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Abstract– Soil–Water Characteristic Curve (SWCC) is one of the most important parts of any 
model that describes unsaturated soil behavior as it explains the variation of soil suction with 
changes in water content. In this research, Gene Expression Programming (GEP) is employed as 
an artificial intelligence method for modelling of this curve. The principal advantage of the GEP 
approach is its ability to generate powerful predictive equations without any prior assumption on 
the possible form of the functional relationship. GEP can operate on large quantities of data in 
order to capture nonlinear and complex relationships between variables of the system. The selected 
inputs for modelling are the initial void ratio, initial gravimetric water content, logarithm of 
suction normalized with respect to atmospheric air pressure, clay content, and silt content. The 
model output is the gravimetric water content corresponding to the assigned input suction. 
Sensitivity and parametric analyses are conducted to verify the results. It is also shown that clay 
content is the most influential parameter in the soil–water characteristic curve. The results 
illustrate that the advantages of the proposed approach are highlighted.           
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1. INTRODUCTION 
 

Soil-water characteristic curve has considerable importance in unsaturated soil behavior such as shear 
strength, volume change, diffusivity and absorption, as well as most soil properties such as specific heat, 
permeability and thermal conductivity which can be also related to the soil-water characteristic curve [1]. 
This curve can be depicted as a continuous function describing the water storage capacity of a soil as it is 
subjected to various suctions. The SWCC contains significant information with respect to the amount of 
water contained in the pores at various suctions of soil and the pore size distribution corresponding to the 
stress state in the soil [2]. 

SWCCs are affected by various factors such as the pore shape and pore size distribution, the particle 
size distribution, the specific surface area, the chemo-physical properties of the soil phases, the soil 
density and the temperature. The effects of pores and particles are studied in many researches [3-5].The 
effect of temperature on the SWCC is studied by relatively limited researchers [6-8]. Grant and 
Salehzadeh [8] incorporated the thermal effects into van Genuchten’s equation [9] to obtain a temperature-
dependent SWCC equation. Recently, Zhou et al. [10] presented an approach to modelling the effect of 
temperature on the SWCC of deformable soils. 

SWCC can be determined directly or indirectly in the laboratory through different tests. Direct 
methods include pressure plate, Buchner funnel, tensiometers, and pressure membranes. These methods 
measure the pore-water pressure in the soil or impose a known air pressure to soil and allow water content 
to come to equilibrium with the imposed air pressure. Among these methods, conventional pressure plate 
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based on American Society for Testing and Materials (ASTM) D698-70 [11]is the most common method. 
Indirect methods include filter paper and heat dissipation sensors. These methods use measurements or 
indicators of water content or a physical property that is sensitive to changes in water content. However, 
these mentioned experiments are usually costly and time consuming. Therefore, several empirical methods 
have been proposed in the literature to cope with it. 
The methods for predicting the SWCC of a particular soil can be classified into five groups as follows: 

1. Fitting type equations for the SWCC. In this group of equations a simple mathematical equation is 
fitted to the experimental data, and the unknown parameters are determined [9, 12–14]. 

2. Water contents at different suctions are correlated to specific soil properties such as D10 (sieve size 
for 10% passing) and porosity. This process generally requires a regression analysis followed by a 
curve fitting procedure [15, 16]. 

3. Correlating parameters of an analytical equation with basic soil properties such as grain size 
distribution and dry density, using a regression analysis [17, 18]. 

4. Physico-empirical modelling of the SWCC. This approach converts the grain size distribution into 
a pore size distribution, which is in turn related to a distribution of water content and associated 
pore pressure [19–22]. 

5. Artificial Intelligence (AI) methods such as neural network, gene expression programming and 
other machine learning methods have been used in various disciplines of civil engineering [23–
25]. Prediction of the SWCC, using artificial intelligence falls into the fifth group [26–28]. 

Among these categories second and third groups have great similarity but they differ in the parameters that 
are correlated with soil properties. Furthermore, in this categorization artificial intelligence methods are 
known to have a better accuracy and a relatively straight forward approach [26, 28]. 

There has been considerable work in the literature to come up with a suitable closed form 
relationship for the SWCC [e.g. 2, 9]. However, the approaches employed so far make certain assumptions 
in order to arrive at the desired equation. 

The main objective of this paper is to employ a powerful approach called GEP, a branch of 
artificial intelligence method, to propose a suitable relationship for the SWCC. The main advantage of the 
GEP approaches over the regression and other soft computing techniques is their ability to generate 
predictive equations without assuming prior form of the existing relationship. In this study, soil water 
retention parameters such as initial void ratio, initial gravimetric water content, logarithm of suction 
normalized with respect to atmospheric air pressure, clay content, and silt content are considered as 
independent variables. 
 

2. ARTIFICIAL INTELLIGENCE METHODS FOR DETERMINING SWCC 
 
There are several artificial intelligence methods such as Artificial Neural Network (ANN), Genetic-Based 
Neural Network (GBNN), Genetic Programming (GP) and Evolutionary Polynomial Regression (EPR) 
which are employed to model the SWCC. These models are presented briefly, below: 

a) ANN model 

Neural Network (NN) is a computer-based modelling technique for computation and knowledge 
representation inspired by the neural architecture and operation of the human brain. NNs have experienced 
a considerable resurgence of interest in recent years, though they were initially developed during the early 
1940s. 

ANN is constructed directly from experimental data. This is a fundamentally different approach to 
modelling of the material behavior, and because of their ability to learn and generalize interactions among 
many variables ANNs have the potential to model various aspects of material behavior. The basic 
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architecture of ANN has been covered by Rumelhart and McClelland [29]. Each processing unit (neuron), 
acting as an idealized neuron in human brain, receives input from the units to which it is connected, 
computes an activation level, and transmits that activation to other processing units. A multi-layer 
perceptron NN has an input layer, an output layer, and a number of hidden layers connected to each other. 
Recently, researchers have employed this method in various majors of civil engineering such as predicting 
ground water level, streamflow or beam deflection [30-32]. However, in the case of the SWCC, a 
computer program coded using MATLAB was developed for training the network by Johari and Javadi 
[28]. The optimum neural network structure is shown in Fig. 1, and corresponding optimal connection 
weights of the model are presented in Table 1. 
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Fig. 1. The neural network model for the prediction of SWCC 

 
Table 1. Optimal connection weights of ANN [28] 

 
Output 
Neuron 

Input bias Silt(%) Clay(%) [log(Ua-Uw)/pa] 
Initial Water 

Content 
Initial Void 

Ratio 
Hidden 
Neuron 

-0.620 -0.382 0.115 -0.343 0.968 -0.692 1.529 1 

0.959 -1.311 -0.078 -0.300 -0.528 0.123 0.999 2 

0.430 0.798 0.120 0.404 0.083 0.444 1.075 3 

-0.045 0.589 1.617 0.629 0.833 0.416 0.375 4 

-0.083 -1.622 -0.793 0.639 -0.797 -1.155 -0.974 5 

0.011 - - - - - - bias 

b) GBNN model 

In genetic-based neural network model, based on the optimization features of the Genetic Algorithm 
(GA), it is used for determining the optimal weights of a NN for predicting SWCC. The optimum number 
of hidden neurons is determined by trial and error. The hidden layer of this NN consisted of five neurons 
with one output neuron yielding the gravimetric water content corresponding to the assigned input suction. 
The configuration of this model is the same as the ANN model [28]. Figure1 shows the proposed network 
configuration, and Table 2 indicates the optimal connection weights of the model proposed by Johari et al. 
[26]. 

In order to match the starting point of the model with the laboratory results, all the outputs of the 
model were corrected using equation 2. 
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Table 2. Optimal connection weights of GBNN [26] 

Hidden 
neuron 

Initial void 
ratio 

Initial water 
content 

[log (uₐ -uw)/pa] Clay(%) Silt(%) Input bias 
Output 
neuron 

1 -12.92 17.83 19.87 7.58 17.05 -34.6 -10.75 

2 -10.20 25.41 -28.80 26.54 0.15 6.80 1.07 

3 8.67 10.06 -20.52 -3.74 -10.24 -8.29 7.78 

4 -18.14 -0.13 -12.80 4.09 2.56 1.19 -2.72 

5 4.71 -10.83 8.30 -2.54 -0.89 0.05 -4.79 

Bias - - - - - - -0.04 

c) GP model 

GP, a branch of GA [32], is a method for learning the most “fit” computer programs by means of 
artificial evolution. In other words, its behavior forms a metaphor of the processes of evolution in nature. 
GP, similar to GA, initializes a population that combines the random members known as chromosomes. 
Afterward, fitness of each chromosome is evaluated with respect to a target value. The principle of 
Darwinian natural selection is used to select and reproduce “fitter” programs.Johari et al. [27] proposed a 
model to estimate SWCC for soils using GP method as shown below: 

         
             

     

2Su
e 0.234Su Si 0.368	 Si/Cl e0.794	 w 	0.215 	 0.116 	Cl 	 Cl 	 	 Su 	Su 	Cl

    

(1) 

This formula was then scaled based on initial water content to yield 

 
 

                                                                                                                              (2) 

Where: 

e= Initial void ratio 
w= Initial water content 
Su= log (suction(kPa)/pa)where pa= Atmospheric pressure (taken as 100 kPa) 
Cl= Clay content (%) 
Si= Silt content (%) 
ω= Predicted gravimetric water content 

= Adjusted gravimetric water content 
= Predicted initial water content (at 0.2 kPa)

 d) EPR model 

EPR is a data driven method based on evolutionary computing, aimed at searching polynomial 
structures representing a system. A general EPR expression may be presented as [22]: 

 
(3) 

 
Where y is the estimated vector of output of the process; aj are model parameters; F is a function 
constructed by the EPR process; X is the matrix of input variables; f is a function defined by the user; and 
n is the number of terms of the target expression. The general functional structure represented is 
constructed from elementary functions by EPR using a GA strategy. Giustolisi and Savic [34] and Javadi 
and Rezania [35] introduced the detailed explanation of this method. 

Ahangar-Asr et al. [36] developed a model for predicting the SWCC using EPR as shown below:  
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3. GENE EXPRESSION PROGRAMMING 

 
GEP is a branch of artificial intelligence and recent extension to GP that develops computer programs of 
different sizes and shapes encoded in linear chromosomes of fixed length [37]. The main advantage of the 
GP-based approaches over the regression and other soft computing techniques is their ability to generate 
prediction equations without assuming prior form of the existing relationship. Ferriera [37] makes a 
comparison between the GEP technique and GP as shown below: 

 
 In GEP Population individuals (chromosomes) are linear and fixed length, converted to non-linear 

with  varying sizes and lengths (expression trees or computer programs) at a later stage but, 
Population individuals are non-linear, varying in length as well as shape (also known as ‘parse 
trees’) 

 GEP always produces valid expressions but sometimes GP obtain invalid expressions. 
 GEP has totally separated genomes and phenome but GP uses a single entity working as genome 

and phenome at the same time. 
 GEP is well established beyond the replicator threshold in contrast to GP, which is not yet 

established. 
 

There have been some scientific efforts directed at applying GEP to the civil engineering tasks [e.g. 38-
44].GEP is an evolutionary algorithm for learning the most fit computer programs. It incorporates both 
the simple, linear chromosomes of fixed length similar to GA and the ramified structures of different sizes 
and shapes similar to the parse trees of GP [37, 45, 46]. 

These computer programs can take many forms: they can be conventional mathematical models, 
neural networks, decision trees, sophisticated nonlinear regression models, logistic regression models, 
nonlinear classifiers, complex polynomial structures, logic circuits and expressions, and so on. But 
irrespective of their complexity, all GEP programs are encoded in very simple linear structures – the 
chromosomes. These simple linear chromosomes are a breakthrough because, no matter what, they always 
encode valid computer programs. So we can mutate them and then select the best ones to reproduce and 
then create better programs and so on, endlessly. This is one of the prerequisites for having a system 
evolving efficiently, searching for better and better solutions for all kinds of problems. 
 

4. APPLICATION OF GEP FOR MODELLING OF SWCC 
 
The GEP software, GeneXproTools 4.0 [47] was used in this study to perform symbolic regression using 
GEP to find a formulation for soil-water characteristic curve. GeneXproTools is a predictive 
analytics suite developed by Gep soft. GeneXproTools modeling frameworks include logistic 
regression, classification, regression, time series prediction, and logic synthesis. It is the unique software 
that employs the GEP method in function finding. 

A large number of generations were needed to find a formula with minimum error. The formulation 
selection was based on simplicity and its relevance to the nature of the problem, thus ensuring a simple 
and efficient final GEP model. To set the model parameters a performance analysis was done. In the GEP, 
values of setting parameters have significant influence on the fitness of the output model. These include 
the number of chromosomes, number of genes, gene’s head size, and the rate of genetic operators. This 
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approach involved using different settings and conducting runs in steps. During each step, runs were 
carried out and the values of one of the above mentioned parameters were varied, whereas the values of 
the other parameters were kept constant. At the end of each run, the Mean Sum Squared Errors (MSSE) 
for both training and testing sets was recorded in order to identify the values that give the least MSSE. 

The linking function must be chosen as ‘‘addition’’or ‘‘multiplication’’ for algebraic sub trees 
[47].However, in this research all linking functions were analysed. Figure2 shows the effect of the linking 
function on the performance of the GEP model. It can be seen that the GEP model performs best when 
linking function is addition. 
 

Table 3. Input parameters used for the GEP models 

Parameter	 Achieved	functions,	values	and	rates	
Fitness	function	 MSSE	
Linking	function	 Addition	(+)	
Function	set	 +,	‐,	÷,⨯,	Inv,	X²	
Number	of	chromosomes	 15	
Number	of	genes	 2	

Gene	head	size	 9	
Recombination	rate	 0.2	
Mutation	rate	 0.044	

	

	
Fig. 2. Effect of linking function on the performance of the GEP model 

 
5. DATABASE 

 
Results from pressure plate tests performed on clay, silty clay, sandy loam, and loam soil reported by 
various researchers and compiled by SoilVision [49] were adopted for the analysis. Table 4 indicates the 
range of the properties of the soil used in this study. This database consists of the results from 186 
pressure plate tests, together with their grain size distributions. Final suction values typically ranged from 
800 to 1,700 kPa with few tests having suction values as large as 105kPa. Pressure plate test results were 
then digitized to obtain the necessary database. For digitization, an increasing incremental value of suction 
was adopted. Hence, the suction value was doubled in each increment. Initial suction value was fixed at 
0.2 kPa. The database thus developed had a total of 2,694 patterns. From previous works on the topic, it is 
well understood that the SWCC is dependent on the grain size distribution, soil density, suction and water 
content of the soil. Hence, any of the SWCC parameters and/or any combination of these parameters may 
be considered as appropriate candidates for inputs of the model. Therefore, five parameters namely, void 

       Addition         Subtraction     Multiplication    Division 
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ratio, initial water content, logarithm of suction normalized with respect to atmospheric air pressure, clay 
content, and silt content, were selected as input. The output parameter was the gravimetric water content 
corresponding to the assigned input suction. For normalization each component of the data set was 
normalized to lie in an interval of [0, 1] using a max-min approach 
 

Table 4. Range of Basic Soil Properties for Samples from SoilVision (2002) 
adopted for Developing GEP Model 

Property        Range 

Initialvoid ratio 0.458-2.846 
Suction(  kPa ) 0.2-104857.6 
Specific gravity 2.28-2.92 
Water content (%) 0.18-98.27 
Dry density (kg/m3) 702-1811 
Initial water content (%) 17.34-105.41 
Clay (%) 4.4-76.7 
Silt (%) 10.3-87.5 
Sand (%)       0.1-55.3 

 
6. MODEL DEVELOPMENT 

 
The optimum GEP program which is the optimum formulation for SWCC was obtained by developing the 
programs towards the formulation with minimum error compared with the actual experimental results. In 
this process, the input parameters and suitable required parameters were assigned and the sum of absolute 
differences between the predicted value of water content and actual value which had been obtained from 
experiment was monitored. Iterations continued until this error measure did not decrease considerably for 
training and testing data. Figure 3 indicates the variation of average relative absolute error during model 
development. The model training error descends from 1.77 in the incipient generations to about 0.33 after 
100,000 generations and, in testing, the error declines from 2.82 to about 0.37 in the same generations. 
The average relative error is defined as: 

Average Relative Error (ARE)



 

N
i i

i 1 i

A P1
100

N A
                                    (5)    

 

 
Fig. 3. Variation of error measured during training and testing generations 
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As mentioned earlier, one of the advantages of the GEP technique is that the relationship between the 
inputs of the model and the corresponding outputs is automatically constructed in the Expression Trees 
(ET). In this research the appropriate ET (ET1 and ET2) that are linked to each other to produce the final 
model are presented in Fig. 4. 

+

Inv

−X²	

X² ÷	

−	÷	

Su Cl ‐1.458

Su Cl7.286 Cl

+

Sub	ET	1

−	

w	 ×	

w +	

Su X²

+ ‐4.034

÷	

e Si

Sub	ET	2

 
 
 
The depicted trees in Fig. 4 can easily formulate into mathematical equation as in the following model: 

	
	

(6) 
	

Where: 

  
    

  

2

4

2

1
W Su 0.062 Si e 1

Su
Su 2Cl 2.202 7.285

Cl

Fig. 4. Expression tree of the developed GEP model 
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e = Initial void ratio; 
w = Initial water content; 
Su = log[suction(kPa)/pa]where pa= Atmospheric pressure (taken as 100 kPa); 
Cl = Clay content (%); 
Si = Silt content(%); 
ω =Predicted gravimetric water content 

Afterward, this formula was scaled based on initial water content using equation 2.Eqs. (6) and (2) were 
used to simulate the SWCCs of all 131 pressure plate tests in the modelling set and all 55 tests in the 
validation set. The proposed model may be used to predict SWCC solely from basic soil parameters 
without resorting to a sophisticated experimental test. The procedure includes the following steps: 
 

a) Choose some value of suctions, beginning from 0.2(kPa). 
b) Normalize the input parameters(e, w, log [su/pa], Cl and Si) using max-min approach. 
c) Calculate gravimetric water contentat selected suctions using Eq. (6). 
d) De-normalize the predicted gravimetric water contents. 
e) Adjust the predicted water contents regarding Eq. (2). 
f) Draw the SWCC using adjusted water content versus corresponding selected suctions. 

 
Estimation of SWCC using the proposed model and following the mentioned procedure requires input 
parameters that may be determined using simple laboratory tests that may take only 1 or 2 days in contrast 
to the lengthy laboratory procedure (20–30 days) needed for SWCC determination.On the other hand, this 
approach in assessment of SWCC is utterly straightforward and there is no complex calculation, therefore, 
SWCC is promptly obtained through some simple mathematical calculations. 

Figures 5 to 7 show the SWCC for 3 specimens used in developing the model. In these figures, the 
GEP prediction and actual experimental data are shown. From these figures it may be concluded that the 
formulation has a good potential for predicting the SWCC with reasonable accuracy. Similarly, Figs. 8 to 
10present the prediction of the GEP for 3 typical tests not used in developing the model (testing). From 
these figures, it may also be concluded that the proposed method is also capable of simulating new test 
results, though it was not used in developing the corresponding model.  

 

	
Fig. 5. Best simulation results among tests used for trainingGEP model.(MSSE= 5.2⨯10-6) Void ratio: 0.69; 

Initial water content: 26.33%; Clay content 32.01%; Silt content: 66.01%	
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Fig. 6. Average simulation results among tests used for trainingGEP model. (MSSE= 6.9⨯10-4) 

Void ratio: 0.98; Initial water content: 36.84%; Clay content 17.16%; Silt content: 79.95% 
 

	
Fig. 7. Worst simulation results among tests used for trainingGEP model. (MSSE= 4.1⨯10-3) 
Void ratio: 0.96; Initial water content: 32.90%; Clay content 21.86%; Silt content: 77.41% 

	

	
Fig. 8. Best simulation results among tests used for testing GEP model. (MSSE= 2.1⨯10-5) 
Void ratio: 0.71; Initial water content: 26.89%; Clay content 28.71%; Silt content: 63.57% 
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Fig. 9. Average simulation results among tests used for testing GEP model. (MSSE= 8.9⨯10-4) 

Void ratio: 0.95; Initial water content: 35.99%; Clay content 37.68%; Silt content: 39.41% 
	

	
Fig. 10. Worst simulation results among tests used for testing GEP model.(MSSE= 4.1⨯10-3) 

Void ratio: 1.37; Initial water content: 48.61%; Clay content 63.30%; Silt content: 29.54% 
	

Several GEP models were developed using different arrangements of input variables. The performance of 

seven GEP models and effect of input parameter on accuracy of training and testing data-set are shown in 

Table 5.It can be seen that model 7 has a significantly superior performance.Therefore, the SWCC 

strongly depends on the whole selected input parameters clay content, silt content, water content, suction 

and void ratio. 
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Table 5. Mathematical expressions of some sample GEP models 

No. Mathematical Expression of the model 
Number 
of inputs  

R2  

Training 
R2 

Testing 

1  w
w Su 0.832

2.262 e
  


 3 0.82 0.79 

2 

   21
e Su 1 Si e

e 9.261
    


 3 0.90 0.85 

3   
 3

1
w 0.216 Si Cl Su Su w

w Si 4.479
       

 
 4 0.92 0.89 

5 
 

 33

1
w 0.296 Su Cl Su

w 1.905 e Su
    

  
 4 0.93 0.91 

6  

2

2

1 Si e
w Su 1

3.995Su
Su Cl 7.146 Su 2Cl

Cl

                 
 

5 0.94 0.92 

7 
  2

4

2

1
w Su 0.062 Si e 1

Su
Su 2Cl 2.202 7.285

Cl


    

  
5 0.94 0.94 

 
7. VALIDATION ASSESSMENT OF THE PROPOSED MODEL 

 
In this section, the experimental results of Johari et al. [50] tests are used to demonstrate the suitability of 
the proposed GEP model for more validation. In these tests Soil samples from 14 different locations in 
Shiraz city in Fars province of Iran were tested and their SWCCs were established, using a pressure plate 
apparatus.Details of the soil propertiesand experimental program are presented in [50]. 

Properties of the tested soils that are used in the GEP model as input parameters to predict SWCC are 
available in Table 6. Figures 11 to 13 show SWCC for 3 specimens used in developing the model. In these 
figures, GEP prediction and actual experimental data are shown. From these figures it may be also 
concluded that the formulation has good potential for predicting SWCC with reasonable accuracy. 
 

Table 6. Properties of tested soils [50] 

Series Group Initial void ratio Initial water content Clay (%) Silt (%)
1 MLa 0.582 20.80 12.57 52.05 

2 CLa 0.788 27.40 26.94 69.31 

3 CL 0.818 26.73 34.65 60.90 

4 ML 0.577 21.03 19.30 54.02 

5 CL-MLa 0.791 28.94 33.90 64.38 

6 ML 0.768 24.69 23.28 65.16 

7 ML 0.675 25.19 16.81 77.78 

8 ML 0.564 19.21 8.64 57.48 

9 ML 0.669 22.74 21.92 54.77 

10 CL 0.767 25.66 31.47 62.75 

11 CL-ML 0.591 21.51 26.28 66.36 

12 CL 0.623 22.91 27.40 60.01 

13 CL 0.614 22.49 38.21 53.46 

14 CL 0.715 21.29 13.86 71.15 
a  ML: Low plasticity silt, CL: Low plasticity clay, CL–ML: Low plasticity silty clay. 
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To illustrate the correlation quality of model, the experimental results and their corresponding 
predictions were plotted against each other in Fig. 14. It is to be noted that the models were calibrated 
using SoilVision [49] database, and their accuracy was evaluated using the experimental data from Shiraz 
data [50]. Total error of the GEP prediction is 2.92 ⨯10-4 and R2 is equal to 0.92, these factors show good 
accuracy of proposed model in predicting SWCCs.  

	
Fig. 11. Best simulation results among tests [50] used for validation GEP model. (MSSE= 2.8⨯10-5) 

Void ratio: 0.79; Initial water content: 27.40%; Clay content 26.94%; Silt content: 69.31%	
	

	
Fig. 12. Average simulation results among tests [50] used for validation GEP model. (MSSE= 1.1⨯10-4) 

Void ratio: 0.82; Initial water content: 26.73%; Clay content 34.65%; Silt content: 60.90% 

 



A. Johari and A. Hooshmand nejad 
 

IJST, Transactions of Civil Engineering, Volume 39, Number C1                                                                            February 2015 

156

	
Fig. 13. Worst simulation results among tests [50] used for validation GEP model. (MSSE= 2.9⨯10-4) 

Void ratio: 0.72; Initial water content: 21.29%; Clay content 13.86%; Silt content: 71.15%	
	

	
Fig. 14. Actual versus predicted gravimetric water content using GEP model (R2= 0.92) 

 
8. COMPARISION WITH PREVIOUS MODEL 

 
As mentioned, a number of models have been presented by various investigators for estimating SWCC. 
Among these models in other groups, the approach presented by Fredlund et al. [51] was considered to 
give a more reasonable estimate of the SWCC approach [2, 21]. Figures 15 and 16 compare predicted 
gravimetric water content by GEP and the Fredlund et al. model[50]respectively, versus actual data for 
training data. Similarly, Figs. 17 and 18 compare predicted gravimetric water content by GEP and the 
Fredlund et al. model [51] respectively, versus actual data for testing data. These figures show a good 
correlation between the predictions made using GEP formulation and the actual data both for training and 
testing data. 
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Furthermore, Table7 presents the error in GEP prediction compared with the aforementioned 
approach. In this table, ARE defined by Eq. (5) and the Mean Sum Squared of the Error (MSSE) is 
defined by: 

 


 
2N

i i
i 1

1
MSSE A P

N                                                                
(7) 

R2= correlation coefficient (square of the Pearson product moment correlation coefficient) where Ai= 
actual value for ith data; Pi= predicted output data for ith data; and N= total number of data available in the 
database. 

Table 7. Performance of GEP and Fredlund et al. model[50] 

Training Data Testing Data 

Model ARE (%) MSSE R² ARE (%) MSSE R² 

GEP 25.59 0.0014 0.94 28.73 0.0014 0.94 

Fredlund et al. 34.73 0.0071 0.85 35.39 0.0047 0.89 

 

Additionally, an analysis was performed to compare performance of described AI methods in section 2. In 
Table 8 the value of R2 and MSSE of the methods for training, testing and validation data are shown. It is 
worth mentioning that, besides the reasonable accuracy, the simplicity of the model is another important 
key factor for developing the model. The proposed model has both of these properties together. 
 

Table 8. Comparing performance of artificial intelligence methods 

Model 
Training  Testing  Validation 

R2 MSSE  R2 MSSE  R2 MSSE 

GEP 0.94 0.0014  0.94 0.0014  0.92 0.0003 

GP 0.94 0.0016  0.93 0.0015  0.95 0.0002 
ANN 0.94 0.0013  0.91 0.0018  0.93 0.0002 

GBNN 0.94 0.0014  0.91 0.0019  0.96 0.0001 
EPR 0.98 0.0010  0.96 0.0012  0.94 0.0003 

	

Fig. 15. Actual versus predicted gravimetric water content for training  
data in GEP approach (R2= 0.94) 
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Fig. 16. Actual versus predicted gravimetric water content for training  
data in Fredlund et al. approach (R2= 0.85)	

	

Fig. 17. Actual versus predicted gravimetric water content for testing  
data in GEP approach. (R2= 0.94) 

Fig. 18. Actual versus predicted gravimetric water content for testing  
data in Fredlund et al. approach. (R2= 0.89)	
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9. SENSITIVITY ANALYSIS 

To consider the model response to changes in input parameters, a sensitivity analysis was carried out. For 

this purpose, all input parameters, initial void ratio, initial water content, log [suction (kPa)/pa], clay and 

silt content were considered. In this procedure, the influence of each parameter on predicted gravimetric 

water content was assessed. In this analysis, the value of the input parameters of a random sample was 

increased approximately 30% while the ranges of the other input parameters were kept constant. The 

results are given in Table 9. In this table negative change means reduction and positive means increasing 

effect in gravimetric water content. It is shown that, with an increase in initial water content and clay 

content the Predicted gravimetric water content increases. On the other hand, Table 9 shows that with an 

increase in initial void ratio, log [suction (kPa)/pa] and silt content the gravimetric water content 

decreases. This table shows that the clay content is the most effective parameter in predicted gravimetric 

water content. 
	
Table 9. The change in gravimetric water content corresponding to 30% increase in the value of the input parameters 

Parameter e w Su Cl Si 

Change (%) -0.60 0.50 -6.06 14.60 -2.05 

 
10. PARAMETRIC ANALYSIS 

For further verification of the proposed GEP model, a parametric analysis was performed in this research. 

The main goal was to find the effect of each parameter on the predicted gravimetric water content. Figures 

19 to 23 present the predicted values of the gravimetric water content as a function of each parameter 

where the other parameters were constant. For this purpose, several arbitrary data sets from training and 

testing data-sets were considered for the parametric analysis. Response from typical datasets, given in 

Table 10, was selected to investigate influence of various parameters. Among these figures when suction, 

initial void ratio and silt content increase, the gravimetric water content decreased. However, during 

increasing clay content and initial water content, predicted water content increased. 

Figure 19 shows that when initial void ratio is increased, predicted water content decreased. It means 

that the soil with higher density has higher water content. Figure 20 illustrates suction and predicted water 

content have reverse relation, therefore water content decreased with increasing suction. Figure 21 shows 

that in each soil sample, if soil has higher initial water content then the predicted water content in SWCC 

will be a higher value. Figure 22 illustrates that, as expected, increase in the clay content causes an 

increase in predicted water content significantly. Finally, assessment of model prediction indicated that 

influence of silt content is close to coarse grade particle, although it has a slight effect on predicted water 

content. This behavior is shown in Fig. 23. 

Table 10. The arbitrary selected data from training and testing sets for parametric analysis 

Parameter e w Su(kPa) Cl (%) Si (%) 

Training data 0.69 26.33 750.00 32.01 66.01 

Testing data 0.71 25.46 750.00 41.08 13.46 
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Fig. 19.  Parametric analysis of the model with respect initial void ratio	
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Fig. 20. Parametric analysis of the model with respect to suction
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Fig. 21. Parametric analysis of the model with respect to initial water content 
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Fig. 22. Parametric analysis of the model with respect to clay content	
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Fig. 23. Parametric analysis of the model with respect to silt content
	

11. CONCLUSION 

A model based on GEP was proposed to estimate the SWCC for soils. A database containing the results of 
pressure plate tests carried out on a wide variety of fine grained soils was employed to develop the model. 
Test results were then digitized and normalized to obtain the necessary database. During the first phase, 
the model was developed using the results from 131 pressure plate tests. In the second phase, it was 
validated using 55 additional test results that the model had not been exposed to during the first phase. The 
model prediction indicated a reasonable accuracy, both for the results used in the first phase, as well as 
results in the validation phase. The model prediction had some discrepancies compared to the actual test 
data; however, comparison of the results from the proposed model with conventional methods indicated its 
superior performance for prediction of SWCCs. Furthermore, sensitivity analysis showed that the clay 
content is the most effective parameter in predicted gravimetric water content of model. 

These models have certain limitations in that they do not take into account the hysteresis phenomena 
and soil fabric effects. The authors suggest the following future works for further improvements and 
extension on the topic: 

- Studying other types of AI systems such as neuro-fuzzy networks and radial basis function. 
- Extending the AI systems to include hysteresis phenomena, soil fabric and stress state effects. 
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- Extending the AI systems to include hysteresis phenomena and soil fabric. 
- Reliability assessment of the developed model 
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APPENDIX 

In this Appendix, an example was presented to illustrate the procedure for prediction of SWCCs, using GEP model. 

For this purpose, the laboratory results of a sample were employed with the following inputs value. Void ratio= 0.98; 

Initial water content= 36.84%; Clay content= 17.16%; Silt content= 79.95%, and the value of suctions was started 

from 0.2 (kPa) and multiplied by 2 until 1638.4 (kPa). 

1. The input parameters of the model were normalized to lie in an interval of [0, 1], using a max–min approach. 

The results are shown in Table A. 1. 

1 min

max min

e e 0.976 0.458
e 0.217

e e 2.846 0.458

 
  

 
 

1 min

max min

w w 36.84 17.34
w 0.221

w w 105.41 17.34

 
  

 
 

1 min

max min

Cl Cl 17.16 4.4
Cl 0.176

Cl Cl 76.7 4.4

 
  

 
 

1 min

max min

Si Si 79.95 10.3
Si 0.901

Si Si 87.5 10.3

 
  

 
 

The magnitude of e, w, Cl and Si were constant in sample while the magnitude of Su was changed.   For each 

arbitrary suction point, for instance 25.6(kPa), the normalization was done as follows: 
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1 min

m ax min

log Su / 100 log Su / 100 log 25.6 / 100 log 0.2 / 100
Su 0.368

log Su / 100 log Su / 100 log 104857.6 / 100 log 0.2 / 100

 
  

 
 

2. By placing the above normalized value into the Eq. (6), the result will be:  

( Normilized )
0.250   

 (Denormalized)
0.250 0.9827 0.0018 0.0018 0.247       

3. Based on the results of steps 2 and 3, the de-normalized water content for suction of 25.6(kPa) is 
calculated using Eq.(2) as: 

0.321
0.247 0.230

0.344
     

 
Table A.1. GEP model predictions for selected sample 

 

 

  
 
 

e w Cl Si Su 
Experiment 

water content 

Predicted water 
content 

(Normalized) 

Predicted  
water content 

(De-normilized) 
  

0.217 0.221 0.176 0.901 0 0.321 0.348 0.344 0.321 
0.217 0.221 0.176 0.901 0.052 0.316 0.338 0.333 0.311 

0.217 0.221 0.176 0.901 0.105 0.312 0.327 0.323 0.301 

0.217 0.221 0.176 0.901 0.157 0.303 0.316 0.312 0.291 

0.217 0.221 0.176 0.901 0.210 0.293 0.303 0.299 0.280 

0.217 0.221 0.176 0.901 0.263 0.278 0.289 0.285 0.266 

0.217 0.221 0.176 0.901 0.315 0.256 0.271 0.268 0.250 

0.217 0.221 0.176 0.901 0.368 0.226 0.250 0.247 0.230 

0.217 0.221 0.176 0.901 0.421 0.172 0.225 0.223 0.208 

0.217 0.221 0.176 0.901 0.473 0.131 0.199 0.197 0.184 

0.217 0.221 0.176 0.901 0.526 0.114 0.172 0.171 0.159 

0.217 0.221 0.176 0.901 0.578 0.091 0.146 0.145 0.135 

0.217 0.221 0.176 0.901 0.631 0.073 0.121 0.121 0.113 

0.217 0.221 0.176 0.901 0.684 0.062 0.099 0.099 0.092 


