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Abstract – Here, we have considered the Husimi and Wigner distribution functions. We have, in 
particular, shown how the uncertainty principle works for the two cases of simple and damped harmonic 
oscillators when either of these two distributions are used. The conclusion shows that the Husimi 
distribution function remains non-negative through the phase space but it does not always satisfies the 
uncertainty principle. On the other hand the Wigner distribution function while becoming negative in 
certain regions of the phase space do not violate the uncertainty principle. 
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1. INTRODUCTION 
 

A few years after the advent of quantum mechanics, Wigner [1], by introducing distribution function 
(WDF), undertook the study of the quantum corrections needed for the calculation of various physical 
quantities appearing in classical statistical mechanics. Since then, the WDF, and more generally the 
phase space representation of quantum mechanics have been used extensively in various fields such 
as quantum chemistry, quantum optics [2, 3] and many-body physics [4]. 

The most well-known phase space-representations are those of Glauber [2], Husimi [5], 
Margenau et al [6], and others. It can be shown that these different distribution functions are related to 
each other by suitable canonical transformations in an extended phase space, while each of these 
distribution functions is associated with a particular ordering rule of non commutative operators. 
However, not all of these canonical transformations in the classical level correspond to unitary 
transformations in the quantum level [7-10], therefore, they are not entirely equivalent. The question 
which may be raised in this respect is that in what sense a given distribution is preferable. Of course 
the final verdict should come from observations involving the product of non-commuting 
observables. However, in the absence of such evidence, one may resort to the ones which are 
relatively less problematic. In this paper, we will compare the Husimi distribution function (HDF) 
with the Wigner distribution function (WDF) and will point out the problems encountered in each 
case. 

It is widely known that the WDF can assume negative values in some regions of the phase space 
and oscillates violently with the wavelength = in those regions. To avoid this difficulty, many authors 
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have tried to define a positive distribution function. In particular, Husimi’s positive distribution 
function is an attempt in that direction. However, the use of HDF is not warranted for the entire range 
of the parameters involved in that distribution. In fact, we will show that although the HDF surmounts 
the non-negativity problem throughout the phase space, it does, however, result in the violation of the 
Heisenberg uncertainty relations. 

In particular, we have considered the cases of simple and damped harmonic oscillators and found 
that contrary to the case of WDF, the Heisenberg uncertainty principle for HDF does not always hold. 

In section 2, WDF and HDF are reviewed. In section 3, each of these distribution functions is 
examined in light of the uncertainty principle. Finally, section 4 is devoted to the concluding remarks. 
 

2. REVIEW OF WDF AND HDF 
 
In 1932 Wigner introduced the distribution function, W(p,q), defined by [1] 
 

                                          W(p,q) ∫
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where the normalized wave function,ψ , is the solution of the Schrodinger equation and p and q are 
the phase space variables. The generalization of WDF to higher dimensions is straight-forward. For 
details and properties of this distribution one can consult the review article by Hillary et al [11] and 
the references therein. The motivation for working with W(p,q) and other distributions is an attempt to 
express the quantum expectation values in the form of averages of classical observables, which are 
defined by means of some probability distribution functions in phase space. For instance, one may 
quantize a given classical observable function, A(p,q), by Weyl’s ordering rule to obtain a quantum 
operator )ˆ,ˆ(ˆ qpA in the Hilbert space of wave functions ψ , and then obtain the quantum expectation 
value, QA >< ˆ , through WDF by 
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while associated with the symmetric ordering rule of non-commutative operators. 

Despite the fact that W(p,q) does not remain non-negative everywhere in phase space, it provides 
a nice way of formulating the quantum mechanics as a probabilistic theory.  

Husimi used the method of Gaussian smoothing of the Wigner function to obtain the following 
non-negative distribution function. 
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where W(p,q) is given by Eq. (1) and α  is a positive parameter [12]. Using Eq. (3) one finds 
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It can be shown that ),( pqP is positive definite and normalizable everywhere in the phase 

space. However, it seems that some discrepancies still exist. This is shown in the following section. 
 
 
 



Distribution functions in the… 
 

Summer 2005                                                  Iranian Journal of Science & Technology, Trans. A, Volume 29, Number A2 

261

 
3. WDF AND HDF AND THE UNCERTAINTY PRINCIPLE 

 
The uncertainty relation Γ  may be written as 
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where 222222 )(,)( QQQQ qqqppp ><−>=<∆><−>=<∆  and p and q are the momentum and 
the coordinate operators, respectively. The quantum mechanical averages are denoted by the subscript 
Q so that they can be distinguished from the phase space averages defined later. In the phase space 
representation of quantum mechanics, p and q are C-numbers and commute with each other. 
Therefore, using Eq. (2) as a general characteristic of phase space distribution functions, Eq. (5) 
assumes the following form: 
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where the subscript ph denotes the average obtained by means of the phase space distribution 

functions. 
Let us firstly examine Eq. (6) for the simple harmonic oscillator when HDF and WDF are used. 

The Wigner function for the nth excited state in this case is  
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where 22 222 qmmpH ω+=  is the Hamiltonian and )(xLn  is the Laguerre polynomial of 

order n. nW  in Eq. (7) is quadratic in both q and p for all values of n. Therefore, we have 
0=><

nWqp , for all n. Furthermore, it can be shown that 
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Equation (8) shows that the WDF has the minimum uncertainty which is its familiar property. 

The positive distribution of Eq. (4) is also quadratic in both q and p. Thus, the quantity pnqp ><  is 
zero for this distribution. It can be shown that 

 

                              
,

4
)1)(1(

4
)()(

2
222 ==

=
=

≥++=><−∆∆=Γ
ωα

ωα
m

mqpqp phph                        (9) 

 
for any 0>α . Thus, for the simple harmonic oscillator neither HDF nor WDF have any problem 
with the Heisenberg uncertainty principle. Now, let us see what happens if we consider the case of a 
damped harmonic oscillator. In this case, when the ground state of the oscillator is considered, both of 
the distributions assume the following form [12, 13]. 
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with γ  as damping constant and ω  as the undamped oscillator frequency. For ),,(),( pqPpqg D=  
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Using Eq. (10), it is easy to show that 
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and as a result 
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Therefore, DW  satisfies the uncertainty principle just as an equality. However, by the same 

procedure we obtain the following expression for DPΓ : 
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According to Eq. (13a), DP  will satisfy the uncertainty relation, Eq. (6), if 1≥f . However, as 

Fig. 1 shows this is not always true. In this Fig., ),,( cf σβ  is plotted as a function of β  for 8.0=c  
and 2=σ . It is seen that for some specific values of f,β  not only becomes smaller than 1, but also 
diverges to ∞− . Moreover, the point is pursued for the excited states ),( pqPn  and ),( pqWn  of the 
damped harmonic oscillator. nW  for this case is [11]. 
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where )(xLn  is the Laguerre polynomial of order n and H is the Kanai Hamiltonian [10]. Using the 
series form of the Laguerre polynomial, it is more useful to write Eq. (14) as 
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Fig. 1. Plot of the function f(β) in terms of β for damped oscillator when σ=2 and c= 0.8.  

The divergence of f for β≈ 0.66 shows the failure of uncertainty principle by HDF 
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where 

nWqp ><  and 
oWqp ><  are expectation values obtained by using nW  and DW , respectively. 

After some manipulations one arrives at  
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Therefore, when WDF is used for the damped harmonic oscillator, the uncertainty principle is 

not violated. However, in the case of HDF, the uncertainty principle for the excited states of a damped 
harmonic oscillator, like the ground state, could be violated. Let us write Eq. (4) in the form of  
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1P  first. The generalization to the excited states is straight-forward. Thus, 
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It is obvious that for the higher excited states, 

npΓ  are positive multiples of 
DpΓ , and therefore, 

the functional nature of 
npΓ  is the same as 

0PΓ , for higher excited states. Hence the divergency will 
persist for these states as well. 
 

4. CONCLUSIONS 
 
As mentioned before, WDF assumes negative values in some parts of the phase space. Although some 
authors [7, 14] do not consider this point as a weakness of WDF, pointing out that they give the 
expectation values of quantum mechanical observables properly. However, others have continued 
their search for non-negative distribution functions. Notable among these has been Husimi’s work for 
defining HDF. But it is interesting to note that HDF, by resolving the negativity problem throughout 
the phase space, encounters a new drawback. That is, in contrast to WDF, the uncertainty relation is 
violated for damped harmonic oscillator using HDF. 

It seems that the problem discussed here can be traced to the basic difference between the nature 
of WDF and HDF. That is, the evolution operator, known as Wigner’s operator [1], is hermitian, 
while that of HDF’s introduced in Eq. (4) is not. This is because the corresponding canonical 
transformation in the classical extended phase space is not a unitary transformation in the quantum 
level [7]. 
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