cause of ID in these data. 
 

5. CONCLUSIONS 
 
We have presented an approach for assessing the influence of the modification of covariance structure 
of GHM from RD in the direction of ID. For cross-sectional and two-period longitudinal data (when 
the first response is fully observed), this approach gives a global sensitivity analysis. For longitudinal 
data with more periods, normal curvature can be used to find more influential elements of covariance 
structure. 
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