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1. INTRODUCTION 
 

As is well-known, the investigation of qualitative properties of solutions, stability, instability, 
boundedness and asymptotic behavior of solutions and so on, of Hill equation 

 
                                                                            ( ) 0x a t x+ =                                                                    (1) 

 
and Lienard equation 
 
                                                                    ( , ) ( ) 0x f x x x g x+ + =                                                             (2) 
 
are very important problems in the theory and applications of differential equations. For example, it is 
significant in the investigation of stability and instability of the geodesic on Riemannian manifolds where 
Jacobi fields can be expressed in the form of the Hill equation system, [1]. This fact has been used by 
some physicists to study dynamics in Hamiltonian systems, [2]. Besides, equation (2) is frequently 
encountered as a mathematical model of most dynamics processes in electromechanical systems of 
physics and engineering, [3]. It should be noted that details of applications on equations (1) and (2) will 
not be given here. However, to the best of our knowledge, since the 1950s for the scalar cases, the 
problems of stability, boundedness and asymptotic behavior of solutions of these types of equations have 
been extensively studied by many authors; for the related works one can refer to Bellman [4], Bownds [5], 
Burton and Townsent [6], Burton and Grimmer [7, 8] Cantarelli [9], Hale [10], Heidel [11], Nápoles 
Valdés [12], Qian [13], Reissig et al [14], C.Tunc and E. Tunc [15], Yoshizawa [16], Zavarykin and 
Shakhtarin [17], Zhou and Jiang [18] and the references listed therein. In particular, some information 
about the works performed on the topic can be summarized as follows: In 1953, 1973 and 1969, 
respectively, Bellman [4], Bownds [5] and Hale [10] studied the asymptotic behavior of solutions of the 
well-known scalar Hill equation (1). In 1999, Yang [19], based on the theorem related to the qualitative 
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behaviors of solutions of equation (1) established in Bellman [4], studied boundedness of solutions of an 
n -dimensional Hill equation system  
 
                                                                        ( ) 0X A t X+ = ,                                                                   (3) 
 
where nX ∈ ℜ , ( ) ( ( ))ijA t a t=  is an n n× - symmetric matrix function of time t . Later, in 2005, the 
authors in [20] derived two results related to the stability and uniform boundedness of the solutions of 
equation  
 
                                                                      ( ) ( ) 0X A t F X+ = ,                                                                (4) 

 
and a result concerning the boundedness of solutions of equations of the form 

 
                                                               ( ) ( ) ( , , )X A t F X P t X X+ = .                                                          (5) 

 
This paper is concerned with a more general class of second-order nonlinear vector differential equations 
than those mentioned above by (1)-(5); 

 
                                                 ( ) ( , ) ( ) ( ) ( , , )X B t G X X X A t F X P t X X+ + = ,                                             (6) 

 
in which nX ∈ ℜ , t +∈ ℜ  and [ )0,+ℜ = ∞ ; ,A B  and G  are n n× -symmetric matrix functions; 

: n nF ℜ → ℜ , : n n nP +ℜ ×ℜ ×ℜ → ℜ  and (0) 0F = . It is assumed that the functions ,A B , G , F  and 
P  are continuous. Moreover, the existence and the uniqueness of the solutions of equation (6) will be 
assumed (see Picard-Lindelof theorem in Rao [3]). It is worth mentioning that equation (6) represents the 
vector version for a system of real second order nonlinear differential equations of the form 
 

1 2 1 2
1
[ ( ) ( , ,..., ; , ,..., )]

n

i ij jk n n k
k

x b t g x x x x x x x
=

+∑  1 2
1

( ) ( , ,..., )
n

ik k n
k
a t f x x x

=
+∑  

= 1 2 1 2( ; , ,..., ; , ,..., )i n np t x x x x x x , ( ,  1,  2,..., )i j n= . 
 

We consider throughout the paper, in place of equation (6), the equivalent differential system 
 

X Y= , 
 

                                                 ( ) ( , ) ( ) ( ) ( , , )Y B t G X Y Y A t F X P t X Y= − − + ,                                             (7) 
 

which was obtained as usual by setting X Y=  in equation (6). 
Let ( )FJ X denote the linear operator from the vector function ( )F X  to the matrix ( )FJ X , that is,  

 

( )FJ X = i

j

f
x

 ∂ 
 ∂ 

, ( ,  1,  2,  3,...,  )i j n= . 

 
Other than these, it is assumed that )(XJ F and the derivative )(tA

dt
d

= )(tA  are exist and continuous. In 
addition, it is also supposed that all matrices given in the pairs ( )A t , ( )FJ X ; ( )B t , ( , )G X Y  and ( )A t , 

( )FJ X  are symmetric and commute with each other. 
The motivation for the present work has been inspired basically by the papers of Yang [19], Tunç and 

Şevli [20] and the references listed in those papers. It is worth mentioning once again that the result of 
Yang [19] was established about an n -dimensional linear vector differential equation, (3). He only proved 
a result on the boundedness of solutions of equation (3) without an example on the topic. In spite of the 
case in [19], the class of equation considered here is more complicated than the equation considered there. 
Next, as shown above, the authors in [20] established some sufficient conditions on the above mentioned 
subjects with a scalar example. However, we will prove here three results on the same and different topics 



Some new stability and boundedness results on… 
 

Summer 2006                                                           Iranian Journal of Science & Technology, Trans. A, Volume 30, Number A2 

215

with a vectorial example. Namely, by the first result, Theorem 3, we establish sufficient conditions which 
guarantee the stability of the trivial solution 0X =  of equation (6), when ( , , ) 0P t X Y = . In the same 
case, ( , , ) 0P t X Y = , we construct sufficient conditions, by Theorem 4, which ensure uniform-
boundedness of the solutions of equation (6). Next, we prove a boundedness theorem, Theorem 5, for all 
solutions of equation (6) to be bounded. The boundedness result, which is stated by Theorem 5, is of the 
type in which the bounding constant depends on the solution in question as the same as in Yang [19]. It 
should also be pointed out that there is extensive literature on scalar differential equations of (1), (2) and 
vector differential equation (3), which are special cases of equation (6). However, we do not want to 
summarize details of the works on the related qualitative behaviors of equations (1), (2) and (3). Finally, in 
nearly all the above mentioned papers the Lyapunov's direct (or second) method [21] was used as a basic 
tool for proving the results established there. It is also worth mentioning that so far, perhaps the most 
effective method to determine the stability behavior of solutions of linear and non-linear differential 
equations is still the Lyapunov's direct (or second) method. The major advantage of this method is that 
stability in the large, instability and boundedness of solutions can be obtained without any prior 
knowledge of solutions. Today, this method is widely recognized as an excellent tool not only in the study 
of differential equations, but also in the theory of control systems, dynamical systems, systems with a time 
lag, power system analysis, time varying non-linear feedback systems, and so on. In the present paper, we 
also use the same method as a basic tool for verifying our main results. 
 
Notations and definitions  
 

The symbol ,X Y  corresponding to any pairX , Y  in nℜ  stands for the usual scalar product 

1

n

i i
i
x y

=
∑ , that is, ,X Y =

1

n

i i
i
x y

=
∑ , thus 2X = ,X X , and ( )i Aλ ,( 1,2,..., )i n= , are the eigenvalues of the 

n n× - matrix A , A  = ( ),ija ( ,  1,  2,...,  )i j n= . It is also well-known that a real symmetric matrix 
A =( ),ija ( ,  1,  2,...,  )i j n=  is said to be positive definite if and only if the quadratic form TX AX  is 
positive definite, where nX ∈ ℜ  and TX  denotes the transpose of X .  
 

2. PRELIMINARIES 
 
Throughout the paper, we require some preliminary results which we now state. Consider the non-
autonomous differential system 

 
                                                                             ( , )

dx
F t x

dt
= ,                                                                    (8) 

 
where x  is an n -vector, [ )0,t ∈ ∞ . Suppose that ( , )F t x  is continuous in ( , )t x  on I D× , where D  is a 
connected open set in nℜ . Now, we shall dispose of the following theorems and the lemmas which will be 
required in the proof of our main results. 
 
Theorem 1. Suppose that ( , 0) 0F t =  in (8) and there exists a Lyapunov function ( , )V V t x=  defined on 
0 t≤ < ∞ , x H< , 0H > , which satisfies the following conditions;  
(i) ( , 0) 0V t = , 
(ii) ( ) ( , )a x V t x≤ , where  (CIP  denotes the families of continuous increasing and positive definite 
functions). 
(iii) (8)( , ) 0V t x ≤ . 
Then the solution ( ) 0x t ≡  of system (8) is stable.  
 
Proof: See Yoshizawa [16].  
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Theorem 2. Suppose that there exists a Lyapunov function ( , )V V t x=  defined on 0 t≤ < ∞ , x R≥ , 
where R  may be large, which satisfies the following conditions;  
(i) ( ) ( )( , )a x V t x b x≤ ≤ , where ( )a r CI∈ , ( )a r → ∞  as r → ∞  and ( )b r CI∈ ,  
(CI  denotes families of continuous increasing functions). 
(ii) (8)( , ) 0V t x ≤ . 
Then the solutions of system (8) are uniform-bounded.  
 
Proof: See Yoshizawa [16].  
 
Lemma 1. Let A  be a real symmetric n n× -matrix and  

( ) 0ia A aλ′ ≥ ≥ > ( 1,  2,...,  )i n= , where a ′  and a  are constants. 
Then 
 

, , ,a X X AX X a X X′ ≥ ≥  
 
and 
 

2 2, , ,a X X AX AX a X X′ ≥ ≥ . 
 

Proof: See Mirsky [22].  
 

Lemma 2. Let Q , D  be any two real n n×  commuting symmetric matrices ( , , )t X YΓ = Γ . Then  

(i) The eigenvalues ( )i QDλ  and ( 1,  2,...,  )i n=  of the product matrix QD  are real and satisfy  

1 , 1 ,
max ( ) ( ) ( ) min ( ) ( )j k i j kj k n j k n

Q D QD Q Dλ λ λ λ λ
≤ ≤ ≤ ≤

≥ ≥ . 

(ii) The eigenvalues ( )i Q Dλ +  and ( 1,  2,...,  )i n=  of the sum of matrices Q  and D  are real and satisfy  

{ }1 1
max ( ) max ( )j kj n k n

Q Dλ λ
≤ ≤ ≤ ≤

+ ≥ ( )i Q Dλ + ≥ { }1 1
min ( ) min ( )j kj n k n

Q Dλ λ
≤ ≤ ≤ ≤

+ , 

where ( )j Qλ  and ( )k Dλ  are, respectively, the eigenvalues of Q  and D . 
 
Proof: See Mirsky [22].  
 

3. MAIN RESULTS 
 
In the case 0P ≡  the following results are established.  
 
Theorem 3. In addition to the fundamental assumptions imposed on the functions ,A B , G  and F  that 
appeared in (7) we suppose that there are positive constants 0a , 0b , a  and b  such that 
(i) The matrices A , A  and B  are symmetric, and 0( ( ))i A t aλ ≥ , ( ( )) 0i A tλ ≤  and 0( ( ))i B t bλ ≥ for all 
[ )0,t ∈ ∞ , ( 1,2,..., )i n= . 

(ii) ( , )G X Y  is symmetric and ( ( , ))i G X Y bλ ≥  for all X , nY ∈ ℜ , ( 1,2,..., )i n= .                                                                  
(iii) ( )FJ X  is symmetric and ( ( ))i FJ X aλ ≥  for all nX ∈ ℜ , ( 1,2,..., )i n= .                                                                           
Then the trivial solution 0X =  of equation (6) is stable. 
Now, throughout our three main results, we will use, as a basic tool, a continuously differentiable 
Lyapunov function ),,( YXtΓ=Γ , which is defined by: 
 

                                                      Γ =: ∫ 〉〈
1

0

),()( σσ dXXFtA + YY ,
2
1

.                                                     (9) 
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Remark 1. It should be noted that Theorem 3 improves the results of Yang [19] and Tunç and Şevli [20], 
and includes that in [20, Theorem 3]. 
 
Proof: Because of (0) 0F = , it is clear that 0)0,0,( =Γ t . Now, since 
 

(0) 0F = , ( ) ( )FF X J X Xσ σ
σ
∂ =
∂

, 
 

then  
 

                                                                    
1

0

( ) ( )FF X J X Xdσ σ= ∫ .                                                          (10) 

 
Hence, assumptions (i) and (iii) of Theorem 3 and (10) show that 
 

1

0

( ) ( ),A t F X X dσ σ〈 〉∫ =
1 1

1 1 2 2 1
0 0

( ) ( ) ,FA t J X X X d dσ σ σ σ σ〈 〉∫ ∫  

 

≥
1 1

1 0 2 1
0 0

,a aX X d dσ σ σ〈 〉∫ ∫ = 0 ,
2
a a X X = 0 2

2
a a X . 

 
In view of (9) and the above inequality, it follows that  
 
                                                                  ( )2 2

0
1
2
a a X YΓ ≥ + .                                                         (11) 

 
Thus, it is clear that the function Γ  defined by (9) is positive definite. Along any solution ( , )X Y  of 
system (7) it follows from (9) and (7) that 
 

( , , )
d
t X Y

dt
Γ = Γ = - ( ) ( ),A t F X Y - ( ) ( , ) ,B t G X Y Y Y  

                                                                 +
1

0

( ) ( ),d A t F X X d
dt

σ σ∫ .                                                          (12) 

 
Clearly, 
 

1 1 1

0 0 0

( ) ( ), ( ) ( ) , ( ) ( ),F
d A t F X X d A t J X Y X d A t F X Y d
dt

σ σ σ σ σ σ σ= +∫ ∫ ∫  

+
1

0

( ) ( ),A t F X X dσ σ∫  

= 
1 1

0 0

( ) ( ), ( ) ( ),A t F X Y d A t F X Y dσ σ σ σ σ
σ
∂ +
∂∫ ∫  

+
1

0

( ) ( ),A t F X X dσ σ∫  

= 1
0( ) ( ),A t F X Yσ σ +

1

0

( ) ( ),A t F X X dσ σ∫  

                                                   =
1

0

( ) ( ), ( ) ( ),A t F X Y A t F X X dσ σ+ ∫                                                   (13) 
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Substituting estimate (13) into (12) we obtain 
 

                                                Γ = - ( ) ( , ) ,B t G X Y Y Y +
1

0

( ) ( ),A t F X X dσ σ∫                                          (14) 

 
In view of assumptions (i) and (ii) of Theorem 3, Lemma 1 and (14), it is clear that  

 
Γ ≤ - 0 ,b bY Y = - 2

0 0b b Y ≤  . 
 

Hence, by a simple extension of Theorem 1 just stated on equation (8), it can be easily followed that the 
origin 0X =  is stable. 
This completes the proof of Theorem 3. 
 
Example: Le us take in (7), for 2n = , that ( ) ( )A t B t I= = , where I  is n n×  identity matrix, 
 

G = 
2 2 2

2 2 2

1                     

             1

x y x

x x y

 + + 
 + +  

 

 
and 
 

3

3

x x
F

y y

 + =  +  
. 

 
Clearly, G  is a symmetric matrix. Then, by an easy calculation, we obtain eigenvalues of the matrices G  
and ( )FJ X , )(XJ F  is obtained from the function F , as follows: 
 

2
1( ) 1G yλ = + , 2 2

2( ) 1 2G x yλ = + +  
 

and 
 

( )FJ X = 
2

2

1 3       0

    0         1 3

x

y

 + 
 +  

. 

 
Next, it follows that 2

1( ) 1 3FJ xλ = +  and 2
2( ) 1 3FJ yλ = + , and ( ) 1i G bλ ≥ =  and ( ) 1i FJ aλ ≥ = , 

( 1, 2)i = . Thus, all the conditions of Theorem 3 are satisfied. It should be noted that, when G  and F  
reduce to the linear case, our conclusions are also valid. 
 
Theorem 4. In addition to the fundamental assumptions imposed on the functions ,A B ,G  and F  that 
appeared in (7), we assume that there exist some positive constants 0a , 0a ′ , 0b , a  and b  and η  such that 
the following conditions are fulfilled: 
(i) The matrices A , B  and A  are symmetric, and 0 0( ( ))ia A t aλ′ ≥ ≥ , ( ( )) 0i A tλ ≤  and 0( ( ))i B t bλ ≥  for 
all [ )0,t ∈ ∞ , ( 1,2,..., )i n= . 
(ii) ( , )G X Y  is symmetric and ( ( , ))i G X Y bλ ≥  for all X , nY ∈ ℜ , ( 1,2,..., )i n= .                                                                  
(iii) ( )FJ X  is symmetric and ( ( )) 0i FJ X aη λ≥ − ≥  for all nX ∈ ℜ , ( 1,2,..., )i n= .  
Then all solutions of system (7) are uniformly bounded.                                                                                                           
 
Remark 2. It should be noted that Theorem 4 improves and includes the results of Yang [19] and Tunç 
and Şevli [20, Theorem 4]. 
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Proof: Clearly, the assumptions of Theorem 4 yield that 
1

0

( ) ( ),A t F X X dσ σ〈 〉∫ =
1 1

1 1 2 2 1
0 0

( ) ( ) ,FA t J X X X d dσ σ σ σ σ〈 〉∫ ∫  

                                          ≤  
1 1

1 0 2 1
0 0

( ) ,a a X X d dσ η σ σ′〈 + 〉∫ ∫ = 0 2( )
2

a a
X

η′ +    
.                                      (15) 

 
In view of (9), (11) and (15), it follows that  
 

( )2 2 2 2
1 0 2( , , ) ( )K X Y V t X Y K X Y+ ≤ ≤ + , 

 

where { }0
1

1
min ,

2 2
a a

K =  and 2K = max 0( )1
,

2 2
a a η′ +      

. 

The remainder of the proof proceeds just as in the proof of Theorem 3, and therefore we omit the details of 

proof. 
Next, in the case 0P ≠ , the following result is established. 
 
Theorem 5. Assume that all the assumptions of Theorem 3 hold and also that the function P  satisfies 
 

( )( , , ) ( )P t X Y A Y tθ≤ + , 
 
where ( )tθ  is a non-negative and continuous function of t and satisfies 

0

( )
t

s ds Bθ ≤ < ∞∫  for all 0t ≥ , 
A  and B  are positive constants. Then there exists a positive constant K  such that any solution 
( ( ), ( ))X t Y t  of system (7) determined by  

 
0(0)X X= , 0(0)Y Y=  

 
satisfies for all 0t ≥ , 
 

( )X t K≤ , ( )Y t K≤ . 
 
Remark 3. It should be noted that Theorem 5 improves and includes the result of Yang [19]. Namely, our 
assumptions are less restrictive than those established by Yang [19] because of (2) and the assumptions 

2 2( )TK X X A t X K X≤ ≤ , where K  and K are positive constants, and ( ) 0TX A t X ≥ , which were 
established in [19]. Theorem 5 improves and includes the result established in [20, Theorem 5]. 

 
Proof: Consider the function Γ  defined by (9) again. Then, under the assumptions of Theorem 5 it can be 
easily seen that  

 
                                                                     Γ ≥ 2 2

1( )K X Y+ ,                                                            (16) 
 

where { }0
1

1min ,
2 2
a aK = . Similarly, since 0P ≠ , then along any solution ( ( ), ( ))X t Y t of system (7), the 

conclusion concerning the total derivative of the function Γ  with respect to t  can be revised as follows: 
 

Γ ≤  - 2
0b b Y + , ( , ,Y P t X Y  

 
≤  ( , , )Y P t X Y  

 
                                                                    ≤ ( ) ( )Y A Y tθ+ ,                                                           (17) 

 
because of 0 0b > , 0b >  and the assumption ( )( , , ) ( )P t X Y A Y tθ≤ + of Theorem 5. 
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In view of the inequality 
 

21Y Y≤ +  
 

it follows from (17) that  
 

Γ ≤ 2( 1) ( )A A Y tθ + +   
 

Hence 
 

                                                                    Γ ≤ 2
3 1 ( )K Y tθ +  ,                                                           (18) 

 
where 3 1K A= + . 
The assumptions of Theorem 5 and (16) show that 

 
                                                                    Γ ≤ 3 4( ) ( )K t K tθ θ+ Γ ,                                                           (19) 

 
where 4 3 1/ .K K K=  Integration of both sides of (18) from 0  to t  ( 0)t ≥  leads to the inequality 

 

3 4
0 0

( ) (0) ( ) ( ) ( )
t t

t K s ds K s s dsθ θΓ − Γ ≤ + Γ∫ ∫ . 

 
On putting 5 3(0)K K B= Γ + , we obtain that 

 

5 4
0

( ) ( ) ( )
t

t K K s s dsθΓ ≤ + Γ∫ . 

 
Gronwall-Reid-Bellman inequality, (see [3]), yields 

 

5 4
0

( ) exp ( )
t

t K K s dsθ
  Γ ≤    

∫ . 

 
The proof of Theorem 5 is now complete. 
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