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Abstract– There are many reasons for rehabilitation of existing buildings. Adding stories is one of 
the most common reasons. When a steel building is retrofitted by concrete jacketing for adding 
stories, this system contains several structural systems. These systems are composite concrete and 
steel systems in initial stories, welded steel system in middle stories and cold-formed steel frames 
in upper stories. Dynamic analysis of hybrid structures is usually a complex procedure due to 
various dynamic characteristics of each part, i.e. stiffness, mass and especially damping. 
Availability of different damping factors causes a higher degree of complication for evaluating 
seismic responses of hybrid systems. Due to using several structural systems, an existing building 
is changed to hybrid system. Damping matrix of these structures is non-classical. Also, the 
nonlinear software is not able to analyze these structures precisely.  In this study, a method and 
graphs have been proposed to determine the equivalent modal damping ratios for rehabilitated 
existing steel buildings for adding stories.           
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1. INTRODUCTION 
 

Rehabilitation is necessary when the assessment of structural performance results in insufficient capacity 
to resist the forces of expected intensity and acceptable limits of damage. The  rehabilitation  of  an 
existing  building  requires  an  appreciation  for  the technical,  economic  and  social  aspects and the 
structural condition of buildings; therefore, it is hard to develop a single typical technique for 
rehabilitation. Hence, many instructions have been developed in the field of seismic rehabilitation [1, 2]. 
One of the earliest guidelines published for the evaluation and retrofit of the buildings is ATC-40 [3]. 
After that, FEMA 273 [4] and FEMA 356 [5] were published respectively as guidelines and pre-standards 
for the seismic rehabilitation of the buildings. Afterwards, nonlinear analysis was upgraded in the ASCE 
41-06 [6] as a standard for seismic rehabilitation of the buildings.  

There are many important reasons for rehabilitation of existing buildings such as upgrading the 
design codes, changing the building usage, adding to the stories, structural damages in case of destructive 
events, and design or construction faults. There are various techniques for retrofitting. The retrofitting 
strategy of the existing buildings can be conducted by inserting lateral resistant elements (such as shear 
walls, braces, etc.), strengthening structural elements (such as jacketing, FRP, cover plates, etc.), 
decreasing demand (reducing the weight, removing the upper stories, changing the use of the buildings, 
using seismic isolator), etc [7].  

Cold-formed steel (CFS) products are commonly used in all areas building industry. The use of cold-
formed steel construction materials has become more and more popular since the initial introduction of 
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codified standards in 1946. These building materials encompass columns, beams, joists, studs, floor 
decking, built-up sections and other components. The strength of elements used for design is usually 
governed by buckling. Cold-formed steel members are the most useful systems for adding additional 
stories in existing buildings due to their light weight, economy in transportation and shipping, fast and 
easy erection,  high strength-to-weight ratio, and being easily out sourced. If the site is severely restricted 
frames can be assembled on the roof. Working with cold-formed steel members is also not so weather 
dependent as it is with other materials [8, 9]. 

When a steel building is retrofitted by concrete jacketing for adding stories, this system contains 
several structural systems. These systems are composite concrete and steel systems in initial stories, 
welded steel system in middle stories and cold-formed steel frames in upper stories. By using several 
structural systems, an existing building is changed to hybrid system.  

Dynamic response of hybrid structures has some complications. One of the reasons is the different 
stiffness of the parts of structure and another reason is non-uniform distribution of materials and their 
different features such as damping in main modes of vibration. Damping is one of the effective factors in 
determining dynamic response of a structure [10]. Lee et al. performed some studies by direct solution and 
without using time history analysis by substituting Multi Degrees of Freedom (MDOF) structure by 
adding dampers to Single Degree of Freedom (SDOF) structure [11]. In the field of complex eigen-
vectors, Villaverde [12] presented one method for using complex modes of an irregular building by 
maximum response. In this method, motion equations are reviewed in the state-space and their modal 
specifications are evaluated in spectral analysis method. Kim et al. [13] presented a solution method to 
solve the eigenvalue problem raised in the dynamic analysis of non-classically damped structural systems. 
This method was obtained by applying the modified Newton-Raphson technique and the orthonormal 
condition of the eigenvectors. Huang et al. [14] reviewed a series of MDOF irregular structures in a 
different method in which the reinforced concrete part had lower degrees of freedom and the metal part 
had higher degrees of freedom. In the method presented by these researchers, in the first stage, regular 
damping ratio of the whole building must be obtained by trial and error method, and then the whole 
building is modeled by a 2-DOF system and modal damping ratio is calculated by predictive approximate 
method with the assumption that the normalized damping matrix is diametric. 

Availability of different damping factors causes a higher degree of complication for evaluating 
seismic responses of hybrid systems. On the one hand, the available design regulations do not present 
analytic methods for determining structural systems damping and on the other hand, damping matrix of 
these structures is non-classical. Also, the nonlinear software is not able to analyze these structures 
precisely. For dynamic analysis of these structures by using the available software, an equivalent modal 
damping ratio must be generalized to the whole structure. One general method for determining the 
damping of these structures is such that two structures are modeled as three separate systems, each of them 
considered with its damping ratio, and the interaction between the three systems is ignored [15,16]. This 
method revealed many errors and is very different from the real behavior of the structure. 

There are no studies concerning the determination damping ratio of non-classically damped 
rehabilitated buildings. This paper presents a method and graphs for determination of equivalent modal 
damping ratio of non-classically damped rehabilitated existing steel buildings for adding stories. In the 
proposed method in this study, the added storey(s) has been considered for calculation of equivalent modal 
damping ratios for non-classically damped hybrid rehabilitated steel buildings. In the proposed method, 
hybrid buildings are considered to have three structural systems of composite steel and concrete 
(rehabilitated storey(s)), existing steel system and added storey(s) (cold-formed steel frames). Using the 
proposed methods and obtained graphs for determining modal damping ratios in dynamic analysis and 
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numerical method investigated in this study, r indicates the rehabilitated structure (composite part), s 
presents the stories without rehabilitation (steel part) and a presents the added stories.  
 

3. THE PROPOSED METHOD FOR DETERMINING MODAL DAMPING 

The main MDOF structure is assumed to have separate Rayleigh damping at each section. This is to say 
that damping ratio is proportional to stiffness and mass in each degree of freedom. So, each part of the 
equivalent 3 degrees of freedom has two types of damping Ci

k and Ci
m (damping proportional to stiffness 

and mass). Mass (M) and stiffness (K) matrices are calculated for each of the three parts of rehabilitated 
structure, steel structure and stories added. Each of them shows the matrix forming the related part of the 
overall structure. Stiffness matrix of hybrid structure is obtained from the Eqs. (1). 

ܭ ൌ ௥ܭ ൅ ௦ܭ ൅ ௔ܭ 			 ∈                                                 (1-1)			૜ሺԹሻۻ	
 

௥ܭ ൌ ሾ݇௜,௝
௥ ሿଷൈଷ							,							݇௜,௝

௥ ൌ ቄ݇௦ ൅ ݇௥ 									 ∶ ݅, ݆ ൌ 1
0																	 ∶ .݋ 		ݓ

           (1-2) 
 

௦ܭ  ൌ ൣ݇௜,௝
௦ ൧

ଷൈଷ	
						,							݇௜,௝

௦ ൌ ൝
	െ݇௦ 													 ∶ ሺ݅ ൌ 2, ݆ ൌ 1ሻ	, ሺ݅ ൌ 1, ݆ ൌ 2ሻ
݇௦ ൅ ݇௔ 								 ∶ ݅, ݆ ൌ 2		
					0														 ∶ .݋ ݓ

     (1-3) 

 

௔ܭ ൌ ൣ݇௜,௝
௔ ൧

ଷൈଷ	
						,						݇௜,௝

௔ ൌ ൝
	െ݇௔ 													 ∶ ሺ݅ ൌ 2, ݆ ൌ 3ሻ	, ሺ݅ ൌ 3, ݆ ൌ 2ሻ
			݇௔ 														 ∶ ݅, ݆ ൌ 3		
				0														 ∶ .݋ ݓ

      (1-4) 

The structure’s overall mass matrix is obtained from Eq. (2-1) and mass matrix of each one of the three 
parts forming the structure is calculated from the Eqs. (2-2) to (2-4).  

ܯ ൌ ௥ܯ ൅ܯ௦ ൅ܯ௔ 			 ∈ 	પ૜ሺԹሻ                       (2-1) 

௥ܯ ൌ ሾ݉௜,௝
௥ ሿଷൈଷ							,							݉௜,௝

௥ ൌ ቄ݉௥ 										 ∶ ݅, ݆ ൌ 1
0													 ∶ .݋ 		ݓ

         (2-2) 

௦ܯ ൌ ሾ݉௜,௝
௦ ሿଷൈଷ							,							݉௜,௝

௦ ൌ ቄ݉௦ 										 ∶ ݅, ݆ ൌ 2
0													 ∶ .݋ 		ݓ

         (2-3) 

௔ܯ ൌ ሾ݉௜,௝
௔ ሿଷൈଷ							,							݉௜,௝

௔ ൌ ቄ݉௔ 										 ∶ ݅, ݆ ൌ 3
0													 ∶ .݋ 		ݓ

               (2-4) 

Modal frequencies of ω1, ω2 and ω3 are obtained by classic analysis method for 3-DOF structure [15, 28]. 
Rehabilitated story’s damping matrix is calculated from Eqs. (3-1).  

௥ܥ ൌ ܽ଴,௥ܯ௥ ൅ ܽଵ,௥ܭ௥      (3-1) 

ܽ଴,௥ ൌ
ଶൈకೝൈఠభൈఠమ

ఠభାఠమ
	     (3-2) 

ܽଵ,௥ ൌ
ଶൈకೝ
ఠభାఠమ

		      (3-3) 

Steel storey’s damping matrix is obtained from Eq. (4-1). 

௦ܥ ൌ ܽ଴,௦ܯ௦ ൅ ܽଵ,௦ܭ௦ ൅ ܽଶ,௦ܭ௦݉௦ିଵܭ௦		             (4-1) 

ܽ଴,௦ ൌ
ଶൈకೞൈఠభൈఠమൈఠయൈሺఠభାఠమାఠయሻ

ሺఠభାఠమሻൈሺఠభାఠయሻൈሺఠమାఠయሻ
                                                  (4-2) 

ܽଵ,௦ ൌ
ଶൈకೞൈ൫ఠభ

మାఠభൈఠమାఠభൈఠయାఠమ
మାఠమൈఠయାఠయ

మ൯

ሺఠభାఠమሻൈሺఠభାఠయሻൈሺఠమାఠయሻ
                                  (4-3) 

ܽଶ,௦ ൌ െ ଶకೞ
ሺఠభାఠమሻൈሺఠభାఠయሻൈሺఠమାఠయሻ

                                    (4-4) 

 Added story’s damping matrix is obtained from Eq. (5-1). 
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௔ܥ ൌ ܽ଴,௔ܯ௔ ൅ ܽଵ,௔ܭ௔		                  (5-1) 
 

ܽ଴,௔ ൌ
ଶൈకೌൈఠమൈఠయ

ఠమାఠయ
      (5-2) 

 

ܽଵ,௔ ൌ
ଶൈకೌ
ఠమାఠయ

                 (5-3) 

Finally, damping matrix of hybrid structure would be the summation of 3 base matrices as in Eq. (6) in 
which its ratios are from mass proportionality and stiffness of the overall damping matrix of 3-DOF 
structure. 

ܥ ൌ ∑ ௜௜ܥ ,				݅ ൌ ,ݎ ,ݏ ܽ      (6) 

Special frequencies’ ratio Rω and weight ratio Rm are defined as in equation 7 in order to specify the 
system response according to the features of three constituents. 

ܴఠଵ ൌ
ఠೌ
ఠೝ
, ܴ௠ଵ ൌ

ெೌ

ெೝ
,				ܴఠଶ ൌ

ఠೞ
ఠೝ
,			ܴ௠ଶ ൌ

ெೞ

ெೝ
		                        (7) 

 In this stage, a time history analysis is applied for equivalent 3-DOF structure according to equation 8 in 
order to obtain the equivalent modal damping ratios. 

ሷݕሼܯ ሽ ൅ ሶݕሼܥ ሽ ൅ ሽݕሼܭ ൌ െݔݎܯሷ௚                       (8) 

In the equation 8, {y} is relative displacement vector of MDOF structure and r is equal toቂ1
1
ቃ [15, 29]. The 

obtained results are equal to the overall acceleration and displacement in each level. Energy balance 

equation is defined by multiplying matrix transpose ሼݕሶ ሽ in equation 8, as follows: 

ௗ

ௗ௧
ቀଵ
ଶ
ሼݕሶ ሽ୘	ܯሼݕሶ ሽ ൅	ଵ

ଶ
	ሼyሽ୘	ܭ	ሼyሽቁ ൌ െሼݕሶ ሽ୘ݔݎܯሷ௚െሼݕሶ ሽ୘	ܥሼݕሶ ሽ                 (9) 

Equation (8) is reviewed in the state-space. The state-space method is based on transforming the N 
second-order coupled equations into a set of 2N first-order coupled equations [30, 31]. Equations of 
dynamic system motion can be recast as:  

ሶݑܣ ሺݐሻ ൅ ሻݐሺݑܤ ൌ  ሻ                       (10-1)ݐሺܨ

where A,B ∈ R2N×2N are the system matrices, ܨሺݐሻ 	∈ R2N the force vector and u∈ R2N is the response vector 

in the state-space. The parameters of the Eq. (10-1) are obtained from Eq. (10-2).  

ܣ ൌ ൤
ܥ ܯ
ܯ ܱே

൨ , ܤ ൌ ൤
ܭ ܱே
ܱே െܯ൨ , ሻݐሺܨ ൌ ൜

െݔݎܯሷ௚
ܱேൈଵ

ൠ , ሻݐሺݑ ൌ ൜
ሻݐሺݕ
ሶݕ ሺݐሻൠ              (10-2) 

In the equation above, ON is the N × N null matrix. 

The advantage of this approach is that the system matrices in the state-space retain symmetry as in 

the configuration space. It should be noted that these solution procedures have exact equivalents in nature.  

New eigenvalues are obtained from Eq. (11). 

Φ௜ܤ ൌ െݏ௜ܣΦ௜, ݅ ൌ 1,2,3, …                   (11) 

In Eq. (11), si presents eigenvalues and Φi presents special vectors of complex numbers. Finally, modal 

damping ratio is calculated from Eq. (12).  

௜ߦ ൌ
ିோ௘ሺ௦೔ሻ

|௦೔|
, ݅ ൌ 1,2,3, …                               (12) 

The obtained modal damping ratios are depicted in Figs. 2 to 16 for the first, second and third modes 

according to the previous equations in the proposed method. Colored contours represent damping ratio of 
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The average error of dynamic analysis by considering constant damping ratio, 5%, in Tabas, Elcentro 
and Kobe earthquakes are respectively equal to 20.2%, 17.8% and 16.3%. The average error of dynamic 
analysis by using proposed modal damping ratios in Tabas, Elcentro and Kobe earthquakes are 
respectively equal to 11.8%, 10.3% and 6.4%.  
 

6. CONCLUSION 

Developing various instructions all around the world, scholars and researchers have devoted much 
attention to rehabilitation of buildings. There are many reasons for rehabilitation of existing buildings. 
Adding story(s) is one of the most common reasons. When a steel building is retrofitted by concrete 
jacketing for adding story(s), this system contains several structural systems. These systems are composite 
sections in initial stories, welded steel sections in middle stories and cold-formed steel sections in stories 
added. Due to using several structural systems, an existing rehabilitated building is changed to the hybrid 
structure. In this paper a method was proposed for determining equivalent modal damping ratio of 
rehabilitated steel buildings for adding story(s) by considering the effect of the retrofitting initial stories 
and some graphs were also extracted. Validation of the proposed method with exact method and also the 
former methods showed the high accuracy of the proposed method. Therefore, the proposed method in this 
study is closer to the real response of the structure. Also, it is suggested that the proposed graphs in this 
study can be used in determination of modal damping ratios for dynamic and non-linear analysis of 
rehabilitated steel buildings for roof extension.  
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