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Abstract– We consider the problem of joint carrier frequency offset and channel estimation 
between transmitter and receiver in a frequency-selective channel MIMO-OFDM system. Recently 
two high performance estimators based on the expectation-maximization (EM) algorithm have 
been proposed. The main drawback of the maximum likelihood base algorithms, like EM 
algorithm, is the high computational complexity. In this paper, we propose an extended Kalman 
filter based estimator, which has higher performance than that of EM algorithm, while its 
computational complexity is lower. In addition, the Particle Swarm Optimization (PSO) algorithm 
is used for joint ML estimation of carrier frequency offset and channel parameters for the general 
model. The proposed method has a lower computational complexity than that of traditional search 
methods. Simulation results in comparison with Cramer-Rao bound show that the proposed 
algorithms outperform the EM in all ranges of signal-to-noise ratio for both channel and frequency 
offset estimations. Also, among them, the PSO algorithm is superior.           

 
Keywords– Carrier frequency offset (CFO), estimation, MIMO-OFDM, extended Kalman filter (EKF), particle 
swarm optimization (PSO)  
 

1. INTRODUCTION 
 

The combination of multiple-input multiple-output (MIMO) wireless technology with orthogonal 
frequency division multiplexing (MIMO-OFDM) is a remedial solution for next generation wireless local 
area networks (WLANs), wireless metropolitan area networks (WMANs), and fourth-generation mobile 
cellular wireless systems. Since OFDM offers the possibility for high data rates at low decoding 
complexity, it has been widely adopted by many standards (e.g., IEEE802.11a, IEEE802.11g in the U.S., 
and digital audio/video broadcasting (DAB/DVB), HiperLAN/2 in Europe) [1, 2], although OFDM is a 
promising technique, especially when we combine it with spatial diversity techniques, i.e., MIMO systems 
in more general case, its high sensitivity to carrier frequency offset (CFO) due a difference between the 
carrier frequencies of the local oscillators at the transmitter and the receiver, produces inter carrier 
interferences (ICI) and causes desired signal attenuation, and as such introduces a huge performance loss. 

Whereas OFDM is robust to the multipath delay, in order to achieve high-quality transmission [3] 
and avoid phase and amplitude distortion due to coherent detection and decoding in fading channel, the 
estimation of channel parameters and compensation is necessary in addition to the frequency offset 
estimation. Joint estimation of CFO and channel impulse response (CIR) parameters leads to particularly 
complex problems because of the number of unknowns [4]. A number of approaches have dealt with the 
CFO and channel estimation in a single-input single-output (SISO) OFDM setup in literature [5, 6]. 
Although the CFO estimation is a well studied problem in the SISO systems, it is relatively novel for the 
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MIMO-OFDM systems. In SISO OFDM, some methods rely on training blocks [7, 8], while others just 
take advantage of standard transmission format; e.g., exploit the presence of null sub-carriers and save the 
transmission bandwidth by blind estimation [9, 10]. In order to obtain the maximum-likelihood (ML) 
estimation of CFO, the prohibitive computational complexity is required [11]. Saemi et al. in [12, 13] have 
proposed a new algorithm for time-frequency synchronization joint with the channel identification in 
MIMO-OFDM systems. The high complexity is one drawback of this method. Salari et al. in [14] have 
proposed a ML solution in an iterative manner; e.g., expectation-maximization (EM) algorithm [15]. Their 
CFO estimator first provides a CIR estimate in the expectation (E)-step and then estimates the CFO in the 
maximization step (M)-step. Because of the estimator complexity, they have also proposed a simpler 
estimator with a decrease in performance. 

The Extended Kalman Filter (EKF) has been widely used for estimation in non-linear systems [16]. 
In this paper, we propose a CFO estimator based on the EKF whose complexity is less than that of ML 
estimator, although its performance is better. Moreover, according to the Particle Swarm Optimization 
(PSO) theory, a joint ML estimation algorithm of CFO and channel for the general model is proposed. The 
advantages of the proposed algorithm are that it is simple in conception, easy to implement, and efficient 
in computation. The PSO-based estimation algorithm has a lower computational complexity than that of 
traditional search methods. This makes the computational efficiency of the mentioned method higher. 

The rest of the paper is organized as follows: The next section contains an introduction to MIMO-
OFDM system model which experiences carrier frequency offset. Section III briefly explains the ML, EM, 
and proposed algorithms. This paper ends with the simulation results and conclusion in section IV and V. 

 
2. MIMO-OFDM SYSTEM MODEL 

 
A discrete-time FFT/IFFT-based N Nt r´  MIMO-OFDM system is considered and its typical structure as 

a block diagram is shown in Fig.1. The time-domain complex baseband samples , 1,...,Nj tj
ì üï ïï ïí ýï ïï ïî þ

=s  with 

cN  subcarriers are generated by taking cN -point inverse fast Fourier transform IFFT
cN

ì üï ïï ïí ýï ïï ïî þ
 of a block of 

subcarrier symbols { }jX . Then we construct { }, 1,..., c gj N Nj = +u  by adding a cyclic prefix with 

length gN  preceding each symbol, which should be longer than the CIR length (L), so that there will be 

no inter-symbol interference (ISI). Then the baseband signal is up-converted to the radio frequency (RF) fc 
after parallel-to-serial (P/S) conversion, and transmitted through the tN  transmit antennas. The channel is 

a Rayleigh frequency-selective fading which is described by complex Gaussian matrix elements. Also, it is 
assumed that the fading process remains static during each OFDM word (one time slot) and varies from 
one OFDM block to another. The fading processes associated with different transmitter-receiver antenna 
pairs are uncorrelated. At each receive antenna, a superposition of faded signal plus noise is received. 

Received signals are down-converted to baseband with the local oscillators centered at ĉf . The samples at 

the thi  receive antenna filter can be written as [14] 

2
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where , ( )i jh l  is the thl  element of the CIR between the thj  transmitter and the thi  receiver,  
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Fig. 1. Transmitter-receiver structure of a Nt × Nr MIMO-OFDM system [14] 

( )ju k  is the sample of ju  after P/S in time k, ε is the CFO normalized to the subcarrier spacing 1 /T  and 
( )iv k  is the channel noise sample that is an additive white complex Gaussian noise with zero mean and 

variance 2
iv

s . After serial-to-parallel (S/P) conversion and removing the cyclic prefix, we will reach iy  in 
the thi receiver as 
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channel between the thj  transmitter and the thi  receiver. The random vectors ,i jh  are assumed to be 

independent with zero mean complex Gaussian distribution. ( )js p  denotes the thp  entry of js  for 

1 cp N£ £  and 
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in the form (5) to implement the convolution operator. 
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The vector iv  containing the channel noise samples ( )kiv , is complex Gaussian with zero mean and 
covariance matrix 2

iv
s I We can simplify the input-output equation (2) by rewriting it in matrix form as 

( ). ( ). , 1,...,i i i ri Ne e= + =y F A h v   

where 
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Here, the channel and noise are assumed to be statistically independent. 
 

3. JOINT CFO AND CIR ESTIMATION 

a) ML estimation and EM algorithm 

The transmission model has two unknown parameters: the normalized CFO, ε, and the coefficients of CIR, 

ih   ( 1,..., ri N= ). Based on the signal model in (6), the ML estimation of parameters { , ie h } is given by 
maximizing the likelihood function that is equivalent to minimizing the cost function shown below: 

2
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First, assuming the CFO to be fixed and because of independence between ih s the ML estimate of ih  is 
obtained as 

( ) ( )
1
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Then substituting ˆih  into (9) and after some manipulation, we obtain the estimation of e  as  

2
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The above ML estimation method of CFO requires a huge computational search over the trail values of 
CFO. Although the accuracy of ML estimation is high, this computational complexity makes a serious 
challenge in the practical applications.  

To circumvent this problem, Salari et al. in [14] have used the EM algorithm. In [14], the CIR 
parameters are obtained in the expectation step and the CFO is estimated in maximization step. They have 
also formed a computationally simpler CFO estimator with a slight loss. In this paper, we consider the first 
estimator of [14] as EM algorithm which is called EM. 

b) Extended Kalman filter 

The EKF is a recursive algorithm composed of two stages named time and measurement update 
stages. If the state model is 
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1 1( )n n nf - -= +x x w 

( )n n n=G +y x v 

where nx , ny , 1n-w , and nv  are the state vector, observation vector, state noise and measurement 
noise respectively, these two stages are presented by the following equations: 

Time Update Equations: 

| 1 1| 1ˆ ˆn n n nf
æ ö÷ç ÷ç ÷ç ÷çè ø- - -=x x 

1 1| 1 1| 1 1
T

n nn n n n n- -- - - -= +P F P F Q   

Measurement Update Equations: 

| | 1 | 1ˆ ˆ ˆn nn n n n n n
æ öæ ö÷ç ÷ç ÷ç ÷÷çç ÷÷ç ÷çç ÷è øçè ø- -= + -Gx x K y x   

1

| 1 | 1
T T

n n n n nn n n n
æ ö÷ç ÷ç ÷ç ÷çè ø

-
- -= +K P H H P H R   

| | 1( )n nn n n n-= -P I K H P 

where | 1ˆn n-x  and | 1n n-P  are the predicted state and estimate covariance respectively, |ˆn nx and |n nP  

are the updated state and estimate covariance from the data until time n respectively, and 
ˆ |n n

n
f¶=

¶
x

F
x

 

and 
ˆ | 1n n

n
-

¶G=
¶

x

H
x

. Also, nK  is the Kalman gain, nR  and nQ  are the measurement and state noise 

covariance matrices and n is the number of EKF updating step. When nR  and nQ  are unknown, they 

can be ML estimated during execution of the EKF steps from the equations below: 

1
1 ˆ ˆ
n

H
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l n M
M
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= åR v v 

1
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where | 1ˆ ˆl l l l-
æ ö÷ç ÷ç ÷è ø

= -Gv y x  and | 1| 1ˆ ˆ ˆl l l l lf - -
æ ö÷ç ÷ç ÷è ø

= -w x x , and M  is the number of estimated 

noise vectors in the ML estimation. 
The time update equations are responsible for projecting forward (in time) the current state and error 

covariance estimates to obtain the apriori estimates for the time step. The measurement update equations 
are responsible for the feedback, i.e., for incorporating a new data into apriori estimate to obtain an 
improved aposteriori estimate. The time update equations can also be thought of as predictor equations, 
while the measurement update equations can be thought of as corrector equations.  

If we consider e  as the state variable in our problem, the linear state-variable model can be written as 
follows: 
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 1 n nn we e+ = + 

where the state noise nw  is assumed to be an additive white complex Gaussian noise with zero mean and 

unknown variance 2
nw

s . Notice that in this model, state variable nx  and state noise 1n-w  are scalar 

(denoted as ne  and nw  respectively). The measurement equation (observation vector) can be 

reformulated as 

 ( )nn ne=G +y v 

where the nonlinear function  .  of the state variable ne  is defined as ˆ( ) ( ) ( )̂n n ie e eG =F A h . Consider 

that ( )̂eA  has been computed by (7) for | 1ˆ n̂ ne e -=  and ih  has already been estimated by an ML 

solution as 
1

ˆ ( )̂ ( )̂ ( )̂ ( )̂H H H
i ie e e eé ù

ê ú
ê úë û

-
=h A A A F y  , like the E-step of the EM algorithm in [14].  

Since the observation equation is a nonlinear function of the CFO, an EKF-based algorithm is used to 
estimate the CFO. Let | 1n̂ ne -  be our apriori state estimation at step n, given knowledge of the process 

prior to the step n, |n̂ ne
 
be our aposteriori state estimation at step n given data ny  and | 1n n-P  and 

|n nP  are apriori and aposteriori error estimation covariance respectively.  

c) Proposed CFO estimation algorithm 

In the proposed EKF algorithm, rN  data streams (each stream contains cN  samples) are used to 
estimate the CFO. Each data stream per receive antenna is consecutively used for one updating step of 
EKF procedure; in other words, here, the number of EKF updating step n is the number of receive 
antenna. Since the number of receivers is not a lot, to improve the EKF algorithm, we propose an iterative 
procedure. In this method, after updating the CFO during rN  updating steps using data from the first 
receive antenna to the last receive antenna, the estimated CFO of EKF is fed back to the EKF algorithm as 
an initial CFO ( 10ê ), and the EKF algorithm is again repeated by the new initial value. In the new 
iteration; 1|0P  is also substituted from the previous iteration. Although the r cN N´  data symbols are the 
same in the different iterations, ê  and P improve during each iteration because of passing the transient 
state. Due to the iterative nature of this algorithm, we call it Iterative Extended Kalman Filter (IEKF). This 
iterative procedure can be continued until the rational mean square error (MSE) is achieved.  

d) Particle swarm optimization algorithm 

Particle Swarm Optimization, inspired by the social behavior of swarms of birds and fish schools, is a 
high performance optimizer first presented by Eberhart and Kennedy [17]. Compared to the conventional 
optimization techniques such as the Genetic Algorithms (GA), the PSO benefits from its algorithmic 
simplicity and robustness. The PSO exploits a swarm of particles which seek the promising regions of the 
D-dimension search space with adaptable velocity. Each particle changes its position based on its 
encountered best position and the best position attained by all particles.  

Consider m particles with position and velocity vectors as ix  and , 1,2,...,i i m=v respectively. The 
equations of updating the velocity and position in the PSO are stated by (23) and (24) as 

( 1) ( ) ( ) ( ) ( ) ( )( )
1 1 2 2, , , , ,

k k k k k kk
i j i j i j i j j i jv w v c r pbest x c r gbest x

æ ö æ ö÷ ÷ç ç÷ ÷ç ç÷ ÷ç ç÷ ÷ç ç÷ ÷ç çè ø è ø

+ = + - + -   

( 1) ( ) ( 1), 1,..., , 1,...,, , ,
k k k i m j Ji j i j i jx x v+ + = == +    
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where 

- ( )
,
k
i jv  

is the thj  component of velocity vector of particle i at iteration k. 

- ( )1
,
k
i jv
+

 
is the thj  component of modified velocity vector of particle i at next iteration k+1. 

- ( )
,
k
i jx  is the thj  component of position vector of particle i at iteration k. 

- ( 1)
,
k
i jx
+  is the thj  component of the modified position of particle i at next iteration k+1.  

- ,1 2r r  are random numbers between 0 and 1 (representing the random movement of each particle). 

- ( )
,
k
i jpbest

 
is the thj component of ( )k

ipbest  which is the best position found by the particle i at 

iteration k. 

- ( )k
jgbest

 
is the thj  component of ( )kgbest  which is the best position found by the particle 

swarm separately at iteration k. 
- 1 2,c c  are positive constants (weigh the influence of individual and social learning, respectively). 

- ( )kw  is inertia weight at iteration k. 

The inertia weight factor w  balances the ability of exploration (global search) and exploitation (local 

search). In general, the large value of w  is prone to global region hunting and the small value of w  helps 

local region probing. Linearly decreasing inertia weights were recommended in [18] and PSO with 

decreasing inertia weights has better performance. The mentioned inertia weight is as follows 

( ) max min
max max

max
, 1,2,...,k w w

w k k k
k

w -= - ´ =   

where minw  and maxw  represent the range of inertia weight and maxk  is the maximum iteration 

number. 

In general, the PSO algorithm can be described as follows: 

1) Initialize each particle i of the population by randomly selecting values for its location ( )kix  and 

velocity ( )k
iv  vectors. 

2) Calculate the fitness value of each particle. If the current fitness value for the particle is greater than the 

best fitness value found for the particle so far, then ( )k
ipbest  is updated. 

3) Determine the location of the particle with the highest fitness and update ( )kgbest  if necessary. 

4) For each particle, calculate the velocity according to the equation (23). 

5) Update the position of each particle according to the equation (24). 

6) Repeat steps 2-5 until reaching the termination condition (number of iterations or precision). 

Before employing the PSO method to solve the CFO estimation, two definitions must be made as 

follows: 1) Representation of the particle. The particle is the CFO (ε) in our problem, 2) Determination of 

the fitness function. According to (11), the fitness function is 

2
1

2
1

1 ( ) ( ) ( ) ( ) ( )
r

i

N
H H H

i
i v

FIT e e e e e
s

æ ö÷ç ÷ç ÷çè ø
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=
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4. SIMULATION RESULTS 
 
In this section, we present the results of simulations to demonstrate the effectiveness of the proposed 
schemes. The system parameters are presented in Table 1 which are held constant throughout the 
simulations. The data symbols are complex independent and identically distributed from 4-QAM 
constellation with 12

xs = . The signal-to-noise-ratio (SNR) is defined as / 2x vSNR E s=  where xE  is 
the total transmitted signal energy and 2vs  is the variance of channel noise corresponding to each receiver. 
Given the parameters in Table 1, the simulations have been executed with 1000 Monte Carlo iterations. 
We have also used 1|0 0ê =  and 1|0=P I  for IEKF initialization and assumed known 

0
2

c cN Nvs ´=R I equal to noise covariance for each receive antenna. 

Table 1. System settings in simulations 

 Number of carriers 128 
Channel power delay profile (PDP) [0.55,0.24,0.11,0.04,0.02] 
Guard time (Cyclic Prefix) 5 symbol period 
Modulation 4-QAM 

In the simulation of the PSO algorithm 1c  and 2c  are set to 1.49 [19], maxw  (w  in start) and minw  
(w  in end) are 0.64 and 0.4, maxk  and swarm size (m) are equal to 20 and 16 respectively. 

For performance evaluation, the MSE of the normalized CFO estimation i.e. 
2

E ˆe e
æ ö÷ç ÷ç ÷ç ÷ç ÷÷çè ø

-   is applied. 

We also use the MSE as 
2
ˆE

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷çè ø
-h h  for channel estimation evaluation, where 1 2, ,...,

r

T
T

N
T Té ù

ê ú
ê úë û

=h h h h . 

a) Performance evaluation of the proposed algorithms 

We first consider four 2×2, 3×3, 4×4 and 6×6 MIMO-OFDM systems in the simulation and the CFO 
is set as 0.1e = . Fig. 2 and Fig. 3 depict the MSE of CFO estimation versus SNR for the IEKF and PSO 
methods respectively. Here, SNR is varied from 0 to 30 dB over a frequency-selective fading channel. 
From Fig. 2 and Fig. 3, it can be observed that the performance of both algorithms is satisfactory even in 
low SNR and small number of antennas. Also, as predicted, by increasing SNR or the number of transmit-
receive antennas, their performance improves. 

 
Fig. 2. MSE of CFO estimation by IEKF versus SNR for different number of 

 transmit-receive antennas in  = 0.1 
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Fig. 3. MSE of CFO estimation by PSO versus SNR for different number of  

transmit-receive antennas in   = 0.1 

Then, for performance comparison, we consider a 2×2 MIMO-OFDM system and set the CFO as 
0.06e= . In Fig. 4, the MSE of CFO versus SNR for IEKF and PSO methods is compared to that of EM 

method and Cramer Rao Bound (CRB) [14. Eq. (27)]. It can be found that while the performance of the 
IEKF algorithm is better than that of EM, the PSO outperforms both of them and is closer to the CRB. The 
main point is the huge complexity reduction in the IEKF algorithm compared to the EM algorithm. 
Furthermore, it is noticeable that the performance of the IEKF algorithm and PSO method is more 
improved when the SNR increases. 

 
Fig. 4. Comparison between the accuracy of the proposed CFO estimators  

with that of EM method and CRB in   = 0.06 

We have chosen simulation time to evaluate the computational complexity of proposed methods in 
comparison with the EM method. The algorithms have run using Intel(R) Core(TM) 2 Dou CPU. The 
number of iterations in both EM and IEKF algorithms is 10. Each method has run 100 times and the 
average execution times of simulations are presented in Table 2. As seen from the table, the IEKF 
algorithm has the lowest complexity compared to the other algorithms. The EM algorithm has the most 
complexity. 
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Table 2. Average execution times of the proposed methods in comparison with the EM method 

Estimation Method Execution Time (sec) 
EM 3.34 
IEKF 0.09 
PSO 0.57 

 

For evaluating the performance of the proposed algorithms in various values of real CFO, we present 
the MSE of CFO estimation curves versus the real CFO (e ). Figures 5 and 6 show these curves for two 
different values of SNR for the IEKF and PSO method respectively.  

 
Fig. 5. MSE of CFO estimation by IEKF versus real CFO (e ) for two different values of SNR 

 
Fig. 6. MSE of CFO estimation by PSO versus real CFO (e ) for two different values of SNR 

 

Consider that the CFO has been normalized to the subcarrier spacing. The algorithms have been run 
with 1000 iterations for each frequency offset in SNR equal to 10 or 20 dB. As can be seen, from these 
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figures, the previous results according to some selected values of CFO can be generalized to all values of 
CFO. However, the MSE of CFO estimation in the IEKF method becomes less for smaller real CFO. It is 
clear that the acquisition range of the proposed algorithms is at least equal to one subcarrier spacing. 

b) Performance of IEKF for different number of iteration 

The number of iteration is an important parameter in the IEKF algorithm. In Fig. 7, we evaluate the 

effect of number of iteration in the IEKF algorithm. The MSE performance has been obtained for a 2×2 

MIMO-OFDM system and the CFO has been fixed on 0.1. It is obvious that increasing the number of 

iterations improves the performance of the algorithm; nonetheless, what is significant is that with more 

than 10 iterations, the perfect performance is almost provided. Thus, in the related simulations, we have 

set the IEKF iterations to 10. 

 
Fig. 7. MSE of CFO estimation by IEKF versus the number of iterations for two different values of SNR 

c) Investigating on the selection of parameters of PSO algorithm 

In Figs. 8, 9, and 10, we illustrate the effect of inertia weight (w ), maximum iteration  

number maxkæ ö÷ç ÷ç ÷ç ÷çè ø
 and swarm size (m) in the performance of PSO algorithm respectively. The MSE 

performance has been obtained for a 2×2 MIMO-OFDM system with CFO equal to 0.2. As shown in Fig. 
8, changing the interval of inertia weight has little effect on the performance of PSO algorithm. Also, 

regarding Figs. 9 and 10, it is concluded that a choice larger than 10 for maxk  and equal to 15 for the 

swarm size is suitable for getting an appropriate performance.  

d) Performance of estimation of CIR 

In the proposed algorithms, we also estimate the CIR simultaneously. Figure 11 depicts the MSE of 

CIR estimation versus SNR for IEKF and PSO methods in comparison with that of EM method and ideal 

case (with perfectly known CFO). The MIMO-OFDM system has been considered as 2×2 and the real 

CFO is 0.06e= . This comparison demonstrates that the ML CIR estimator used in the proposed 

algorithms tends to the ideal bound, while the EM estimator deviates from them for large SNR. 
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Fig. 8. Investigation of the effect of inertia weight in PSO algorithm by using  

various interval (wend,wstart) in εൌ0.2 
 

 
Fig. 9. Investigation of the effect of iteration number in PSO algorithm 

 

 
Fig. 10. Investigation of the effect of Swarm size in PSO algorithm 
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Fig. 11. The MSE performance of proposed methods in channel estimation in comparison  

with that of EM method and ideal case in εൌ0.06 
 

5. CONCLUSION 
 
In this paper, we proposed a novel iterative carrier frequency offset estimation algorithm based on the 
EKF algorithm and multi-antenna channel ML estimation for MIMO-OFDM systems. In the proposed 
scheme, we implement the EKF updating steps on the number of receive antennas and, after each cycle, 
the last estimated CFO of EKF is fed back to the estimator iteratively. The PSO algorithm was also used 
for CFO ML estimation. The proposed algorithms not only outperform the EM algorithm, but also have 
much lower computational complexity. The performance of our estimators was investigated by computer 
simulations and benchmarked with CRB. Simulation results show that the accuracy of the proposed 
algorithms is close to the CRB.  
 

NOMENCLATURE 
 
MIMO  multiple-input multiple-output 
OFDM  orthogonal frequency division multiplexing 
WLANs  wireless local area networks 
WMANs wireless metropolitan area networks 
CFO  carrier frequency offset 
ICI  inter-carrier interference 
CIR  channel impulse response  
SISO  single-input single-output 
ML  maximum-likelihood  
EM  expectation-maximization  
EKF  extended Kalman filter  
PSO  particle swarm optimization 
FFT  fast Fourier-transform 
IFFT  inverse fast Fourier-transform 
ISI  inter-symbol interference  
RF  radio frequency 
P/S  parallel-to-serial 
S/P  serial –to-parallel 
IEKF  iterative extended Kalman filter  
MSE  mean square error 
GA  genetic algorithm  
SNR  signal-to-noise-ratio  
PDP  power delay profile 
CRB  Cramer Rao bound 
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