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Abstract– In this paper, an array calibration method focusing on Direction of Arrival (DOA) on 
narrowband signals is presented. An array calibration procedure expresses adaptive beam forming 
and direction finding, which includes unknown phase and gain perturbation of the active sensor. 
The main purpose of this study is estimation of DOA on two or more known signal sources using 
Iterative Learning Control (ILC) method. Due to ILC learning ability, the amount of required 
calculations decreases. Furthermore, ILC method has a simple structure for working on-line. As 
ILC is a model-free method, it requires little modeling knowledge, making it suitable for use in 
DOA. In this paper, a new method is proposed for finding DOA of long distance targets in sonar 
systems. Moreover, in the last section the simulation results approves improvement in performance 
of the proposed method and helps show the capabilities of the method presented.           
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1. INTRODUCTION 
 

Increase of the accuracy and speed of target detection is an important goal in sonar and radar systems. 
Currently, a high-resolution frequency method that is being used for detection, is mainly based on the 
structure of the distribution function of the Cohen family [1]. This article introduces a new method for 
finding DOA in multi-input, multi-output sonar systems and array signals in active sensor devices. 

In active sonars and radars, estimation of DOA in presence of noise requires a high resolution and a 
robust method. Since ILC is a robust optimal method in various control fields [2], it is appropriate for 
solving DOA problem in active sonar and radar system. 

Uncertainty in array manifold sensors can be expressed in one or any combination of parameters such 
as location, frequency, gain & phase and mutual coupling with sensor. These errors are inevitable in 
practical systems. Since the uncertainty is in the actual array system, the array manifold is only nominal 
and not true. Therefore, estimation of the true one is required before processing array data [3]. 
Furthermore, in most of the published papers, it was supposed that the array manifolds in the field of array 
processing systems are known [3]. 

In this paper, we focus on the narrow-band signals. Of course, we know that in order to find DOA on 
wide-band signals the output of each sensor can be converted into a narrow-band signal with the aid of 
Fast Fourier Transform (FFT) and filter banks [4]. Therefore, wide-band signal and its applications will be 
discussed. 

Since the new method that is presented in this paper has not been used for sensor calibration on sonar 
or other applications, we will look at the history of this method, which has been employed in control 
systems. 
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Today, in modern technology smart control systems play an effective role in the development and 

improvement of industries. Therefore, by developing science and technology, industries are built with 

intelligent control algorithms which are aimed to improve the safety and operation of machines. In control 

engineering, studies on learning control are inspired by human capabilities and behavior. The main feature 

being employed in control engineering is the use of control signals to improve system performance. 

Iterative Learning Control (ILC) is a new field and yet stabilized in the control. In 1978 in Japan, 

Uchyama published the basic idea of iterative learning control in Japanese language. Later, in 1984 and 

1989, Arimoto, Kawamura, et al and Goodwin, et al presented the exact definition of ILC in English [5-6]. 

ILC has a large number of control applications, such as robotics, control task, etc [7]. 

The main idea behind ILC is derived from the ability of human learning. Human beings learn by 

rehearsing until the end of practice. The basic idea of ILC is that when the earliest trial is completed, the 

algorithm uses earliest trial outputs, inputs and errors to improve performance from trial to trial. 

Although all previous references for application of ILC are in control field, in this paper, control 

aspects are not considered and the proposed method focuses on calibration. 

By storing the error signal and control input in previous iterations, ILC method calculates a new 

command. Thus, learning process in ILC method, is similar to human memory. There is a difference 

between ILC and other methods, using the idea of learning such as adaptive control and neural networks. 

The idea of adaptive control and neural networks is to modify the controller that is a system itself. On the 

other hand, in ILC the input control signal is modified at each iteration. 

Note that in this article we talk about calibration process. Therefore, we try to perform a repetitive 

process of the calibration method, which is used with ILC. The adjustable complex vector weights in each 

dimension can be improved. 

In this paper, ILC method is introduced and is employed along with Weighted Iterative Learning 

Control (WILC) to solve DOA problem. Afterwards, WILC is compared with the Weighted Least Means 

Square (WLMS) and Weighted Recursive Least squares (WRLS) methods. Finally, the effect of WILC 

method on Signal to Noise Ratio (SNR) is evaluated. 
 

2. DOA CALIBRATION METHODS 

a) DOA signal model 

To define an array reference in a sonar system coordinate in Fig. 1 consider a narrow-band sonar system 

with arbitrarily N radiation transmitting sources and M receiving sensors for the sonar identical system. In 

addition, we can assume a wide-band sonar system with N transmitting orthogonal sources and decompose 

output of the sonar identical system by using an N point FFT in each segment into the L segment. Targets 

of DOA are assumed to be in the far field of the array. 

In Fig. 2, the structure of the L segment narrow-band array is shown. The array response into the 

plant waveform in direction of (φ, ɸ) is defined as: 

,ሺ݂ܪ  ߮, ߶ሻ ൌ ܹு೅
∗ ܽሺ݂, ߮, ߶ሻ (1)

Where ்ܪ is Hermitain transpose and W is adjustable complex vector weights of L dimensional: 

 ܹ ൌ ሾݓଵ ଶݓ ଷݓ … ௟ሿ்      (2)ݓ
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Let us introduce the Laplace transform of the ILC law as follows: 

ሻݏ୩ሺݑ  ൌ u୩ିଵ ൅ γ ∗ ߰௖ሺsሻ ∗ ݁୩ିଵሺݏሻ (16)

Equation (16) provides an estimation of the present value of input from data provided by the previous 
sample. Where γ and ψୡሺsሻ are the learning gain and the compensator in the Laplace domain, respectively. 
In Eq. (15), 	e୩ିଵ is the error at k-1th iteration. The frequency characteristic of learning compensator is. 

 ߰௖ሺjwሻ ൌ ݇௖ሺݓሻ݁௝ఏ೎ሺ௪ሻ (17)

where kୡሺwሻ is the magnitude characteristic and θୡሺwሻ is the phase characteristic. In order to find the 
condition of error tracking in ILC, we have:  

 ݁௞ሺ௦ሻ ൌ ܵሺݏሻ െ ܺ௞ሺݏሻ (18)

Where S(s) and X୩ሺsሻ are source signals (reference trajectory) and output sensor signals (plant output at 
iteration k), respectively. By replacing X୩ሺsሻfrom Eq. (14) and substituting uk(s) by Eq. 16, we have: 

 ܺ௞ሺݏሻ ൌ ሻݏ௞ିଵሺݑሻൣݏ௣ሺܩ ൅ ሻ݁௞ିଵሺ௦ሻ൧ݏ௖ሺ߰ߛ ൅ (19) ߟ

Therefore, Eq. (18) can be rewritten as: 

 ݁௞ሺݏሻ ൌ ൣ1 െ γܩ௣ሺݏሻ߰௖ሺݏሻ൧݁௞ିଵሺݏሻ (20)

 ห1 െ γܩ௣ሺ݆ݓሻ߰௖ሺ݆ݓሻห ൌ ௪ܩ
௞෪  (21)

 ݁௞ሺ݆ݓሻ ൌ ௪ܩ
௞෪ ݁௞ିଵሺ݆ݓሻ (22)

According to Goh, (1994) [8] and Hideg & Judd, (1988) [9], after taking ܮଶ norm of side of the above 
equation and using Schwarz’s theorem in Inequality matrix, the tracking error at steady state and ܩ௪

௞෪  
converge, if the condition below is satisfied: 

 หܩ௪෪ห ൏ 1 & lim௪→ஶหܩ௪෪ห ൌ 0  (23)

According to condition of หG୵෪ ห ൏ 1 and if γ ൐ 0 [10] 

 γ݃௣ሺݓሻ݇௖ሺݓሻ ൏ 2cosሺߠ௣ሺݓሻ ൅ ሻሻݓ௖ሺߠ (24)

 െ90° ൏ ሻݓ௣ሺߠ ൅ ሻݓ௖ሺߠ ൅ ݊ ∗ 360° ൏ 90°; ݊ ൌ 0,േ1,േ2,േ3,⋯ (25)

According to Yongqiang Ye, et al. (2009) [10], condition of Eq. (25) is critical since when the 
condition is satisfied we could always find a ߛ (learning gain) sufficiently small to satisfy Eq. (24). So the 
frequency range in which condition (25) holds, ultimately learnable band is named. For minimum phase 
systems, in condition (25) ߠ௣ሺݓሻ is normally negative and ݊ ൌ 0 and according to ߰௖ሺ݆ݓሻ at Eq. (21),	ߠ௖ሺݓሻ 
must provide positive phase. For non-minimum phase systems that start from 360 at dc, ݊ ൌ െ1 so that 
ሻݓ௣ሺߠ ൅ ݊ ∗ 360° is 0 at dc and negative at other frequencies, where ߠ௖ሺݓሻ must be positive again. In either 
case, development phase is needed to ensure a wider learnable band. This ensures higher tracking 
accuracy. 

According to Hebb rule [11-12] and Eq. (3), adaptive law for weighted vector can be defined as: 

*
1( ) ( ) ( )k k k kW jw W X jw e jw                                               (26)  

where   and e  are constant gain and error, respectively. That e  (error) will be introduced in Eq. (19) 
and * is conjugated matrix. 
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