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Abstract– In this paper, optimum  parameters  of  Tuned  Mass  Dampers  (TMD)  are  determined  
to  minimize  the dynamic  response  of  multi-story  building  systems  under seismic excitations. 
Charged System Search (CSS), as an efficient optimization algorithm, is revised and applied for 
tuning passive mass dampers. A MATLAB program is developed for numerical optimization and 
time domain simulation. Optimization criteria are the peak values of the first story displacement 
with and without TMD, and the transfer function from input ground acceleration to the first story 
acceleration response. An alternative formulation is also presented for solving state space 
equations. Compared to other population-based meta-heuristics, the charged system search has a 
number of advantages distinguishing this algorithm from the others. However, for improving 
exploitation (the fine search around a local optimum), it is hybridized with HS that utilizes charged 
memory (CM) to speed up its convergence. To ensure good performance of this approach, some 
numerical considerations are conducted to verify the effectiveness and feasibility of the presented 
approach.           
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1. INTRODUCTION 
 

In the history of structural engineering, a number of methods have been developed and adopted for 
vibration control in order to reduce the structural response due to lateral excitations. The methodologies 
utilized to improve the structural performance and to minimize the structural damage, consist of vibration 
isolation, control of excitation forces, vibration absorber, etc.  In the case of vibration absorbers,  Tuned 
Mass Damper  (TMD), Active Mass Damper  (AMD), and Hybrid Mass Damper  (HBD)  have been  
utilized  to  control  the behavior of  tall  structure subjected  to  excitations. Among these systems, TMD 
is the most popular one due to its simple principle and several successful applications in real life practice. 
TMD is a passive control system consisting of mechanical components such as mass, springs and viscous 
dampers  which  assists  to  increase  the  damping  of  the  primary  structure  and  hence  aids  in  
reducing  vibration  and  keeping  it  within  the  desirable limits.    

The concept of vibration control, using a mass damper, dates back to the year 1909  when Frahm [1] 
proposed  the basic form of TMD which did not possess any damping property by itself. After  that  
Ormondroyd  and  Den  Hartog  [2]  introduced  internal  damping  in  TMDs. Further investigations were 
carried out on TMDs effectiveness in reducing the response of structures subjected to harmonic [3] and 
wind [4, 5] excitations. 

The design of TMDs involves selection of three parameters: mass, damping and stiffness. Optimum 
values of these parameters were considered by Den Hartog [3] for the first time, where the harmonic 

                                                            
Received by the editors January 15, 2014; Accepted June 28, 2014. 
Corresponding author 
 
 



A. Kaveh et al. 
 

IJST, Transactions of Civil Engineering, Volume 39, Number C1                                                                            February 2015 

22

loading was applied to an undamped single degree of freedom system (SDOF) system. Later, damping in 
the main system was included through several researches by Falcon et al. [6], Warburton [7]. 

Further investigations have been carried out by Sadek et al. [8] considering practical considerations. 
Hadi and Arfiadi [9] used the genetic algorithm to optimize the TMD parameters. In this work the H2 
norm of the transfer function from the external disturbance to a regulated output was taken as a 
performance measure of the optimization criterion. Lee et al. [10] proposed a numerical method to 
estimate optimum parameters of TMD. They used power spectral density function of external disturbance, 
in return external and optimization process was performed based on minimizing the performance index of 
structural responses defined in the frequency domain. In another study, harmony search algorithm was 
empoyed as an optimization technique [11]. In their study, optimum TMD parameters were estimated 
assuming harmonic loading subjected to the structure. The result of their work showed very good 
reduction in structural responses, however, these results are yet under discussion [12, 13]. 

Due to the complexity of parameters involved in structures, it is necessary to use a practical approach 
such as numerical optimization method. In the last decade, many new natural evolutionary algorithms 
have been developed for optimization of engineering problems, such as genetic algorithms (GAs) [14], 
particle swarm optimizer (PSO) [15], ant colony optimization (ACO) [16] and harmony search (HS) [17], 
charged system search (CSS) [18–19]. These methods have attracted a great deal of attention, because of 
their high potential for modeling engineering problems in environments which have been resistant to 
solution by classic techniques. They do not require gradient information and possess better global search 
abilities than the conventional optimization algorithms. Having in common processes of natural evolution, 
these algorithms share many similarities: each maintains a population of solutions which are evolved 
through random alterations and selection. The differences between these procedures lie in the 
representation technique utilized to encode the candidates, the type of alterations used to create new 
solutions, and the mechanism employed for selecting new patterns. 

Meta-heuristic algorithms have been widely used for the optimization of TMD parameters. The meta-
heuristic methods used for the optimization are genetic algorithm [20–21], bionic algorithm [22], particle 
swarm optimization [23], harmony search method [11, 24-26], ant colony optimization [27] and 
evolutionary operation [28]. 

 
2. EQUATIONS OF MOTION 

 
Consider an N-story shear building structure with mass damper installed at the top floor as shown in Fig. 
1. The equation of motion of the structural system can be written as: 

( ) ( ) ( ) ( )t t t t
 

M X + C X + K X = F                                                       (1) 

where   M, C, K  are mass, damping, and stiffness matrices with the formulations below: 

 1 2 1N Ndiag m m m mM                                                 (2) 
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 1 2

T

N dx x x xX                                                             (5) 

 1 2

T

N df f f fF                                                             (6) 

Where im  is the mass of the thi floor ( 1,  2,  ,  );i N   dm is the mass of the damper; ic is the 
damping of the thi floor ( 1,  2,  ,  );i N   dc  is the damping of the damper; ik is the stiffness of the 
thi floor ( 1,  2,  ,  );i N  dk is the stiffness of the damper; ix is the displacement of the thi floor  

relative to ground ( 1,  2,  ,  )i N  ; dx is the displacement of damper relative to ground; if  is the 
external force applied at thi floor ( 1,  2,  ,  )i N  ; df is the external force applied at the absorber. A 
schematic model is shown in Fig. 1. 

The equation of motion can be converted to state-space equation as 

( )= ( )+ ( )t t t
.

Z AZ ΒF                                                                     (7)              

( ) ( ) ( )t t t Y RZ QF                                                                   (8) 
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I is the identity matrix, and R and Q are the system matrices where based on the type of the regulated 
output Y . Note that the regulated output in Eq. (8) can be taken as displacement, velocity, or acceleration. 
In this paper, we use displacement and acceleration as regulated outputs; in the case when the regulated 
output is taken as the relative displacement of floors and TMD with respect to the ground, the matrices R 
and Q can be written as: 

     ( 1) ( 1) ( 1) ( 1) ( 1) ( 1)N N N N N N        
 
 R = I 0 ,   Q = 0                                   (12) 
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Fig. 1. Schematic model of a multi-story shear building structure with single TMD 

 
Alternatively if the regulated output is taken as the absolute acceleration of the floors and TMD, the 
matrices  R and Q  can be written as: 

,      
-1 -1 -1R = -M K -M C Q = [M ]                                               (13) 

It should be noted that if the external loading is the base acceleration (earthquake loading), vector F can 
be defined as: 

 
••

g
( 1) 1

( ) 1 (t)
N

t x
 

F = M                                                       (14) 

a) Solution of the state space differential equation 

In this paper, matrix exponential approach [29] is utilized to solve the aforementioned state space 
differential equation. Let us return to Eq. (7) and begin by guessing a solution of the form (t) ( )te t AZ ν , 
where ( )tν is a time-varying vector. Differentiating the solution results in: 

( ) ( )
( )t td t d t

e t e
dt dt

 A AZ ν
A ν                                                   (15) 

In the other hand, replacing the solution in Eq. (7) we get: 

( )
( ) ( )td t

e t t
dt

 AZ
A ν BF                                                      (16) 

Comparing Eqs. (15) and (16) results in: 



Optimum parameters of tuned mass dampers for… 
 

February 2015                                                                            IJST, Transactions of Civil Engineering, Volume 39, Number C1      

25

( )
( )t d t

e t
dt

A ν
BF                                                            (17) 

Or 

( )
( )td t

e t
dt

 Aν
BF                                                               (18) 

Solving this by integration, we obtain: 

0
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t t e d     Aν ν BF                                                       (19) 
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Therefore analytical solution of Eq. (7) can be obtained by matrix exponential approach as: 

0
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To derive the discrete form of the above solution, over the thi interval letting ( 1)t i T   and 

0t iT ,	we have: 
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Where	T 	is the sampling period. Now introducing a new variable   as iT   , we obtain: 

;  ( 1)d d i T T                                                             (23) 

On the other hand, if sampling period is sufficiently small, then ( )tF  can be written as a piecewise 

constant function over the thi  time interval: 

( ) ,  ( 1)it iT t i T   F F                                                      (24) 

Now we have: 
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And then: 
1

1 0

TT T
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A A AZ Z A BF                                             (26) 

Therefore, the final result is obtained as: 

 1
1

T T
i i ie e
   A AZ Z A I BF                                                 (27) 

The presented formulation finds only the structural response to external excitation at each step, and it has 
no effect on the original optimization problem. 
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3.  THE STANDARD CSS 
 
Recently an efficient optimization algorithm, known as the charged system search, is developed by Kaveh 
and Talatahari [18]. This algorithm is based on the laws from electrostatics and Newtonian mechanics. 

The Coulomb and Gauss laws provide the magnitude of the electric field at a point inside and outside 
a charged insulating solid sphere, respectively, as follows [18]: 

2

3

:

:

i
ij e ij

ij

i
ij e ij ij

q
k a

q
k a

a

  
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E r
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E r r

 

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                                                      (28) 

where ek  is a constant known as the Coulomb constant; ijr


 is the separation of the centre of sphere and 
the selected point; iq  is the magnitude of the charge; and “ a ” is the radius of the charged sphere. Using 
the principle of superposition, the resulting electric force due to N charged spheres is equal to [18]: 
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 Also, according to the Newtonian mechanics, we have: 
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where oldr


 and newr


 are the initial and final positions of the particle, respectively; v


is the velocity of the 
particle; and a


is the acceleration of the particle. Combining the above equations and using the Newton's 

second law, the displacement of any object as a function of time is obtained as:  

21
. .

2new old oldt t
m
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F

r v r


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                                                    (31) 

Inspired by the above electrostatic and Newtonian mechanics laws, the pseudo-code of the CSS 
algorithm is presented as follows [18]: 

Level 1: Initialization  

Step 1. Initialization. Initialize the parameters of the CSS algorithm. Create an array of charged particles 
(CPs) with random positions. The initial velocities of the CPs are taken as zero. Each CP has a charge of 
magnitude ( iq ) defined by considering the quality of its solution as: 

( )
, 1, 2,...,worst

i
best worst

fit i fit
q i N

fit fit


 


                                            (32) 

where bestfit  and worstfit  are the best and the worst fitness of all the particles; ( )fit i represents the fitness 
of agent i. The separation distance ijr  between two charged particles is defined as: 
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where iX


 and jX


 are the positions of the ith and jth CPs, respectively; bestX


 is the position of the best 
current CP; and   is a small positive to avoid singularities.  
 
Step 2. CP ranking. Evaluate the values of the fitness function for the CPs, compare them with each other 
and sort them in increasing order.  
 
Step 3. CM creation. Store the number of the first CPs equal to the size of the charged memory (CMS) and 
their related values of the fitness functions in the charged memory (CM). 
 
Level 2: Search  
Step 1. Attracting force determination. Determine the probability of moving each CP toward the others 
considering the following probability function: 

( )
1 ( ) ( )

( ) ( )

0 otherwise
ij

fit i fitbest
rand fit j fit i

fit j fit ip
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
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                               (34) 

and calculate the attracting force vector for each CP as follows: 
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where jF


 is the resultant force affecting the jth CP. 
 
Step 2. Solution construction. Move each CP to the new position and find its velocity  
using the following equations: 

1 2
, 1 2 , ,. . . . . .j
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                                                             (37) 

where 1jrand  and 2jrand  are two random numbers uniformly distributed in the range (1,0); jm  is the 
mass of the CPs, which is equal to jq  in this paper. The mass concept may be useful for developing a 
multi-objective CSS. t  is the time step, and is set to 1. ak  is the acceleration coefficient; vk  is the 
velocity coefficient to control the influence of the previous velocity. In this paper vk  and ka are taken as: 

1 max 2 max(1- / ), (1 / )v ak c iter iter k c iter iter                                        (38) 

where 1c  and 2c  are two constants to control the exploitation and exploration of the algorithm; iter is the 
iteration number and maxiter  is the maximum number of iterations. 
 
Step 3. CP position correction. If each CP exits from the allowable search space, correct its position using 
the HS-based handling as described by Kaveh and Talatahari [18].  
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Step 4. CP ranking. Evaluate and compare the values of the fitness function for the new CPs; and sort 
them in an increasing order.  
 
Step 5. CM updating. If some new CP vectors are better than the worst ones in the CM, in terms of their 
objective function values, include the better vectors in the CM and exclude the worst ones from the CM. 
 
Level 3: Controlling the terminating criterion  
Repeat the search level steps until a terminating criterion is satisfied. The CSS algorithm is illustrated in 
Fig. 2. 

For further details and other applications of the CSS, the reader can refer to [30-33]. 
 

4.  CHARGED SYSTEM SEARCH FOR OPTIMIZING  
OF TMDS PARAMETERS 

 
In the present work, for analyzing the dynamic response, a general code is written in MATLAB with 

formulations of the previous sections. Here, we decide to identify all parameters of the TMD consisting of 

mass, damping and stiffness. For this purpose, according to the previous works, the mass of TMD is taken 

as a constant, and other parameters are optimized. Optimization process that minimizes the ratio of the 

maximum story displacements with respect to the ground, are calculated by the developed program due to 

the El Centro (1940) Earthquake in controlled cases. By addition of the acceleration transfer function (TF) 

to the objective function, the transmitted force to floors can be controlled due to earthquake ground 

motion. In general, transfer function is defined as a criterion to evaluate how much of input component is 

transmitted to the system as a regulated output component. This parameter can be obtained by taking 

Laplace transform (with zero initial conditions) from state space system defined by Eq. (7) and Eq. (8), 

and replacing the Laplace transform of Z(t) in Eq. (8) from Eq. (7). Then we have: 

1( ) ( ( ) ) ( )s s s  Y R I A B Q F                                              (39) 

Transfer function is defined as ratio of the Laplace Transform of regulated output to Laplace transform of 
the input function (external forces), i.e. 

1( )
. ( )

( )

s
T F s

s
   

Y
R I A B Q

F
                                             (40) 

where T.F stands for transfer function and other parameters are defined previously. In the case of 

acceleration transfer function, the matrices R and Q can be defined as Eq. (13). It should be noted, as seen 

in Eq. (40), the transfer function is independent of the type of output component and it is considered as an 

inherent property of system. 

In this work, we take the first story as the target, so the objective function can be expressed as [11]: 

1 1

1 1

( ( )) ( ( ))
 

( ( )) ( ( ))

Max controlled x Max controlled TF
Objective funtion

Max uncontrolled x Max uncontrolled TF
                        (41) 

To apply the CSS to this problem, at each step, the objective function must be calculated for each CP. 
These are then sorted in the order of their fitnesses. After displacing CPs with Eqs. (28-36), this process is 
iterated until stopping criterion is satisfied. In this work, the selected parameters of the CSS algorithm are 
as follows: 

1 20.8, 0.8 and 0.000001c c     
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Initialize the definition of problem, and initial positions and velocities of CPs. 

Analyze the CPs’ vectors, and sort in the increasing order. 

Store a number of the first CPs in CM. 

Determine the probability, the kind of movement 
and the resultant force vectors. 

Construct new solutions and velocities 

If a CP swerves the side limits, correct its position using HS-based algorithm 

Analyze the CPs’ vectors and rank ac-
cording to their quality. 

Are the new CPs 
better than the 

stored ones in CM? 

Include the better vectors in the CM and ex-
clude the worst ones from the CM. 

Termination 
criterion 

Stop 

No 

Yes 

No 

Yes 

 

There exist several benchmark examples in literature for comparative studies of the optimization of tuned 
mass dampers. Here, we have selected two examples and applied the CSS algorithm for optimization of 
tuned mass dampers, for decreasing the response of the structure. For both examples, the parameters of the 
CSS algorithm, 1c , 2c ,  , the number of CPs and the number of HMS are taken as 0.8, 0.8, 0.000001, 20 
and 5, respectively. 

a) Example 1 

A ten-story shear building with mass damper attached on the top floor is taken from Hadi and Arfiadi 
[9]. The properties of building are shown in Table 1. 
 

Fig. 2.  Flowchart of the charged system search 

 

5.  NUMERICAL EXAMPLES 
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Table 1. Properties of the building for Example 1 

Story Mass (ton) Stiffness (kN/m) 
Damping 
(kN.s/m) 

1 360 650×103 6200 
2 360 650×103 6200 
3 360 650×103 6200 
4 360 650×103 6200 
5 360 650×103 6200
6 360 650×103 6200 
7 360 650×103 6200 
8 360 650×103 6200 
9 360 650×103 6200 

10 360 650×103 6200 
   

In recent works, the mass of TMD were taken constant ( dm =108 ton ). In this work, first, we take 
these the parameters the same as them. Thus the parameters must be selected as design variables in the 
CSS algorithm which are damping ( dc ) and stiffness ( dk ) of mass damper. The lower bound and upper 
bound values of the stiffness are 0 and 5000 kN/m, while the lower bound and upper bound of damping 
are 0 and 1000 kN-s/m, respectively. After performing the CSS, optimum values for damping and stiffness 
of TMD are found. Optimum TMD parameters estimated in this paper and the previous works are shown 
in Table 2. Also, the convergence history of the CSS can be seen in Fig. 3. As it can be observed, the 
algorithm has converged to optimum solution before 40 iterations (i.e. at 33th iteration). 
 

 
Fig. 3. Variation of the objective function versus the number of iterations for Example 1 

 
Table 2. Stiffness and damping of the TMD for Example 1 ( d =108 tonm ) 

TMD parameters Optimum values

 (GA)[9] (Lee et al.) [10] present work(CSS) 

( / )dc kN s m  151.5 271.79 88.697 

( / )dk kN m  3750 4126.93 4207.735 

 
The maximum displacements of each story are presented in Table 3. This table also contains results of 

the previous works for comparison. Using the present approach, the percentage of reductions in maximum 
story displacements are between 34.82%–40.23% with mean value of 37.57%. The maximum 
displacement of first story is reduced to 0.0185 m from 0.031 m (40.23% reduction), and the maximum 
displacement of the top story is reduced to 0.1225 m from 0.188 m (34.82% reduction). It should be noted 
that, although the percentage of reduction in some stories is less than those of the other works, the mean 
value of this parameter is more than that of the other ones. Therefore, one can conclude that the 
performance of TMD optimized with the present approach, in absorbing seismic energy and reducing total 
story displacement, is better than those of the previous works. Also, to represent results more 
comprehensively, the maximum displacements of uncontrolled and controlled structure for all stories are 
depicted in Fig. 4. 
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Table 3. Maximum absolute displacement with respect to the ground for El Centro (1940) NS Earthquake 

 Maximum absolute displacement with respect to the ground (m)  Percentage  of reduction 

Story 
Without 

TMD 
With TMD With TMD With TMD  

  (GA)[9] 
(Lee et al.) 

[10] 
Present 

work(CSS)  (GA) 
(Lee et 

al.) 
(CSS) 

1 0.031 0.019 0.020 0.0185  38.71 35.48 40.32 
2 0.060 0.037 0.039 0.0362  38.33 35.00 39.67 
3 0.087 0.058 0.057 0.0525  33.33 34.48 39.65 
4 0.112 0.068 0.073 0.0682  39.29 34.82 39.11 
5 0.133 0.082 0.087 0.0825  38.35 34.59 37.97 
6 0.151 0.094 0.099 0.0950  37.75 34.44 37.09 
7 0.166 0.104 0.108 0.1056  37.35 34.94 36.39 
8 0.177 0.113 0.117 0.1139  36.16 33.90 35.65 
9 0.184 0.119 0.123 0.1196  35.33 33.15 35.00 
10 0.188 0.122 0.126 0.1225  35.11 32.98 34.84 

TMD - 0.358 0.282 0.4933  mean 

      36.97 34.38 37.57 
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Fig. 4.  Maximum displacement for uncontrolled and controlled structure under the  

El Centro excitation (Example 1, md=108 ton) 
 

Additional details of the structural behavior can be obtained by tracking story displacements during 
the earthquake excitation. To this aim, time history displacement of the first and top floors are plotted in 
Fig. 5a and Fig. 5b, respectively.  Effectiveness of the TMD is also strengthened by the acceleration 
transfer function defined by Eq. (40). Transfer function graphics for the first and top stories can be seen in 
Fig. 6c and Fig. 6d. 
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(a)                                                      (b) 

Fig. 5. Time history displacement during the El Centro excitation: (a) first story;  
(b) top story; (Example 1, md=108 ton) 

Next we perform the CSS to find the optimum parameters of TMD with different mass varying from 
0.02 to 0.04 of total mass of building by step size of 0.0025. The optimum values for each step are shown 
in Table 4. One can observe from this table that while the value of mass of absorber increases, the 
corresponding values of optimum damping and stiffness also increase. 
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(a)                                                     (b) 

Fig. 6. Transfer function of: (a) first story; (b) top story; (Example 1, md=108 ton) 
 

Table 4. Stiffness and damping for different values of the absorber masses (Example 1) 

TMD parameters Optimum value 

Story dm  (ton)  

 72 81 90 99 108 117 126 135 140 

( / )dc kN s m  86.123 76.295 78.644 80.440 88.697 89.282 95.265 99.618 105.034 

( / )dk kN m  2895.08 3200.4 3513.74 3864.45 4207.73 4478.31 4830.49 5189.39 5379.24 

 
Peak story displacements and the corresponding percent of the reduction for every selected mass are 
shown in Table 5. It can be revealed from this table that the maximum mean reduction for this case study 
is obtained by md= 99 ton. Although the mean reduction is slightly more than one for the case of md= 108 
ton, the smaller values for TMD damping and stiffness can support this improvement. 
 

Table 5. Maximum displacements with respect to the ground for El Centro (1940) NS  
Earthquake for different values of the TMD masses (Example 1) 

Story dm (ton)  

 72 81 90 99 108 117 126 135 140 

1 0.0201 0.0193 0.0191 0.0188 0.0185 0.0192 0.0200 0.0208 0.0209 
2 0.0392 0.0378 0.0373 0.0367 0.0362 0.0382 0.0397 0.0413 0.0415 
3 0.0568 0.0549 0.0541 0.0533 0.0525 0.0563 0.0586 0.0609 0.0612 
4 0.0725 0.0703 0.0693 0.0682 0.0682 0.0733 0.0762 0.0792 0.0797 
5 0.0872 0.0841 0.0829 0.0816 0.0825 0.0887 0.0922 0.0958 0.0964 

6 0.1002 0.0965 0.0950 0.0935 0.0950 0.1022 0.1062 0.1103 0.1110 

7 0.1110 0.1072 0.1056 0.1039 0.1056 0.1136 0.1181 0.1226 0.1234 

8 0.1195 0.1159 0.1142 0.1124 0.1139 0.1225 0.1273 0.1322 0.1331 

9 0.1254 0.1221 0.1202 0.1184 0.1196 0.1287 0.1338 0.1389 0.1398 
10 0.1287 0.1253 0.1234 0.1215 0.1225 0.1318 0.1371 0.1423 0.1433 

TMD 0.5158 0.5384 0.5265 0.5172 0.4933 0.4770 0.4583 0.4423 0.4292 

Percent of reduction (%) 

1 35.16 37.74 38.39 39.35 40.32 38.06 35.48 32.9 32.58 
2 34.67 37.00 37.83 38.83 39.67 36.33 33.8 31.17 30.83 
3 34.71 36.9 37.82 38.74 39.65 35.29 32.64 30.00 29.65 
4 35.27 37.23 38.13 39.11 39.11 34.55 31.96 29.29 28.84 
5 34.44 36.77 37.67 38.65 37.97 33.31 30.67 27.97 27.52 
6 33.64 36.1 37.09 38.08 37.09 32.32 29.67 26.95 26.49 
7 33.13 35.42 36.39 37.41 36.39 31.57 28.86 26.14 25.66 
8 32.49 34.52 35.48 36.5 35.65 30.79 28.08 25.31 24.81 
9 31.85 33.64 34.67 35.65 35.00 30.06 27.28 24.51 24.03 

10 31.54 33.35 34.36 35.37 34.84 29.89 27.08 24.31 23.78 
mean 33.69 35.87 36.78 37.77 37.57 33.22 30.56 27.86 27.42 
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Consequently, peak story accelerations and the corresponding percent of reduction are listed for each 
selected mass in Table 6. Also for better comparison, the data from Table 5 and Table 6 are depicted in 
Figs. 7a and 7b. 
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Fig. 7.  Percentage of reduction for: (a) peak story displacements; (b) peak story accelerations; (Example 1) 
 

Table 6. Maximum absolute acceleration with respect to the ground for the El Centro (1940) NS Earthquake 
for different values of the TMD masses (Example 1) 

 Without TMD With TMD 

Story  dm (ton)  

  72 81 90 99 108 117 126 135 140 
1 3.4648 3.4360 3.4348 3.4321 3.4294 3.4260 3.4234 3.4200 3.4168 3.4147 
2 5.3378 5.2799 5.2775 5.2720 5.2664 5.2593 5.2542 5.2475 5.2410 5.2367 
3 6.133 6.0054 6.0013 5.9929 5.9844 5.9736 5.96579 5.9555 5.9457 5.9393 
4 7.3295 6.3066 6.3004 6.2888 6.2771 6.2626 6.2518 6.2380 6.2247 6.2161 
5 8.2743 6.3793 6.3704 6.3556 6.3405 6.3223 6.3085 6.2911 6.2742 6.2635 
6 8.779 6.2160 6.2038 6.1857 6.1672 6.1456 6.1285 6.1076 6.0872 6.0746 
7 9.0516 5.8260 5.7910 5.7697 5.74791 5.7233 5.7030 5.6790 5.6554 5.6411 
8 9.2562 6.409 5.9060 5.6721 5.5774 5.5797 5.5837 5.5865 5.5899 5.6032 
9 9.4282 6.8909 6.3683 6.0284 5.8250 5.8272 5.8312 5.8825 6.0719 6.0964 

10 9.5486 7.1444 6.6148 6.2693 5.9618 5.9564 5.9600 6.1493 6.3394 6.3637 
TMD - 20.6452 21.2485 20.5961 20.1918 19.2500 18.4097 17.7175 17.1403 16.6511

 Percent of reduction (%) 

1 - 0.83 0.869 0.94 1.02 1.12 1.20 1.29 1.39 1.45 
2 - 1.09 1.13 1.23 1.34 1.47 1.57 1.69 1.82 1.89 
3 - 2.08 2.15 2.28 2.42 2.60 2.73 2.89 3.06 3.16 
4 - 13.96 14.04 14.2 14.36 14.56 14.71 14.89 15.08 15.19 
5 - 22.91 23.01 23.19 23.37 23.59 23.76 23.97 24.17 24.31 
6 - 29.20 29.33 29.54 29.75 30.00 30.20 30.43 30.66 30.81 
7 - 35.64 36.02 36.26 36.5 36.77 37.00 37.26 37.52 37.68 
8 - 30.76 36.2 38.72 39.74 39.72 39.68 39.65 39.61 39.47 
9 - 26.91 32.45 36.06 38.22 38.19 38.15 37.61 35.60 35.34 

10 - 25.18 30.73 34.34 37.57 37.62 37.58 35.60 33.61 33.36 
mean - 18.85 20.59 21.68 22.43 22.56 22.65 22.52 22.25 22.63 
 
As mentioned before, the best result for this example is obtained using TMD with properties: md= 99 ton, 
cd= 80.44 kN.s/m, kd= 3864.45 kN/m. Further details for this case are shown in Fig. 8 to Fig. 10. 
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Fig. 8. Maximum displacement for uncontrolled and controlled structure under  

El Centro excitation (Example 1, md=99 ton) 
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Fig. 9. Time history displacement during the El Centro excitation:  
(a) first story; (b) top story; (Example 1, md=99 ton) 
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(a)              (b) 

Fig. 10. Acceleration transfer function for: (a) first story; (b) top story; (Example 1, md=99 ton) 

b) Example 2 

The second example has also been investigated by previous researchers, Sadek et al. [8], and Den 
Hartog [3]. Properties of building are shown in Table 7.  For this example, optimum parameters of TMD 
are obtained as: dm = 55.45 ton, dc = 30.234 kN.s/m, and kd= 355.758 kN/m. These results are 
significantly smaller than those obtained by Sadek et al. ( dm = 55.45 ton, dc = 104.4 kN.s/m, and kd= 
464.1 kN/m) [8] and Hadi and Arfiadi ( dm = 55.45 ton, dc = 48.9 kN.s/m, and kd= 437.4 kN/m) [9].  
 

Table 7. Properties of the building for Example 2 

Story Mass (ton) Stiffness (kN/m) Damping (kN.s/m) 

1 179 62470 805.863 

2 170 52260 674.154 
3 161 56140 724.206 
4 152 53020 683.958 
5 143 49910 643.839 
6 134 46790 603.591 

7 125 43670 563.343 

8 116 40550 523.095 

9 107 37430 482.847 

10 98 34310 442.592 
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Fig. 11. Variation of the objective function versus the number of iterations for Example 2 
 

The convergence process of the CSS algorithm is shown in Fig. 11. As it can be observed, the 
algorithm has converged to optimum solution before 100 iterations (i.e. at 86th iteration). 
 

Table 8. Maximum absolute displacement with respect to the ground for the  
El Centro (1940) NS Earthquake (Example 2) 

Story Without TMD 
Den Hartog 

[3] 
Warburton 

[7]
Sadek et al. 

[8]
Hadi and Afriadi 

(GA) [9] 
Present work 

(CSS)

1 0.041 0.034 0.036 0.036 0.034 0.0306 
2 0.088 0.074 0.079 0.077 0.072 0.0655 
3 0.129 0.106 0.114 0.113 0.105 0.0946 
4 0.166 0.136 0.147 0.145 0.134 0.1205 
5 0.197 0.163 0.177 0.172 0.160 0.1430 
6 0.222 0.187 0.206 0.194 0.184 0.1635 

7 0.252 0.213 0.236 0.219 0.210 0.1863 

8 0.286 0.239 0.267 0.245 0.236 0.2099 

9 0.313 0.261 0.292 0.266 0.258 0.2299 
10 0.327 0.276 0.310 0.281 0.272 0.2427 

TMD - 0.602 0.751 0.456 0.635 0.6437 

Percent of reduction (%) 

1 - 17.07 12.20 12.20 17.07 25.37 
2 - 15.91 10.23 12.50 18.18 25.56 
3 - 17.83 11.63 12.40 18.60 26.67 
4 - 18.07 11.45 12.65 19.28 27.40 
5 - 17.26 10.15 12.69 18.78 27.41 
6 - 15.77 7.21 12.61 17.12 26.35 
7 - 15.48 6.35 13.10 16.67 26.06 

8 - 16.43 6.64 14.34 17.48 26.61 

9 - 16.61 6.71 15.02 17.57 26.54 
10 - 15.60 5.20 14.07 16.82 25.78 

mean - 16.60 8.78 13.16 17.76 26.37 

 

The maximum displacements of each story are presented in Table 8. This table also contains results 
of the previous works for comparison. Using the present approach, the percentage of reductions in 
maximum story displacements are between 25.37%–27.41% with mean value of 26.37%. 

According to Table 8 and Fig. 12, these results are superior to the previous works. The best result 
after CSS is related to that of Hadi and Afriadi [9] with mean reduction of 17.76%, that is 8.61% less than 
those of the CSS algorithm. 
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Fig. 12. Percent of reduction for peak story displacements (Example 2). 

 
The maximum displacements of uncontrolled and controlled structure for all stories are depicted in 

Fig. 13. Further details from structural behavior can be obtained by tracking story displacements during 
the earthquake excitation. To this aim, time displacement history of the first and top floors are plotted in 
Fig. 14a and Fig. 14b, respectively. 
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Fig. 13. Maximum displacement for uncontrolled and controlled structure under 

 the El Centro excitation (Example 2)  
The effectiveness of the TMD is also strengthened by the acceleration transfer function defined by 

Eq. (40). Transfer function graphics for the first and top stories can be seen in Figs. 15a and 15b. 
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Fig. 14. Time history displacement during the El Centro excitation: 
(a) first story; (b) top story; (Example 2) 
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Fig. 15. Acceleration transfer function for: (a) first story; (b) top story; (Example 2) 
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c) Computational time 

In this work, new formulation is proposed for solving state space equations. Here, the computational 
time of our Matlab code with the same model is utilized by SIMULINK, Fig. 16. In the Table 9, Average 
and minimum time for one state-space solution are brought. The results show the superiority of the Matlab 
code. As can be seen for sine wave loading, the percentage of the reduction of time is about 98%! This 
reduction for El Centro record is more than 60%. These models are run on a personal computer Core(TM) 
i7, CPU 2.20GHz, 8.00GB of RAM. 
 

 

Fig. 16. SIMULINK diagram of the system with TMD 

 
Table 9. Average and minimum time comaparison of two models 

 Time (Sec.) Matlab code SIMULINK Model 

Sine wave 
Average  0.0283 1.3791 

Min 0.0221 1.3560 

El centro 
Average 0.6014 1.4937 

Min 0.5765 1.4702 

  

6.  CONCLUSION 
 
The overall objective of this paper was to determine the optimum parameters of tuned mass dampers that 
result in utmost reduction in the structural response to earthquake loading. Charged system search, a well 
operation optimization algorithm in engineering problems, is used to estimate optimum parameters of 
TMD. The objective function used in this study is based on that of reference [11]. In order to solve 
equations of motion in state space form, an alternative procedure is utilized which is based on matrix 
exponential approach. The present formulation is general and can be used to find the response of all 
mechanical systems subjected to any external excitation. However, to make the results comparable with 
the previous works, the assembling procedure of mass, stiffness, and damping matrices of the system were 
defined only for the case of shear frames with one translational degree of freedom on each story level. For 
3-D or irregular structures, the formulation should be modified properly.   

To verify the capability of the present optimization procedure, some numerical calculations are 
performed on two well established examples. 
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In the first example, a ten-story shear building is considered. It is found that with the same damper 
mass, the mean value of displacement reduction is 37.57% which is more than those of the previous 
studies. It means more capability in absorbing earthquake energy and reducing total story displacements is 
achieved in this work. Also, in the next step more refinement is applied on the mass of TMD. In this step, 
it is found that better solution can be obtained by smaller values of TMD parameters ( dm = 99 ton, dc = 
80.441 kN.s/m, and kd = 3864.45 kN/m). In this case, the maximum top story displacement is reduced to 
0.1215 m from 0.188 m (35.37% reduction), and the mean value of the reduction is 37.77%. Although the 
mean displacement reduction is slightly more than one for the case of md= 108 ton, smaller values for 
TMD damping and stiffness can support this improvement. The other fact that can be concluded from this 
refinement is that decreasing the value of TMD mass will be followed with decreasing in other parameters 
of TMD (stiffness and damping). On the other hand, with the smaller value of TMD mass the reduction on 
story displacements becomes more uniform. Also, it is observed that sensitivity of acceleration reduction 
with TMD mass is negligible except on the three upper floors. 

In the second example, we were only interested in finding the optimum value of the TMD parameters 
and the corresponding reduction in displacement values. In this case, optimum parameters of TMD are 
obtained as: dm = 55.45 ton, dc = 30.234 kN.s/m, and kd= 355.758 kN/m. These optimum values are 
significantly smaller than those obtained by Sadek et al. [8] and Hadi and Arfiadi [9]. Also, displacement 
reduction of this case for the present study are superior to the previous works, as the best result after the 
present work is related to Hadi and Afriadi [9] with mean reduction of 17.76%, that is 8.61% less than 
those of the present study.  
 

REFERENCES 
 
1. Frahm, H. (1911). Device for damping of bodies, U.S. Patent, No. 989958.  

2. Ormondroyd, J. & Den Hartog, J. P. The theory of dynamic vibration absorber. Transactions of the American 

Society of Mechanical Engineers. Vol. 50, pp. 9–22. 

3. Den Hartog, J. P. (1956). Mechanical Vibrations. McGraw-Hill. 

4. McNamara, R. J. (1977). Tuned mass dampers for buildings. Journal of the Structural Division. ASCE. Vol. 103, 

pp. 1785-1798. 

5. Luft, R. W. (1979) Optimum tuned mass dampers for buildings. Journal of the Structural Division. ASCE. Vol. 

105, pp. 2766-2772. 

6. Falcon, K. C., Stone, B. J., Simcock, W. D. & Andrew, C. (1967). Optimization of vibration absorbers: A 

graphical method for use on idealized systems with restricted damping. Journal of Mechanical Engineering 

Science. Vol. 9, pp. 374-381. 

7. Warburton, G. B. (1982). Optimum absorber parameters for various combinations of response and excitation 

parameters. Earthquake Engineering and Structural Dynamics. Vol. 10, pp. 381–401. 

8. Sadek, F., Mohraz, B., Taylor, A. W. & Chung, R. M. (1997). A method of estimating the parameters of 

tunedmass dampers for seismic applications, Earthquake Engineering and Structural Dynamics. Vol. 26, pp. 

617–635.  

9. Hadi. M. N. S. & Arfiadi, Y. (1998). Optimum design of absorber for MDOF structures. Journal of the 

Structural Division. ASCE. Vol. 124, pp. 1272–1280. 

10. Lee, C. L., Chen, Y. T., Chung, L. L. & Wang, Y. P. (2006). Optimal design theories and applications of tuned 

mass dampers. Engineering Structures. Vol. 28, pp. 43–53. 

11. Bekdas, G. & Nigdeli, S. M. (2011). Estimating optimum parameters of tuned mass dampers using harmony 

search. Engineering Structures. Vol. 33, pp. 2716–2723. 



Optimum parameters of tuned mass dampers for… 
 

February 2015                                                                            IJST, Transactions of Civil Engineering, Volume 39, Number C1      

39

12. Miguel, L. F. Fadel, Lopez, R. F. & Miguel, L. F. F. (2013). Discussion of paper: Estimating optimum 

parameters of tuned mass dampers using harmony search. Engineering Structures. Vol. 54, pp. 262–264. 

13. Bekdas, G. & Nigdeli, S. M. (2013). Response of discussion on Estimating optimum parameters of tuned mass 

dampers using harmony search. Engineering Structures. Vol. 54, pp. 265–267.  

14. Kaveh, A. & Kalatjari, V. (2004). Size/geometry optimization of trusses by the force method and genetic 

algorithm. ZAMM Journal of Applied Mathematics and Mechanics. Vol. 84, pp. 347–357. 

15. Li, L. J., Huang, Z. B., Liu, F. & Wu, Q. H. (2007). A heuristic particle swarm optimizer for optimization of pin 

connected structures. Computers & Structures. Vol. 85, pp. 340–349. 

16. Kaveh, A. & Shojaee, S. (2007). Optimal design of skeletal structures using ant colony optimization. 

International Journal for Numerical Methods in Engineering. Vol. 70, pp. 563–581. 

17. Lee, K. S. & Geem, Z. W. (2004). A new structural optimization method based on the harmony search 

algorithm. Computers & Structures. Vol. 82, pp. 781–798. 

18. Kaveh, A. & Talatahari, S. (2010). A novel heuristic optimization method: charged system search. Acta 

Mechanica. Vol. 213, pp. 267-289. 

19. Kaveh, A. & Talatahari, S. (2010). Optimal design of skeletal structures via the charged system search 

algorithm. Structural and Multidisciplinary Optimization. Vol. 41, pp. 893-911. 

20. Singh, M. P., Singh, S. & Moreschi, L. M. (2002). Tuned mass dampers for response control of torsional 

buildings. Earthquake Engineering and Structural Dynamics. Vol. 31, pp. 749–769. 

21. Marano, G. C., Greco, R. & Chiaia, B. (2010). A comparison between different optimization criteria for tuned 

mass dampers design. Journal of Sound and Vibration. Vol. 329, pp. 4880–4890. 

22. Steinbuch, R. (2011). Bionic optimisation of the earthquake resistance of high buildings by tuned mass dampers. 

Journal of Bionic Engineering. Vol. 8, pp. 335-344. 

23. Leung, A.Y.T. & Zhang, H. (2009). Particle swarm optimization of tuned mass dampers. Engineering 

Structures. Vol. 31, pp. 715–728. 

24. Bekdas, G. & Nigdeli, S. M. (2011). Investigation of SDOF idealization for structures with optimum tuned mass 

dampers. Proceedings of the Natural Cataclysms and Global Problems of the Modern Civilization 

Geocataclysms, Istanbul, Turkey. 

25. Bekdas, G. & Nigdeli, S. M. (2011). Optimization of tuned mass damper parameters for structures subjected to 

earthquakes with forward directivity. Proceedings of the Natural Cataclysms and Global Problems of the 

Modern Civilization Geocataclysms, Istanbul, Turkey. 

26. Bekdaş, G. & Nigdeli S. M. (2013). Mass ratio factor for optimum tuned mass damper strategies. International 

Journal of Mechanical Science. Vol. 71, pp. 68–84. 

27. Farshidianfar, A. & Soheili, S. (2013). Ant colony optimization of tuned mass dampers for earthquake 

oscillations of high-rise structures including soil-structure interaction. Soil Dynamic and Earthquake 

Engineering. Vol. 51, pp. 14–22. 

28. Islam, B. & Ahsan, R. (2012). Optimization of tuned mass damper parameters using evolutionary operation 

algorithm. 15th World Conference in Earthquake Engineering (WCEE), Lisbon, Portugal. 

29. Fairman, F. W. (1998). Linear Control Theory, The State Space Approach. John Wiley and Sons, Chichester, 

New York, Weinheim, Brisbane, Singapore, Toronto. 

30. Kaveh, A. (2014). Advances in Metaheuristic Algorithms for Optimal Design of Structures, Springer Verlag, 

Wien. 

31. Kaveh, A. & Sharafi, P. (2012). Ordering for bandwidth and profile minimization problems via charged system 

search method, Iranian Journal of Science and Technology, Transactions of Civil Engineering, Vol. 36, pp. 39-

52. 



A. Kaveh et al. 
 

IJST, Transactions of Civil Engineering, Volume 39, Number C1                                                                            February 2015 

40

32. Kaveh, A., Talatahari, S. & Farhmand Azar, B. (2012). Optimum design of composite open channels using 

charged system search algorithm, Iranian Journal of Science and Technology, Transactions of Civil 

Engineering, Vol. 36, pp. 67-77. 

33. Kaveh, A. Massoudi, M. S. & Ghanooni Bagha, M. (2014). Structural Reliability Analysis Using Charged 

System Search Algorithm, Iranian Journal of Science and Technology. Transactions of Civil Engineering, Vol. 

38, No. C2, pp. 439-448. 

  
  


