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1. INTRODUCTION 
 

We aim to estimate the transition probability matrix (tpm) of a discrete-time stationary Markov chain 
using explanatory variables. It will be done by methods of Maximum Likelihood (ML), Bayes (B) and 
Empirical Bayes (EB). First, we define some terms and give preliminary results in section 2. Then in 
section 3, 4 and 5 we provide the estimators of regression parameters by ML, B and EB methods, 
respectively. In section 6 we provide the estimates of tpm. Finally, an example is provided in section 7. 
 

2. SOME PRELIMINARIES 
 
Suppose { }tX t τ, ∈  is a Markov chain with values in the finite state space S={1,...,s}, where 

{1 }Tτ = ,..., . We assume that the chain is simple; that is, its order of dependency is 1, and it has a 
stationary and irreducible tpm ( )zΛ  with elements 0 ( ) 1jk z j k Sλ≤ ≤ , , ∈  and 1 ( ) 1s

k jk zλ=Σ = , where z  is 
the vector of explanatory variables.  

The data are outcomes of n identically and independently repeated experiments called a "panel". In 
each experiment, we observe and record the states visited by the chain during a fixed period, 1T > . Let a 
realization of an experiment be 1( )i Tx x x= ,..., , i=1,...,n. The subscripts refer to the order in which the 
observations were taken and not to their values. For example, 1x  is a state that the chain chooses in 1t = . 
For each fixed 1T > , let the frequency count matrix (fcm) of the chain be denoted by ( )jkF=F , where 
jkF  is the number of times the event 1{ }t tX j X k t T− = , = ;∀ ∈  has occurred. The distribution of F under 

various assumptions has been discussed in Billard and Meshkani [1]. Here, we consider a simple case 
known as 'panel study'. We define  
 

1[ ]j jsjF F F= ,..., ,  j jk k jk
k S j S

F F F F+ +
∈ ∈

= , = .∑ ∑  

 
Given jF + , each row of fcm has a multinomial distribution, ( ( ))j jM F zλ+,  with 

1( ) ( ( ) ( ))jj jsz z zλ λλ= ,..., . From Anderson and Goodman [2], the pdf of jth row of fcm for a given ( )j zλ  is 
                                                            
∗Received by the editor May 15, 2005 and in final revised form January 27, 2007 
∗∗Corresponding author 
 
 



M. A. Yazdani / M. R. Meshkani 
 

Iranian Journal of Science & Technology, Trans. A, Volume 30, Number A3                                                           Autumn 2006 

350 

 

                                              
11

1
1 11

( ) [ ( )][1 ( )]jk js

ss
Fj F

jkj j jks
k kjkk

F
FP z z

F
λ λ λ

−−

−
= ==

+ !
| = − .

!
∑∏∏

                                     (1) 

 
Let 0 0( ) 1pz z z z= ,..., , ≡ , be a vector of explanatory variables with elements of tpm as 
  
                                                                      ( ) ( )jk jkz exp zβλ = −                                                                 (2) 
 
where 0( )jk jkpjk

β β β= ,..., .  
The particular parametric form in (2), a log-linear model for tp, is chosen primarily for analytical 
convenience; other parameterizations may be more appropriate in particular applications. This model does 
have, however, the attractive feature of yielding nonnegative tp whenever 0jkzβ > , and has been 
suggested by several authors. 
 

1 10 1 11 2 12 1 2 13( ) 1 2 1 2 3 4hj j h j h j h h jexp z z z z j hλ β β β β= − − − − , = , , = , , , .  
 

3. ESTIMATION OF REGRESSION PARAMETERS BY ML METHOD 
 
Considering different levels of explanatory variables hz , we can categorize the observations into r distinct 
groups with fixed values of explanatory variables.  
From (1) and (2), the likelihood function for the jth row, i.e., for  1 ( 1)[ ]j j j s

β β β −= ,...,  and the group 
identified with hz , h=1,...,r is  
 

                                      jL
11

1 1
[ ( )][1 ( )] 1js

ss
F

h hjk jk jk
k k

z zexp F exp j k sβ β
−−

= =
= − − − , = ,...,∑∏                              (3) 

 
This function has to be maximized with respect to j

β , subject to 0h jk
z β > , h=1,...,r. We can see that 

the normal equations are not solvable analytically. Thus (3) is maximized in 
j

β  by numerical methods to 
provide the MLE 

,j ML
β  whose covariance matrix can be estimated from the Fisher information matrix, 

Alamuti and Meshkani [3].  
We note that (3) is the likelihood for a member of the multiparameter exponential family. Thus, we 

can claim that estimates extracted from this likelihood share the good properties of MLE such as 
asymptotic normality and consistency, Cox and Hinkley [4].  
 

4. ESTIMATION OF REGRESSION PARAMETERS BY BAYES METHOD 
 
The Bayes estimator relative to the squared error loss function is the posterior expectation of the j

β , 
Meshkani and Billard [5].  

The posterior function of j
β  relative to the prior ( )jβπ  will be 

  

                                                         
( ) ( )

( )
( )

hj j j
h jj

j

zFL
z F

Fm

β βπ
βπ

| ,
| , =                                                      (4) 

 
where  
                                   

( ) ( ) ( )hj j j j j
zF Fm L dβ β βπ= | , .∫  

 
We assume exponential prior distribution. First, we suppose the prior distributions of regression 

parameters are independent exponentials, i.e., for j=1,...,s; k=1,...,s-1 and m=0,...,p, 
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                                           ( ) ( ) 0jkm jkm jkm jkm jkm jkmexpπ β γ γ β γ β= − , , >                                            (5) 
 
and  
 

                                           
1
1

1

1 0
( ) ( )

s
jk jkk

s p

jkm jkm jkm jj
k m

exp e
γ β

βπ γ γ β η
−
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− −
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∑= − = .∏ ∏                                        (6) 

 
where   
               

                                                   
1

0
1 0

[ ]
s p

j jkm jk jkpjk
k m

and γη γ γ γ
−

= =
= = ,..., .∏ ∏                                                (7) 

 
The merits of this prior are its mathematical convenience, properness, and having short tails, thus 

being more inline with realistic situations.  
We use the polynomial expansion and transform ( 1)1(1 )hh j sj js

zz Fe e
ββ −−−− − ...−  into the following 

summation: 
 

1
1( 1)1 0

1 1
(1 ) ( 1)

s
hk jkhh kj sj js js
zjszz F F
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where 
 

1

1 1
0

{( ) 0 }
s
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= , ,..., : ≤ ≤ , = .∑  

 
Also the regression parameters are assumed to be independent, leading to (s-1)(p+1) separate 

integrals. Thus ( )jFm  is computed as 
 

                                ( )jFm 0

1

1 1 1 0

1
( 1)

[( ) ]
js

s p
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j
o s jk k hm jkmk mC
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F z
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−   −     −  = =
= − ., ,..., + +∑ ∏ ∏                       (8) 

 
Thus the marginal posterior density of jklβ  is obtained as  
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where 
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The ∗ 's in products exclude kl combination. Thus, the Bayes estimate of jklβ  respective to the 

exponential prior distribution for the h th group is given by 
 

( )hjkl B jkl j zFEβ β; = | ,  
 

                                  1
1 0

[( ) ] [( ) ]
j
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.                             (11) 

 
The posterior variance is obtained by subtraction of the square of 

;jkl B
β  from 
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5. ESTIMATION OF REGRESSION PARAMETERS  

BY EMPIRICAL BAYES METHOD 
 
In the empirical Bayes approach, one needs to estimate the hyper-parameters from the data itself and 
follow the Bayes rule, using the estimated prior. To this end, we maximize ( )jFm  with respect to the 
hyper-parameters and obtain their ML estimates Suppose numerical maximization of ( )jFm  leads to 
ˆ jkmγ ; by replacing ˆ jkmγ 's in (11) and (12) we obtain the empirical Bayes estimates.  

 
6. ESTIMATION OF TRANSITION PROBABILITY MATRIX 

 
Let the regression parameter estimates for (j,k) th entry of tpm be estimated by one of the three methods. 
Denote this estimate by ˆ

jk
β . Replacing 

^

jk
β  in (2) we obtain an estimate of tpm 

 
                                                                       ˆ ˆ( )hjk jk

zexpλ β= − .                                                                (13) 
 
The variance of jk Bλ ;  is estimated by  
 
                                                              ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )jk jk jk jk

var h var hλ β β β′=                                                    (14) 
 
where  
 

0 ˆ

ˆ( )
jk jk

jk jk
jk jk jkp

h
β β

λ λ
β β β =

 ∂ ∂ = ,..., ∂ ∂ 
 

 
and  
 

ˆ( ) { ( ),..., ( )}jkp jkpjk
var diag var varβ ββ = .  

 
7. AN EXAMPLE 

 
We present an example having data we have gathered ourselves. We would like to test the effects of 
gender and place of residence on students' academic performance.  

To test these hypotheses, the educational records of a sample of 38 students during 6 consecutive 
academic semesters are examined. At the end of each semester, each student’s performance is classified as 
unsatisfactory or satisfactory. We model the students’ status as a 2-state Markov chain. We use the 
following notations: 
  
State space: S = {1, 2}, 1 2unsatisfactory satisfactory≡ , ≡ .  
 
Explanatory variables:  1Z = place of residence and 2Z = gender. 
 

1

3

2

dormitory
Z

ow

=  . .
 ,    2

1

0

female
Z

male

= 
 

 
Thus, there are 4 groups corresponding to 1 2( ) {(3 1) (3 0) (2 1) (2 0)}z z, = , , , , , , ,  numbered by  
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h=1,...,4,  1 2 1 2[1 ]h h h h hz z z z z= , , , , 
 

with 
 

1 2 3 4[1 3 1 3] [1 3 0 0] [1 2 1 2] [1 2 0 0]z z z z= , , , , = , , , , = , , , , = , , , .  
 

Their total fcm are 
 

1 2 3 4

0 2 2 5 2 7 4 9

2 1 4 19 5 76 9 43
F F F F

       
       = , = , = , = .                     

 

 
Here, we have assumed a stationary Markov chain for each group whose tpm is a realization from a 

prior distribution. Before embarking on the estimation procedure, we check the underlying assumptions by 
tests suggested in [2], [6] and [7]. 

Having confirmed the required assumptions, we now apply our proposed method to estimate the 
regression coefficients and tpm. 

One drawback of the ML method is that it gives unreasonable estimates when the sample size is 
small. We could see that by the EB method, we have reasonable estimates with good precision, even for 
very small sample sizes. 

Although 6 periods of observations for a Markov chain are not large enough to reach equilibrium, we 
use equation πλ π=  to find π , the stationary probability vector. This determines what percentage of 
students will eventually be in state 1 or 2, (see Table 1). This fact can be very useful for administrators.  
 

Table 1. The equilibrium distribution for 4 groups 
 

h 1π  2π  

(3,1) 0.33 0.67 

(3,0) 0.22 0.78 

(2,1) 0.16 0.84 

(2,0) 0.22 0.78 
 

For example, in the long run, 33 percent of female students living in dormitories will be on probation 
which is quite alarming.  

To compare the rates of dwelling of various groups on probation for 2 consecutive semesters, we 
compute the transition probability ratios: 
 

11 11

11 11

(3 1) (2 1)
1 08 2 90

(3 0) (2 0)
λ λ
λ λ

, ,. , .
, ,

 

 
These odds show that the adverse effect of living out of the dormitory is almost thrice for females 

than males.  
To choose the best fitting model, we compared the following models using posterior odds [8], which 

led to 
 

1 10 1 11 2 12 1 2 13( ) 1 2 1 2 3 4hj j h j h j h h jexp z z z z j hλ β β β β= − − − − , = , , = , , , .  
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