
IJST, Transactions of Electrical Engineering, Vol. 38, No. E2, pp 177-189 
Printed in The Islamic Republic of Iran, 2014 
© Shiraz University 

 
 
 
 

DISCRIMINATIVE GRAPHICAL MODEL FOR  
POROUS MEDIA IMAGE SYNTHESIS* 

 
 

E. AHMADI1, Z. AZIMIFAR2**, P. FIEGUTH3 AND S. AYATOLLAHI4  
1, 2School of Electrical & Computer Engineering, Shiraz University, Shiraz, I. R. of Iran 

Email: azimifar@cse.shirazu.ac.ir 
3Systems Design Engineering, University of Waterloo, Waterloo, Canada 

4School of Petroleum & Chemical Engineering, Shiraz University, Shiraz, I. R. of Iran  
 

Abstract–  I maging  synthesis methods  open a    new  door  to  help  scientists  for  further 
study  on   porous  materials.   H igh  resolution  images  are  required  t o  analyze  the  macroscopic  propert
ies  of  porous  media. However, a few degenerated high resolution samples are available because of 
constraints, and low resolution measurements (such as MRI images) cannot fully describe the 
medium. Computer-aided approaches can help the science of porous media by generating many 
artificial high resolution samples using the information of available data. In this paper, a novel 
discriminative graphical framework is proposed which statistically models the synthesis problem. 
The probability distribution of high resolution image of a porous medium given a low resolution 
measurement is modeled by conditional random fields (CRF). A Monte Carlo approach is 
proposed to sample the constructed model and to generate high resolution samples. Moreover, a 
hierarchical CRF is proposed for gradual synthesis of high resolution porous media images. The 
success of the models is shown and compared through several experimental results.            
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1. INTRODUCTION 
 

Scientific imaging is an exploding field, especially due to the proliferation of a wide range of imaging 
modalities and instruments. In particular, medical imaging and remote sensing are two such areas which 
have been extensively studied. However, there are other areas still awaiting further study, such as the 
science of porous media. Porous media is the science of porous materials such as cement, wood, cartilage, 
rock and soil [1], which have significant contributions in construction, medicine, environmental industries, 
and petroleum engineering. 

To study and to analyze the macroscopic properties (porosity, permeability, conductivity and etc.) of 
porous materials, a large ensemble of high-resolution images is required [2]. Some examples of high-
resolution microscopic images of porous media are shown in the first row of Fig. 5, where the black/white 
shading shows the two phases of pore and solid. Providing high resolution physical samples requires 
cutting, polishing, exposure to air and, consequently, a variety of influences and alterations to samples. On 
the other hand, the acquisition of 3D MRI images has no impact on the sample, but has limited spatial 
resolution, such that only large pores can be resolved. Therefore, image processing and computer vision 
methods can be very helpful to synthesize new high resolution images for further studying of porous 
materials [3]. In other words, the information of available high- and low resolution images can be fused to 
model the characteristics of porous medium and, then, sampling the constructed model provides us high 
resolution images with consistent properties of original images of the medium. 
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As a result of constraints (physics, time and expense), few high resolution samples are available. 
Moreover, multiple measured samples are typically not from a single scene, therefore, super-resolution 
and multi-resolution data fusion approaches may not be useful. However, porous media samples do have 
some sort of structure and randomness, for which statistical methods can be quite successful, therefore, we 
are interested to model the statistical characteristics of images of such media for the purpose of synthesis. 

Almost all the primary works build the model just based on high resolution images. The model is 
sampled for the synthesis of new high resolution images. A number of statistical functions such as two-
point correlation and chord length distribution are used as prior models [4]. The process is called prior 
sampling and does not use low resolution images. However, with respect to advanced 3D imaging tools, 
low resolution images also have complementary information which can be used for the description of 
porous medium. In the first attempt of fusing low resolution measurements with high resolution data, 
Okabe and Blunt [5] proposed a stochastic reconstruction method. In their method, large pore structure is 
resolved using low resolution tomographic images and small-scale ones are reconstructed using learned 
prior model independent of low resolution measurement. The first problem of this method is that the low 
resolution measurements are not explicitly coupled with prior model of high resolution images. The other 
limitation is that all the information provided by low resolution images cannot be fully exploited. 

A more robust statistical method was proposed by Mohebi et al. [6], in which Gibbs random field 
(GRF) is used for prior modelling. The prior model is built as the fusion of chord length and histogram 
distributions from high resolution images. In an approach named posterior sampling, the reconstructing 
sample based on the prior model is constrained by low resolution measurements. Therefore, to some 
extent, the prior model is coupled with measurement model in the process of posterior sampling. Although 
the method has great success in the reconstruction task, some delicate points can be considered for further 
investigation. The first point is that the method models the probability distribution of high resolution 
images of porous medium and makes the synthesizing sample close to measurements during the sampling 
phase. However, modelling the probability distribution of high resolution images given the low resolution 
measurements is more consistent with the nature of our image synthesis problem. Moreover, in this 
approach, constraining the reconstructing sample means reduction of the distance between the 
measurement obtained from the reconstructing image and the true available measurement. However, the 
true underlying function (forward problem function) of extracting low resolution image from the high 
resolution one is not known. The last issue to be addressed is that the contribution of the prior model and 
low resolution measurement in reconstruction process is not fully coupled in [6] which is explained more 
later in this paper. 

We proposed a novel framework of image synthesis very naively in our preliminary work [7]. A 
discriminative graphical model, conditional random field (CRF), is used to model the probability 
distribution of high resolution images given the low resolution measurements. The CRF model was firstly 
proposed by Lafferty et al. [8] for segmenting and labeling sequencing data. This discriminative graphical 
model directly models the conditional distribution instead of modelling the joint probability distribution of 
generative methods such as Markov random field (MRF) [9]. The success and superiority of CRF have 
been proved in many computer vision applications [10-13]. CRF is used to model the distribution of high 
resolution images, since low resolution ones make the synthesizing model more consistent with the nature 
of the problem. Moreover, the contributions of prior and measurement models are fully integrated. Besides 
all of these points, the function to convert the high resolution sample to low resolution measurement is no 
longer required and the relation between low- and high resolution images is implicitly modelled in CRF. 

The first contribution of this paper is that our previous method is presented in a more detailed and 
revised manner. Hierarchical approaches are introduced in many computer vision applications [14-16]. 
Due to scale to scale synthesis of high resolution images, we propose a hierarchical conditional random 
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field (HCRF) to model the synthesis task as our second main contribution. The third novelty in this work 
is designing informative feature functions to describe porous medium in both our CRF and HCRF models. 
The fourth and last contribution is proposing novel sampling algorithms to sample from the learned 
models. 

The rest of the paper is organized as follows. The statistical formulations of the porous media image 
synthesis task in the previous works compared to our proposed models are explained in Section 2. Section 
3 presents our proposed CRF-based approach for image synthesis, and HCRF model is introduced in 
Section 4. Section 5 includes the experimental results and discussions. Finally, the paper is concluded in 
Section 6.  

 
2. STATISTICAL FORMULATION 

Due to existing constraints, synthesis of high resolution porous media images using computer-aided 
methods attracts a great deal of interest. Among these methods, statistical approaches are the focus of this 
paper. Early works model the probability distribution function of high resolution image ܲሺܪሻ of a porous 
medium and the artificial samples are generated using the sampling algorithms. However, as mentioned in 
Section 1, the low resolution measurements can play a significant role in describing porous medium 
because of their supplementary information to high resolution images. 

Okabe and Blunt [5] model the distribution ܲሺܪሻ, however, the distribution ܲሺܪ௨௦.|ܪ௦.ሻ is 
sampled in the sampling phase. In fact, ܪ௦. represents the portion of the reconstructing image which is 
fully resolved by the available low resolution measurements. Therefore, the sampler infers the unresolved 
part ܪ௨௦. of image ܪ. It is obvious that the information of low resolution is not completely used for 
reconstruction in this method. 

The probability distribution ܲሺܪሻ is also modelled by Mohebi et al. [6] using GRF as:  

 ܲሺܪሻ ൌ
ଵ


expሺ

ିாሺுሻ

்
ሻ                                                                  (1)  

where, ܼ and ܶ represent the normalization factor and the temperature, respectively. Function ܧሺܪሻ is the 
energy function which characterizes the porous medium in this framework. To take advantage of low 
resolution measurement ܯ in the synthesis phase, the authors constrain the probability distribution in 
sampling process such that:  

 ܲሺܯ|ܪሻ ൌ
ଵ

ሺெሻ
expሺ

ିாሺு|ெሻ

்
ሻ                                                         (2) 

where, the energy function is substituted by:  

ሻܯ|ܪሺܧ  ൌ ሻܪሺܧ  ሻܪሺ݂||ߙ െ(3)                                                ||ܯ 

where, ݂ሺ. ሻ indicates a preassumed forward model by which the measurement is extracted from the 
reconstructing image ܪ. As a result, the measurement ܯ does not play any role in modelling phase but 
forces the sampling image to be consistent with itself. Moreover, the contribution of prior and 
measurement energies are separated and are controlled by the hand-tuning parameter ߙ. Eq. (2) can be 
rewritten as:  

ܲሺܯ|ܪሻ ൎ
1
ܼଵ
expሺ

െܧሺܪሻ
ܶ

ሻ ൈ
1
ܼଶ
expሺ

െߙ||݂ሺܪሻ െܯ||
ܶ

ሻ 

ൌ ܲሺܪሻ ൈ ܲሺܪ|ܯሻ                                                                  (4) 

where, ܲሺܪሻ and ܲሺܪ|ܯሻ represent prior and likelihood models, respectively. Equation (4) shows the 
separation of prior and measurement effects in the synthesis problem. Moreover, it is shown that the 
model can be categorized as generative model, although it can be inferred from the equivalence of GRF 
and MRF models [17]. 
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In many machine learning and computer vision problems, the superiority of discriminative models 
are discussed and proved in comparison to generative models [18]. In this paper, conditional random field 
(CRF) is used as a discriminative graphical model for the modelling of our image synthesis task. Our CRF 
directly models the distribution PሺH|Mሻ instead of separating it to prior and likelihood models. The 
measurement M also contributes in construction of the probability distribution function rather than just 
playing a role in sampling phase. As discussed in the next section, it is not required to know the forward 
model fሺ. ሻ and the information of available low- and high resolution images is fully coupled in our 
modelling framework. 
 

3. PROPOSED CRF-BASED FRAMEWORK 

The goal of this paper is to propose a novel framework which is consistent with the nature of our image 
synthesis problem. In porous media image synthesis problem which is the focus of this paper, a few high 
resolution images and a number of low resolution measurements of a porous medium are available. The 
objective is to learn a model which characterizes the medium and can be used for synthesis of new high 
resolution samples. For the purpose of simplicity, all the high and low resolution images are supposed to 
be 2D and only one image from each set is available for training. While the model is being learnt, each 
time the sampler is run, the goal is to infer a high resolution image ܪ∗ given a low resolution measurement 
  :ܯ

∗ܪ  ൌ  ሻ                                                              (5)ܯ|ܪுܲሺݔܽ݉݃ݎܽ

 It is proposed that we model the distribution ܲሺܯ|ܪሻ by conditional random field (CRF). Sites of ܪ are 
random variables corresponding to image pixels which compose a random field. Each site (pixel) of ܪ is 
considered to be a vertex of a graph ܩ in which neighbouring pixels are connected to each other. The 
neighbours of a site ሺ݅, ݆ሻ are determined due to a predefined neighbourhood system. Considering vertices 
ܸ and edges ܧ, graph ܩ ൌ ሺܸ,  is called CRF and the probability distribution ܲ is ܯ ሻ conditioned onܧ
determined as a product of factors defined on ܩ:  

 ܲሺܯ|ܪሻ ൌ
ଵ

ሺெሻ
∏ 	∈ ∏ 	ᇲ∈ ߰ᇲሺܪᇲ,ܯሻ                                               (6) 

where, each factor ܿᇱ is called a clique which contains a set of nodes, every two of which are mutual 
neighbours. A clique template ܿ is a representative of similar cliques of ܩ and the set ܥ includes all clique 
templates defined based on the neighbourhood system. Parameter ܼሺܯሻ is the normalization constant and 
function ߰ᇲሺ. ሻ is the potential function associated with clique ܿᇱ, which is defined as:  

 ܼሺܯሻ ൌ ∑ 	ுᇲ ∏ 	∈ ∏ 	ᇲ∈ ߰ᇲሺܪᇲ
ᇱ ,  ሻ                                                (7)ܯ

  ߰ᇲሺܪᇲ,ܯሻ ൌ expሺ∑ 	
ே൫ᇲ൯
ୀଵ ∑ 	ᇲ

,ᇲݓ
ᇲ

݂
ᇲሺܪᇲ,ܯሻܫሺܪᇲ ൌ ݄ᇲሻሻ                         (8) 

where, ܪᇱ represents any arbitrary configuration of high resolution random field and ݂
ᇲሺܪᇲ,ܯሻ is the ݊-

th function of ܰሺܿᇱሻ feature functions defined on clique ܿᇱ of ܪ and measurement ܯ. Parameter ݓ,ᇲ
ᇲ  is 

the weight of ݂
ᇲሺܪᇲ,ܯሻ for each configuration ݄ᇲ of ܪᇲ and ܫ represents the indicator function. 

Some primary assumptions are made to cope with the high complexity of general CRF. This paper 
(similar to almost all CRF applications) selects first order neighbourhood system for the CRF model such 
that sites ሼሺ݅, ݆ െ 1ሻ, ሺ݅ െ 1, ݆ሻ, ሺ݅, ݆  1ሻ, ሺ݅  1, ݆ሻሽ are the neighbours of site ሺ݅, ݆ሻ. As a result, three 
clique templates exist in the model. The proposed CRF-based image synthesis model and the first order 
neighbourhood system and its corresponding clique templates are shown in Fig. 1.  

Supposing random field ܪ to be isotropic (stationary with respect to rotation of cliques), the vertical 
and horizontal double-site cliques will be identical. Therefore, we are left with only single-site and 
double-site clique templates and we call them ݊݁݀ and ݁݀݃݁ cliques, respectively. Moreover, it is 
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 ݂
ௗሺܪ, ሻܯ,ܪ ൌ

ଵ

ଵା|
ሺு,ெሻି

ሺுೕ,ெሻ|
                                           (16) 

where the ݅-th and ݆-th sites with close features have edge features near one and dissimilar neighbour sites 
tend to have near zero edge features. Therefore, edge features model the interaction between neighbouring 
pixels in ܪ. A porous medium is fully characterized by both node and edge features.  

c) Proposed sampling 
 While the CRF model ܲሺܯ|ܪሻ is defined and its parameters are learnt, high resolution images can 

be sampled given every test low resolution measurement ܯ. A Gibbs sampler along with simulated 
annealing procedure can sample the probability distribution [7, 22]. Sampling is started with a random 
configuration of ܪ at a high temperature ܶ. The Gibbs sampler samples the value of ܪ for each node ݅ 
due to its marginal distribution:  

 ܲሺܪ|ܯሻ ൌ
ଵ

ሺெሻ
exp ൬

ாሺு,ெሻା∑ 	ೕ∈ಿሺሻ ாሺு,ுೕ,ெሻ

்
൰                                (17) 

The procedure repeats until a stopping criterion is reached. The exponential ܶ௧ ൌ ܶ ൈ ܾ௧ିଵ cooling 
schedule is used for the sampling method. 

Experiments show that edge energies ܧௗ dominate the node energies and this causes over-
smoothing in the sampling process of the Gibbs annealing sampler (GAS). Therefore, smaller structures 
cannot be well resolved during the annealing. We propose a novel sampling method to deal with the 
problem. The sampling process is divided into two phases. In the first phase, the edge energy is ignored 
and a high resolution image is sampled by the Gibbs annealing sampler starting from ܶ and ending in 

ܶ. By fixing the temperature at ܶ, the sampling is continued with both energy terms (node and edge 
energies) for a number of times in the second phase. We call the first and second phases the formation and 
smoothing stages, respectively. Experimental results have shown the success of our proposed two-stage 
Gibbs annealing sampler (TSGAS) compared with the common GAS method.  

 
4. PROPOSED HCRF-BASED FRAMEWORK 

Hierarchical methods have drawn attention in many computer vision works [14-16]. In this section, we 
propose a hierarchical conditional random field for our porous media image synthesis problem. Without 
loss of generality, it is supposed that ܪ and ܯ are of size 2 ൈ 2 and 2 ൈ 2, respectively. The 
parameters ݊ and ݉, where ݉ ൏ ݊, are considered as the scales of images ܪ and ܯ, respectively. In our 
proposed hierarchical framework, the information is gradually passed scale to scale from the coarse scale 
݉ to the fine scale ݊. We propose that from scale ݉  1 to scale ݊, samples ܴ௦ are synthesized based on 
ܴ௦ିଵ and ܯ, where ܴ is the reconstructed estimate of the high resolution image at scale ݅. A hierarchical 
CRF (HCRF) is proposed in order to construct a model characterizing the porous medium in this 
framework. The conditional distribution of ܴ௦ given ܴ௦ିଵ and ܯ is defined as  

       ܲሺܴ௦|ܴ௦ିଵ,ܯሻ ൌ
ଵ

ሺோೞషభ,ெሻ
expሺ∑ 	 ௗሺܴܧ

௦, ܴ௦ିଵ,ܯሻ  

 																		∑ 	 ∑ 	∈ேሺሻ ௗሺܴܧ
௦, ܴ

௦, ܴ௦ିଵ,ܯሻሻ                                                       (18) 

 where, the node energy function ܧௗ and the edge energy function ܧௗ can be rewritten as:  

ௗሺܴܧ 
௦, ܴ௦ିଵ,ܯሻ ൌ ∑ 	ேሺௗሻ

భୀଵ
∑ 	∈ௌ భ,ݓ

ௗ
݂భ
ௗሺܴ

௦, ܴ௦ିଵ,ܯሻܫሺܴ
௦ ൌ ݄ሻ                   (19) 

ௗሺܴܧ 
௦, ܴ

௦, ܴ௦ିଵ,ܯሻ ൌ 

																∑ 	ேሺௗሻ
మୀଵ

∑ 	,ೕ∈ௌ మ,,ೕݓ
ௗ

݂మ
ௗሺܴ

௦, ܴ
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௦ ൌ ݄ሻ                 (20) 
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our CRF method is a more compatible model compared to the one of [6] for the image synthesis task. This 
method is also improved by designing new informative features and more successful sampling process. 
Although the proposed HCRF model has comparable results compared to others, it is itself a valuable 
framework because of its hierarchical approach. 

 
6. CONCLUSIONS AND FUTURE WORK REMARKS 

In this paper, the synthesis of high resolution porous media images given the low resolution measurements 
is modelled using CRF. The proposed discriminative framework is consistent with the nature of the 
problem and facilitates the information fusion of low and high resolution images for the synthesis task. 
Novel feature functions are designed to describe the porous medium characteristics and new sampling 
approach is introduced. Moreover, gradual synthesis process is introduced by proposing a novel 
hierarchical CRF model and hierarchical sampling. The visual and numerical inspections of results prove 
the superiority and success of our proposed framework compared to existing ones. 

Designing more descriptive feature functions for our proposed models and generalization of the 
models for the synthesis of 3D images are our main future directions in this field. 
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