ON STRONGLY Δ^n -SUMMABLE SEQUENCE SPACES^{*}

A. ESI** AND H. POLAT

Adiyaman University, Science and Art Faculty in Adiyaman, 02040, Adiyaman, Turkey Emails: aesi23@hotmail.com and hpolat@inonu.edu.tr

Abstract – In the present paper we define strongly Δ^n -summable sequences which generalize A-summable sequences and prove such spaces to be complete paranormed spaces under certain conditions, some topological results have also been discussed.

Keywords - Difference sequence, paranorm

1. INTRODUCTION

Let l_{∞} , c and c_0 be the Banach spaces of bounded, convergent and null sequences $x = (x_k)$ respectively, normed by $||x|| = \sup_k |x_k|$.

The notion of difference sequence space was introduced by Kizmaz [1] as follows:

$$Z(\Delta) = \left\{ x = (x_k) : (\Delta x_k) \in Z \right\}$$

for $Z = l_{\infty}$, c, or c_0 where $\Delta x_k = x_k - x_{k+1}$ for all $k \in N$.

Later, the difference sequence spaces were generalized by Et and Çolak [2] as follows:

Let $n \in N$ be fixed, then

$$Z(\Delta^n) = \left\{ x = (x_k) : (\Delta^n x_k) \in Z \right\} \text{ for } Z = l_{\infty}, c, \text{ or } c_0,$$

where $\Delta^n x_k = \Delta^{n-1} x_k - \Delta^{n-1} x_{k+1}$, and so $\Delta^n x_k = \sum_{v=0}^n (-1)^v \binom{n}{v} x_{k+v}$. They showed that the above spaces are Banach spaces, normed by

$$\|(x_k)\|_{\Delta^n} = \sum_{i=1}^n |x_i| + \sup_k \|\Delta^n x_k\|.$$

Recently, difference sequence spaces have been discussed in Esi [3, 4], Tripathy [5] and many others.

Let $A = (a_{nk})$ be an infinite matrix of non-negative real numbers and $p = (p_k)$ be a sequence such that $0 < p_k \le \sup_k p_k = H < \infty$. We write $Ax = \{(A_nx)\}$ if $A_n(x) = \sum_k a_{nk} |x_k|^{p_k}$ converges for each n. Maddox [6] define

$$\begin{bmatrix} A, p \end{bmatrix}_0 = \left\{ x : A_n(x) \to 0 \quad as \quad n \to \infty \right\},$$
$$\begin{bmatrix} A, p \end{bmatrix}_0 = \left\{ x : A_n(x-L) \to 0 \quad as \quad n \to \infty, for \ some \ L \right\},$$

**Corresponding author

^{*}Received by the editor February 13, 2005 and in final revised form April 25, 2006

230 And

$$[A, p]_{\infty} = \{ x : \sup_{n} A_{n}(x) < \infty \}$$

The spaces $[A, p]_0$, [A, p] and $[A, p]_{\infty}$ are called the spaces of strongly summable to zero, strongly summable and strongly bounded sequences, respectively.

The purpose of this paper is to introduce the spaces of strongly Δ^n – summable sequences, which generalize well-known strongly A-summable sequences $[A, p]_0$, [A, p] and $[A, p]_{\infty}$, [6] and [7].

We now generalize these spaces by means of a given matrix $B = (b_{mk})$. We write

$$T_m(x) = \sum_k a(k,m) |\Delta^n x_k|^p$$

where $a(k,m) = \sum_{j=1}^{n} b_{mj}a_{jk}$ and $b_{mj}a_{jk}$ is of the same sign for each m, j and k. We now write

$$[B_{\Delta^n}, p]_0 = \left\{ x : T_m(x) \to 0 \quad as \quad m \to \infty \right\},$$
$$[B_{\Delta^n}, p] = \left\{ x : T_m(x - L) \to 0 \quad as \quad m \to \infty, \text{ for some } L \right\},$$

And

$$[B_{\Delta^n}, p]_0 = \{x : \sup_m T_m(x) < \infty\}$$

These are the spaces of strongly Δ^n – summable to zero, strongly Δ^n – summable and strongly Δ^n – bounded sequences, respectively, and these spaces of strongly Δ^n – summable sequences depend on the fixed chosen matrix B. In case B=I (unit matrix) and replacing x_k in the place of $\Delta^n x_k$ in the above definition we get the sequence spaces $[A, p]_0$, [A, p] and $[A, p]_{\infty}$, respectively [6].

2. MAIN RESULTS

First we establish a number of lemmas.

Lemma 1. If $p = (p_k) \in l_{\infty}$, then $[B_{\Delta^n}, p]_0$, $[B_{\Delta^n}, p]$ and $[B_{\Delta^n}, p]_{\infty}$ are linear spaces over the complex field C.

Proof: We consider only $[B_{\Delta^n}, p]$. If $\sup_k p_k = H < \infty$ and $K = \max(1, 2^{H-1})$, we have Maddox ([6], p.346)

$$|x_k + y_k|^{p_k} \le K(|x_k|^{p_k} + |y_k|^{p_k})$$
(1)

and for $\lambda \in C$

$$|\lambda|^{p_k} \le \max\left(1, |\lambda|^H\right) \tag{2}$$

Now the linearity follows from (1) and (2).

Lemma 2. $[B_{\Delta^n}, p] \subset [B_{\Delta^n}, p]_{\infty}$ if

$$\|A\| = \sup_{k} \sum_{k} a(k,m) < \infty$$
(3)

Proof: Suppose that $x \in [B_{\Delta^n}, p]$ and (3) holds. Now by inequality (1)

Iranian Journal of Science & Technology, Trans. A, Volume 30, Number A2

Summer 2006

On strongly Δ^n -summable sequence spaces

$$T_{m}(x) = T_{m}(x - L + L)$$

$$\leq KT_{m}(x - L) + K\sum_{k} a(k,m)|L|^{p_{k}}$$

$$\leq KT_{m}(x - L) + K(\sup|L|^{p_{k}})\sum_{k} a(k,m).$$
(4)

Therefore, $x \in [B_{\Delta^n}, p]_{\infty}$ and this completes the proof.

Lemma 3. Let $0 < \Theta = \inf p_k \le \sup_k p_k = H < \infty$, then $[B_{\Delta^n}, p]_{\infty}$ are linear topological spaces paranormed by G defined by

$$G(x) = \sum_{i=1}^{n} |x_i| + \sup_m |T_m(x)|^{1/M}$$

where $M = \max(1, \sup_k p_k = H)$. If (3) holds, then $[B_{\Delta^n}, p]$ has the same paranorm.

Proof: Clearly G(0)=0 and G(x)=G(-x). Since $M \ge 1$, then G(x+y) \le G(x)+G(y). Further, from (2) it follows that

$$G(\lambda x) \le \frac{|\lambda|^{\Theta/M} G(x) \text{ if } |\lambda| \le 1}{|\lambda| G(x) \text{ if } |\lambda| \ge 1}$$

where $\Theta = \inf p_k > 0$. Therefore, $x \to 0, \lambda \to 0 \Rightarrow \lambda x \to 0$ and $x \to 0, \lambda$ fixed $\Rightarrow \lambda x \to 0$ and also $\lambda \to 0 \Rightarrow \lambda x \to 0$, x is fixed. This completes the proof for $[B_{\Delta^n}, p]_0$. If $\inf p_k = \Theta > 0$ and $0 < |\lambda| < 1$, then for each $x \in [B_{\Delta^n}, p]_{\infty}$,

$$G^M(\lambda x) \leq |\lambda|^{\Theta} G(x).$$

Therefore, $[B_{\Delta^n}, p]_{\infty}$ has the paranorm G. If (3) holds it is clear from Lemma 2 that G(x) exists for each $x \in [B_{\Delta^n}, p]$. Hence the proof is complete.

Lemma 4. $[B_{\Delta^n}, p]_0$ and $[B_{\Delta^n}, p]_{\infty}$ are complete with respect to their paranorm topologies. $[B_{\Delta^n}, p]$ is complete if (3) holds and

$$\sum_{k} a(k,m) \to 0 \ as \ m \to \infty$$
⁽⁵⁾

Proof: (x^s) is a Cauchy sequence in $[B_{\Delta^n}, p]_{\infty}$, where $x^s = (x^s_k)_{k=1}^{\infty}$ for all $s \in N$. Then we have

$$G(x^{s} - x^{t}) = \sum_{i=1}^{n} |x_{i}^{s} - x_{i}^{t}| + \sup_{m} |T_{m}(x_{k}^{s} - x_{k}^{t})|^{1/M} \to 0 \text{ as } s, t \to \infty.$$

Hence we obtain $|x_i^s - x_i^t| \to 0$ as $s, t \to \infty$ for each $i \in N$. Therefore $(x_i^s)_{s=1}^{\infty}$ is a Cauchy sequence in C, the set of complex numbers. Since C is complete, it is convergent. Let $\lim_s x_i^s = x_i$ say, for each $i \in N$. Since (x^s) is a Cauchy sequence, for each $\varepsilon > 0$, there exists $N = N(\varepsilon)$ such that $G(x^s - x^t) < \varepsilon$ for all $s, t \ge N$.

Hence

$$\sum_{i=1}^{n} \left| x_{i}^{s} - x_{i}^{t} \right| \leq \varepsilon \quad \text{and} \ \sup_{m} \left| T_{m} \left(x_{k}^{s} - x_{k}^{t} \right) \right|^{1/M} \leq \varepsilon$$

Summer 2006

Iranian Journal of Science & Technology, Trans. A, Volume 30, Number A2

for all $i \in N$ and for all $s, t \ge N$. So we have

$$\lim_t \sum_{i=1}^n |x_i^s - x_i^t| = \sum_{i=1}^n |x_i^s - x_i| \le \varepsilon$$

and

$$\lim_{t} \left| T_m \left(x_k^s - x_k^t \right) \right|^{1/M} = \left| T_m \left(x_k^s - x_k^t \right) \right|^{1/M} \le \varepsilon \text{ for all } s \ge N.$$

This implies that $G(x^s - x) < 2\varepsilon$ for all $s \ge N$, that is $x^s \to x$ as $s \to \infty$, where $x = (x_i)$. Without loss of generality, let $s \ge N$, then $x^s \in [B_{\Delta^n}, p]_{\infty}$ and $x - x^s \in [B_{\Delta^n}, p]_{\infty}$ imply that $x = x^s + (x - x^s) \in [B_{\Delta^n}, p]_{\infty}$, since $[B_{\Delta^n}, p]_{\infty}$ is linear. Thus $[B_{\Delta^n}, p]_{\infty}$ is complete.

We now consider $[B_{\Delta^n}, p]$. If (3) holds and (x^s) be a Cauchy sequence in $[B_{\Delta^n}, p]$, then there exists $x = (x_k)$ such that $G(x^s - x) \to 0$ as $s \to \infty$. If (5) holds, then from inequality (4) it is clear that $[B_{\Delta^n}, p] = [B_{\Delta^n}, p]_0$. This completes the proof.

Now, combining the above lemmas, we obtain the following result:

Theorem 1. Let $0 < \Theta = \inf_k p_k \le \sup_k p_k = H < \infty$, then $[B_{\Delta^n}, p]_0$ and $[B_{\Delta^n}, p]_{\infty}$ are complete linear topological spaces paranormed by G. If (3) and (5) hold, then $[B_{\Delta^n}, p]$ has the same property. Further, if $p_k = p$ for all k, they are Banach spaces for $1 \le p < \infty$ and p-normed spaces for 0 .

3. SOME TOPOLOGICAL RESULTS

We now study locally boundedness and r-convexity for the spaces of strongly Δ^n – summable sequences. We start with some definitions.

For r > 0 a non-void subset Ψ of a linear space is said to be absolutely r-convex if $x, y \in \Psi$ and $|\lambda|^{\gamma} + |\mu|^{\gamma} \leq 1$ together imply that $\lambda x + \mu y \in \Psi$ [8]. A linear topological space X is said to be r-convex if every neighbourhood of zero contains an absolutely r-convex neighbourhood of zero. A subset B of X is said to be bounded if for each neighbourhood U of $0 \in X \exists$ an integer N>1 such that $B \subset NU$. X is called locally bounded if there is a bounded neighbourhood of zero.

Theorem 2. Let $0 < p_k \le 1$. Then $[B_{\Delta^n}, p]_0$ and $[B_{\Delta^n}, p]_\infty$ are locally bounded if $\inf p_k > 0$. If (3) holds, then $[B_{\Delta^n}, p]$ has the same property.

Proof: We consider only $[B_{\Delta^n}, p]_{\infty}$. Let $\inf p_k = \Theta > 0$. If $x \in [B_{\Delta^n}, p]_{\infty}$ then there exists a constant T>0 such that

$$\sum_{k} a(k,m) |\Delta^n x_k|^{p_k} \leq T \quad (\forall m).$$

For this T and given $\delta > 0$ choose an integer N>1 such that $N^{\Theta} \ge \frac{T}{\delta}$. Since $\frac{1}{N} < 1$ and $p_k \ge \Theta$, we have $\frac{1}{N^{p_k}} \le \frac{1}{N^{\Theta}}$ ($\forall k$). Then for all m, we get

$$\sum_{k} a(k,m) \left| \frac{\Delta^{n} x_{k}}{N} \right|^{p_{k}} \leq \frac{1}{N^{\Theta}} \sum_{k} a(k,m) \left| \Delta^{n} x_{k} \right|^{p_{k}} \leq \frac{T}{N^{\Theta}} \leq \delta.$$

Therefore by taking supremum over m, we have

$$\{x: G(x) \le T\} \subset N\{x: G(x) \le \delta\}$$
(6)

For every $\delta > 0$ there exists an integer N>1 for which (6) holds and so

Iranian Journal of Science & Technology, Trans. A, Volume 30, Number A2

$$\{x: G(x) \le T\}$$

is bounded. This completes the proof.

Theorem 3. Let $0 < p_k \le 1$. Then $[B_{\Delta^n}, p]_0$ and $[B_{\Delta^n}, p]_{\infty}$ are r-convex for all r, $0 < r < \liminf p_k$. Morever, if $p_k = p \le 1$ for all k, then they are p-convex. If (3) holds, $[B_{\Delta^n}, p]$ has the same property.

Proof: We shall prove only for $[B_{\Delta^n}, p]_{\infty}$. Let $x \in [B_{\Delta^n}, p]_{\infty}$ and $0 < r < \liminf p_k$. Then there exists k_0 such that $r < p_k$ for all $k > k_0$. Now define

$$f(x) = \sup_{m} \left[\sum_{k=1}^{k_{0}} a(k,m) |\Delta^{n} x_{k}|^{\gamma} + \sum_{k=k_{0}+1}^{\infty} a(k,m) |\Delta^{n} x_{k}|^{p_{k}} \right].$$

Since $r < p_k \le 1$ for all $k > k_0$, f is subadditive. Further, for $0 < |\lambda| \le 1$ and for all $k > k_0$, $|\lambda|^{p_k} \le |\lambda|^{\gamma}$. Therefore for such λ , we have

$$f(\lambda x) \le |\lambda|^{\gamma} f(x)$$

Now for $0 < \delta < 1$,

$$\Psi = \left\{ x : f(x) \le \delta \right\}$$

is an absolutely r-convex set, for if $|\lambda|^{\gamma} + |\mu|^{\gamma} \leq 1$ and $x, y \in \Psi$ then

$$f(\lambda x + \mu y) \le f(\lambda x) + f(\mu y)$$
$$\le |\lambda|^{\gamma} f(x) + |\mu|^{\gamma} f(y)$$
$$\le (|\lambda|^{\gamma} + |\mu|^{\gamma}) \delta \le \delta.$$

If $p_k = p$ for all k, then for $0 < \delta < 1$, $\{x : f(x) \le \delta\}$ is an absolutely p-convex set. This can be obtained by a similar analysis. This completes the proof.

Theorem 4. (i) Let $0 < \inf_k p_k = \Theta \le p_k \le 1$. Then $[B_{\Delta^n}, p] \subset [B_{\Delta^n}]$. (ii) Let $1 \le p_k \le \sup_k p_k < \infty$. Then $[B_{\Delta^n}] \subset [B_{\Delta}, p]$. Where

$$[B_{\Delta^n}] = \left\{ x : \sum_k a(k,m) |\Delta^n x_k - L| \to 0, \text{ as } m \to \infty, \text{ for some } L \right\}.$$

(iii) Suppose that (3) holds. Let $0 < p_k \le q_k$ and $\left(\frac{q_k}{p_k}\right)$ be bounded. Then $[B_{\Delta^n}, q] \subset [B_{\Delta^n}, p]$.

Proof: (i) Let $x \in [B_{\Delta^n}, p]$, since $0 < \inf_k p_k = \Theta \le p_k \le 1$, we get

$$\sum_{k} a(k,m) |\Delta^{n} x_{k} - L| \leq \sum_{k} a(k,m) |\Delta^{n} x_{k} - L|^{p_{k}}$$

for each m, and hence $x \in [B_{\Delta^n}]$.

(ii) Let $1 \le p_k \le \sup_k p_k < \infty$ and $x \in [B_{\Delta^n}]$. Then for each $0 < \varepsilon < 1$, there exists a positive integer N such that

$$\sum_{k} a(k,m) |\Delta^n x_k - L| \le \varepsilon < 1$$

Summer 2006

Iranian Journal of Science & Technology, Trans. A, Volume 30, Number A2

for all $m \ge N$. This implies that

$$\sum_{k} a(k,m) |\Delta^{n} x_{k} - L|^{p_{k}} \leq \sum_{k} a(k,m) |\Delta^{n} x_{k} - L|.$$

Thus we get $x \in [B_{\Delta^n}, p]$.

(iii) Define

$$u_{k,p} = \begin{cases} y_{k,p}, & y_{k,p} \ge 1 \\ 0, & y_{k,p} < 1 \end{cases}$$

and

$$v_{k.p} = egin{cases} y_{k,p}, & y_{k,p} \geq 1 \ 0 & , & y_{k,p} < 1 \end{cases}$$

where

$$y_{k,p} = |\Delta^n x_k - L|^{q_k}$$

Therefore $y_{k,p} = u_{k,p} + v_{k,p}$ and $y_{k,p}^{\lambda_k} = u_{k,p}^{\lambda_k} + v_{k,p}^{\lambda_k}$, where $\lambda_k = \frac{p_k}{q_k}$. Now it follows that $u_{k,p}^{\lambda_k} \leq u_{k,p} \leq y_{k,p}$ and $v_{k,p}^{\lambda_k} \leq v_{k,p}^{\lambda}$ for $0 < \lambda < \lambda_k \leq 1$. We have the inequality Maddox ([1], p.351)

$$\sum_{k} a(k,m) y_{k,p}^{\lambda_{k}} \leq \sum_{k} a(k,m) y_{k,p} + \left(\sum_{k} a(k,m) v_{k,p}\right)^{\lambda} \|A\|^{(1-\lambda)}.$$

Hence $x \in [B_{\Delta^n}, q]$ if (3) holds and $x \in [B_{\Delta^n}, p]$.

Acknowlegements-The authors thanks the referees for the suggestions that improved the presentation of the article.

REFERENCES

- 1. Kizmaz, H. (1981). On certain sequence spaces. Canad. Math. Bull., 24, 169-176.
- 2. Et, M. & Colak, R. (1995). On some generalized difference sequence spaces. Soochow J. Math. 21(4), 377-386.
- Esi, A. (2004). On a class of new type difference sequence space related to the space l^p. Far East Journal of Mathematical Sciences, 13(20), 167-172.
- 4. Esi, A. (2004). Some new type generalized difference sequence spaces defined by a modulus. *Analele Matematicii UVT, Seria Mathematica si Informatica*, 13, 24-37.
- Tripathy, B. C. (2003). On a class of difference sequence spaces related to the p-normed space l^p. Demonstratio Mathematica, 26(4), 865-872.
- 6. Maddox, I. J. (1967). Spaces of strongly summable sequences, Quart. J. Math. Oxford Ser., 18(2), 345-355.
- Bilgin, T. & Altin, Y. (1997). On certain sequence spaces and infinite matrices. Bull. Pure Appl. Scie. Sect E Math. Stat., 16(2), 217-224.
- Maddox, I. J. & Roles, J. W. (1969). Absolute convexity in certain topological linear spaces. *Proc. Camb. Philos.* Soc. (541-545).