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Abstract — A generalized Heckman model is used for the joint modeling of longitudinal continuous
responses and dropout in order to see the influence of a small perturbation of the elements of the
covariance structure on displacement of the likelihood. The perturbation from random dropout in the
direction of informative dropout is considered for Mastitis data.
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1. INTRODUCTION

Recently joint modeling of response and non-response in cross-sectional and longitudinal data has
been extensively used [1]. Examples of such models for cross sectional data with selection and
longitudinal data with dropout are the selection model of Heckman [2] (hereafter, SMH) and the
dropout model of Diggle and Kenward [3] (hereafter DK). DK [3] use a selection model where they
decompose the joint distribution of response and dropout into a marginal distribution for longitudinal
continuous responses and a conditional distribution of dropout given previous and current responses.
In the DK [3] model, based on the observed likelihood function, dropout is completely random (CRD)
if dropout neither depends on the previous response nor on the current response. Dropout is at random
(RD) if, given the previous response, dropout is not dependent on the current response, and dropout is
informative (ID), and so nonignorable (NID), if dropout depends on the current response.

However, the DK [3] model rests on strong assumptions (see the review paper of Little [4] and
discussion of DK [3]). Thus it has been suggested that when using joint modeling, a sensitivity
analysis should be performed [5-8]. Assessment of the influence of a small perturbation model
component which links the two models of response and dropout is an important consideration. To this
end, several tools have been discussed in the literature, such as the informal sensitivity analysis of
Kenward [9] and a formal local influence based approach [7]. Molenberghs et.al [10] use DK's model
and the approach of Cook [11] for measuring the influence of a small perturbation of the model
components. This involves studying the curvature of the likelihood displacement resulting from the
perturbation.

In this paper we start with the SMH [2] and study the influence of perturbation of the model
components (which link the response model and dropout model) to likelihood displacement. As there
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is just one parameter in the link between dropout and response mechanisms, this approach will help
us to provide a picture of the global influence.

Furthermore, we shall use the generalized Heckman model (GHM) presented by Crouchley and
Ganjali [12] and the local influence of Cook [11] for measuring the influence of small perturbations
of the model components for longitudinal data with dropout.

In the next section, the SMH and its generalization will be reviewed. In Section 3, likelihood
displacement and global and local influence will be discussed and the approach will be explained for
measuring the influence of a small perturbation of the covariance structure of the Heckman and
generalized Heckman models. In Section 4, we use the Mastitis data and consider the perturbation
from RD in the direction of ID. In Section 5 conclusions are given.

2. SELECTION MODEL AND ITS GENERALIZATION
a) Selection model

Heckman [2] proposed a joint model for a continuous response (y;,) and a sample selection
mechanism. Sample selection is the complement to missing data and dropout. The Heckman [2]
model is defined by the means of two equations,

R =a"W, +v, (1)
v, =B'X, +¢, @)

where o and S are vectors of parameters, W, and X, are vectors of covariates (W, usually
contains covariates not present in X, ), (v;, &;) are i.i.d drawings from a bivariate normal distribution
with zero means, variances o, =1, 0'30),0 and covariance 0, . It is assumed that only the sign of
R; is observed and that y; is observed only when R, > 0. Define

1

yi:yi* ifRi*>O

y, =0 ifR’ <0,
fori =1,...,n. And also define

R =1if R, >0

R =0if R, <0

so that (y,, R;) constitute the observations for subject i. A joint analysis of (y,, R,) is required
wheno,, # 0. Heckman [2] provides a two step estimator for this model.

b) Generalized selection model

The Heckman [2] model has been generalized by Crouchley and Ganjali [12] to the situation of
repeated responses with dropout. This is

Rit* = atT Wit +Vy 3)

yi*t = ﬂzTXiz +é&; 4)

where t=1,...,T. Now
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Y. = (yn,y,-z,---,y,-r)
R, =(R,...R,).

where y, =y, fori=l,...n,
Vit :yi*t if R; >0
v, =0if R, <0
for i=1,...,n and t=2,...,T and also
R,=1if R, >0
R,=0if R, <0.
It is assumed that all the subjects at the start of the study are observed, i.e. R, =1, Vi. The
observations for subject i take the form

*

¥R = ([ ¥/ s 150,00 |, [11,0,...,0]),
if dropout occurs at time t and
(y,' >R[ ) = (|:y,*133yl*r :|9[1331])

if responses of a subject are completely observed. Dropout is a monotone missing data pattern, i.e.
Pr(Rit =0]| Rit—l
have dropped out.

For the vector of errors &, , let Var(g, )=X,,. Let X, be unstructured so that

=0)=1 andPr(R, =1|R,, =0) =0, i.e. a subject cannot re-appear once they

Var(g, )=0 w,and cov(e,,&,)= Oy, - It is also assumed that the subjects are independent of
each other so thatcov(e, &, ) =0 fori# i’ for all s and t. Write Var(v, )=X ., ,where diag(Z ; )
=1. The off diagonal elements of X, are unstructured so thatX., =cov(v,,v,)=0p; .

is >

Subscript RR is used to indicate the non-response sub matrix of the joint response and non-response
variance-covariance structure for the stochastic errors. Let2,, = [cov(sis,vit ] In this GHM both
2,z and the off diagonal elements of X ,, are unstructured.

¢) The dropout mechanism

When dropout occurs y; is not observed. We need a slightly different notation if we want to
study the relationship between the unobserved response y; and the dropout mechanism. Rubin [13]
and Little and Rubin [1] note that for CRD the dropout process must be independent of both the
observed responses Y, = (V... V) and y;, while for RD the dropout process, conditional on
y:.; , must be independent of ;.

If we let f(.) denote a multivariate normal distribution then

fOLR) =Ry
= [ IRLYDSRIY DY)
We have CRD if f(y,|R;,y;)=/(y;) andf(R;|y;)=/(R]). We have RD
iff(y; | Rj,y;) = f(y; | y;) . With either CRD or RD the joint probability of (yj,R;) factors so

that we can use f(y,) on its own for unbiased inference about 5. If f(y, |R;,y,) does not
simplify for CRD or RD we have NID.

(6))
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Crouchley and Ganjali [12] denote the variance-covariance matrix X, for the elements of
(Yior Y- R} Le.

z z

Yoy ZYUY;

YoR

_ 2
EGH = EY,YO O vy, Zxk
ZRYO 2RY, 2RR

and they found that if both ZX z = 0 (missing at random) and ZYO z =0 (observed at random) we
have CRD, i.e. Z;,, =0 and

SRy =y 1yY)-L(R))

Therefore we can estimate a model under CRD by imposing constraints 2, =0 andX, ; =0.
It can be seen that if

=2, 2 2 . =0 (6)

Y,R YY, <Yy, <Y,R

We have RD and

SRy =Sy 1Y) SR |y,).

So we can estimate a model under RD by imposing the constraintX, ; = E},/,,”Z;OIYOZYO » - Note
that neither CRD nor RD impose any constraints on the off diagonal elements ofX ... ID or NID
occurs when neither of the CRD or RD conditions applies. Consider as an example the case of two
period longitudinal data where the response at the first time is observed for all individuals. In this case

Y =i i)
R =R,

and let, for simplicity, 2, be

where  cov(y,,y,)=0, and cov(y,,R,)=0, for j=1,2. Consequently, for

o
Gy >0, Py — P, p; =0 gives the conditions for ignorable dropout where p,, = —2— and

VO 110

O .
forj=1,2, p;; = —2_ This can occur in the following ways:

o
1. pyy =p;; =0, which is completely random dropout (CRD).
2. p,; =0 and p;, = 0, where the latter implies there is no correlation between the two responses.

3. Py = PraPis-
In the next section we shall examine the likelihood displacement as a measure of sensitivity for

perturbations of the CRD and RD model.
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3. LIKELIHOOD DISPLACEMENT AND LOCAL INFLUENCE

We are interested in the influence that selection exerts on the parameters of interest in the GHM. If
Zyp —Zyy Z;"ly" 2, =0, we have an RD process and in this case, measurement model parameters
can not be influenced by selection. Modification of H=2,, -%,, E;OIYH X, may lead to large
differences in the model parameters. Denote the log-likelihood function corresponding to GHM by

I 1H)=3 17| H) )

in which /,(y|H) is the contribution of the i-th individual to the log-likelihood and
y=(a",B")is the parameter vector for the measurement and dropout mechanisms. Let
{(y)=1(y |H=0). Here [(y) is the log-likelihood function which corresponds to a RD model.
Suppose H can be perturbed around 0 . Let 7 be MLE for y obtained by maximizing /(¥ | H = 0)
and let 7, denote the MLE for y under/(y | H). Now one can compare 7, and 7 as local
influence. If 7, and 7 are similar, parameter estimates are robust to the perturbation of RD in the
direction of ID. Strongly different estimates show that the estimation procedure is highly sensitive to
such modification. We can quantify the differences using Cook’s likelihood displacement defined as

LD(H) =2[I(7)-1(7,)} @®)

LD(H) will be large if /(¥ | H=0) is strongly curved at 7 which means that y is estimated with
high precision, and small otherwise. A graph of LD(H) versus H can be used to assess the
influence of perturbations. As it is shown in the following paragraph, for cross sectional and
longitudinal data with two periods, LD(H) can be plotted against H (which is a scalar in these cases)
and it gives a global sensitivity analysis. For longitudinal data with more periods, the local influence
of Cook [11] can be used in the same way as Molenberghs et al. [10] and Jansen et al. [14] to find
more influential elements of H .

For example, if we have cross-sectional data, the selection model of Heckman gives the following
likelihood displacement

LD(p)=2li(7)~1(7,)} ©)

where p (with values in [-1,1]) is the correlation between v, and ¢&; in system (1 & 2). In this case
LD( p) can be plotted against p. With two-period longitudinal data with dropout, the likelihood
displacement for H = p,; — p,, P;; can be obtained by equation (8) and in this case LD(H) can be
plotted against H.

4. MASTITIS DATA: MODEL AND RESULTS

Mastitis is the occurrence of the infectious diseases of the udder and can reduce the milk yield of
infected animals. We shall use data of the total milk yield for 107 cows from a single herd, in two
consecutive years, to investigate the relationship between yield and mastitis. Of 107 animals, 27 were
infected in their second year which will be treated as missing.

Table 1 shows the number of the observations and the sample mean of the milk yield of non-
infected animals in the j th year for j =1,2,...,5 and for both responses (¥, and Y,).
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Table 1. Descriptive summary of the data

Selected year 1 2 3 4 5

No. of cows for year 1 9 27 25 23 23
Sample mean of ¥, 5.875 5.568 6.007 5.915 5.541

No. of cows for year 2 6 19 19 15 21
Sample mean of ¥, 6.064 6.563 6.319 6.579 6.460

As Table 1 suggests, there may be no significant effect of the selected year on the mean of the
responses, but there may be the effect of time on the responses (neglecting the selected year, sample
mean of ¥, =5.765 and sample mean of Y, =6.444). However, as dropout may be informative, no final
conclusion can be reached before a joint and sensitivity analyses are done. For these data the GHM is

in the form
Vi =Byt (10)
Vi =y n+es, (11
R'n=a,+v, (12)

where 77 gives the effect of time on the mean of the response. We omit the effect of explanatory

variable, selected year, as a previous analysis [12] showed no significant effect of this variable on

response. We used NAG [15] routine EO4UCF to obtain the likelihood displacements for these data.
Results from the GHM, System (10-12) for ID, RD, and CRD models are presented in Table 2.

Table 2: Results for mastitis data ( " Informative dropout model, . Random dropout model,

. Complete random dropout model and . Informative

dropout model for data without outliers)

ID model ’ RD model” | CRD model” | IDWO model
Par Est Se Est Se Est Se Est Se

B 5.765 | 0.090 | 5.765 | 0.090 | 5.765 | 0.090 | 5.798 | 0.086
n 0.315 | 0.138 | 0.719 | 0.107 | 0.719 | 0.107 | 0.617 | 0.434
P, | 0470 | 0.087 | 0.581 | 0.071 | 0.581 | 0.071 | 0.727 | 0.054
Pz | -0.157 | 0.125 | -0.149 | 0.013 - - -0.127 | 0.131
yo2 0.676 | 0.117 - - - - -0.127 | 0.934
o, 0.931 | 0.064 | 0.931 | 0.064 | 0.931 | 0.064 | 0.872 | 0.060
0, | 1.274 | 0.113 | 1.138 | 0.088 | 1.138 | 0.087 | 1.044 | 0.100
a, 0.634 | 0.130 | 0.667 | 0.131 | 0.667 | 0.132 | 0.645 | 0.133

-logL 308.771 311.389 312.013 275.998

We get an increase in deviance of 6.484 for 2 d.f. (p=0.039) for a test of CRD ( p,; = p,; =0)
in System (10-12) and an increase in deviance of 5.236 for 1 d.f. (p=0.022) for a test of RD
(P23 = P12 Py3) in System (10-12). Table 2 shows that for the ID model, dropout is informative
because of the stochastic dependency ( p,;=0.676) between the dropout process and the response in
the second period. The value of p,, implies that a large value of the response in the second period
(which may be missing) will increase the probability of being present in that same second period. All
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the models give a significant change in mean response in the second period, but the CRD and RD
model overestimate it.

Using Pearson residuals Crouchley and Ganjali [12] found 3 outliers in responses (cows 4, 5,
66). Deleting these observations shows no sign of ID (see results of IDWO in Table 1). Figure 1
shows the LD against different values of H for full data and data without outliers.

-

Full data

(aful=]uRu]n] Tata wathout outlists

15

LD
10

Fig. 1. Likelihood displacement against values of H
Figure 1 shows that there is no major difference between LD for full data and LD for data
without outliers. This suggests that only some outliers are the cause of ID in these data.
5. CONCLUSIONS

We have presented an approach for assessing the influence of the modification of covariance structure
of GHM from RD in the direction of ID. For cross-sectional and two-period longitudinal data (when
the first response is fully observed), this approach gives a global sensitivity analysis. For longitudinal
data with more periods, normal curvature can be used to find more influential elements of covariance
structure.

Acknowledgments- The authors are grateful to Prof. M. R. Meshkani for his comments on an earlier
draft and the referees for useful comments which led to a much improved paper.

REFERENCES

1. Little, R. J. A. & Rubin, D. B. (2002). Statistical Analysis with Missing Data. New York, Wiley.

2. Heckman, J. J. (1979). Sample selection bias as a specification error. Econometrica, 47, 153-161.

Summer 2005 Iranian Journal of Science & Technology, Trans. A, Volume 29, Number A2



294

10.

11.
12.

13.
14.

15.

M. Ganjali/ M. Rezaei

Diggle, P. J. & Kenward, M. G. (1994). Informative Drop-out in longitudinal data analysis. Appl. Statist.,
43,49-93.

Little, R. J. A. (1995). Modeling the drop-out mechanism in repeated measures studies. J. Amer. Statist.
Assoc., 90, 1112-1121.

Scharfstein, D. O., Rotnitzky, A. & Robins, J. M. (1999). Adjusting for nonignorable drop-out using
semiparametric nonresponse models. J. Amer. Statist. Assoc., 94, 10961146.

Verbeke, G. & Molenberghs, G. (1997) Linear Mixed Models in Practice: A SAS-Oriented Approach.
Lecture Notes in Statistics 126. New York, Springer-Verlag.

Verbeke, G. & Molenberghs, G. (2000). Linear Mixed Models for Longitudinal Data. New York, Springer-
Verlag..

Molenberghs, G., Goetghebeur, E. J. T., Lipsitz, S. R. & Kenward, M. G. (1999). Non-random missingness
in categorical data: strengths and limitations. Amer. Statist., 53, 110-118.

Kenward, M. G. (1998). Selection models for repeated measurements with non-random dropout: an
illustration of sensitivity. Statist. Medic., 17, 2723-2732.

Molenberghs, G., Thijs, H., Lesaffre, E. & Kenward, M. G. (2001). Influence analysis to assess sensitivity
of the dropout process, Com. Statist. Data Anal., 37, 93-113.

Cook, R. D. (1986). Assessment of local influence. J. Roy. Statist. Soc. Ser. B, 48, 133-169.

Crouchley, R. & Ganjali, M. (2002). The common structure of several models for nonignorable dropout.
Statistical modelling, 2, 39-62.

Rubin, D. B. (1976). Inference and missing data. Biometrika, 63, 581-592.

Jansen, 1., Molenberghs, G., Aerts, M., Thijs, H. & Steen, K. V. (2003). A local influence approach applied
to binary data from a Psychiatric study. Biometrics, 59, 410-419.

NAG (1996). Numerical Algorithms Group Manual. Oxford. U. K., Mark 16.

Iranian Journal of Science & Technology, Trans. A, Volume 29, Number A2 Summer 2005



