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Abstract

In this paper, first a new homotopy perturbation method for solving a fractional order nonlinear telegraph equation
is introduced. By applying the proposed method, the nonlinear equation is translated to linear equations for per
iteration of homotopy perturbation method. Then, the obtained problems are solved with separation method. In the
examples, it is illustrated that the exact solution is obtained in one iteration by conveniently separating source term

of equation.
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1. Introduction

The use of fractional telegraph equation has
become increasingly popular in recent years. The
fractional telegraph equation has recently been
considered by several authors. (Ford et al. 2013)
proposed a finite difference method for the two-
parameter fractional telegraph equation and a
stability condition of the numerical method is
obtained. (Orsingher and Zhao (2003) discussed the
numerical solution of the time-space fractional
order telegraph equation.

(Orsingher and Beghin (2004) studied the
fundamental solutions to time-fractional telegraph
equations of order 2a. Recently, (Garg et al. (2013),
considered space-time fractional telegraph equation
with composite fractional derivative with respect to
time and Riesz-Feller fractional derivative with
respect to space.

The analytical solutions of fractional telegraph
equation have been reported in literature. (Chen et
al. (2008) proposed a method of separating
variables for solving a linear time-fractional
telegraph equation.

(Fino and Ibrahim (2013) proposed the analytical
solutions of fractional telegraph equation under
inhomogeneous Dirichlet and Neumann boundary
conditions. The reproducing kernel theorem was
used to solve the time-fractional telegraph equation
with Robin boundary value conditions by (Jiang
and Lin 2011).
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The homotopy perturbation method was first
proposed by the Chinese mathematician (He 1999).
Considerable research work has been conducted
recently in applying the homotopy perturbation
method to a class of linear and non-linear equations
including (Chakraverty and Behera (2013), (Demir
et al. (2013) and (Chowdhury et al. (2013). The
Laplace transform method has been applied to a
wide class of ordinary differential equations, partial
differential equations, integral equations and
integro-differential equations. In these problems it
is necessary to calculate the Laplace transform and
inverse Laplace transform of certain functions. The
inverse of Laplace transform is usually difficult to
compute by using the techniques of complex
analysis, and there exist numerous numerical
methods for its evaluation (Ouloin et al. 2013).

Fractional differential equations have been the
focus of many studies due to their frequent
appearance in various applications in fluid
mechanics, biology, physics and engineering
(Dimovski 1990, Samko et al. 1993). In (Zhao and
Deng 2014), a novel predictor-corrector method,
called Jacobian-predictor-corrector approach, for
the numerical solutions of fractional ordinary
differential equations, which are based on the
polynomial interpolation, was presented. (Yang et
al. (2013) proposed the Cantor-type cylindrical-
coordinate method in order to investigate a family
of local fractional differential operators on Cantor
sets. In (Chalco-Cano, et al. 2013), the authors
studied an initial value problem for a fractional
differential equation using the Riemann-Liouville
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fractional derivative.

In this paper, a new modified homotopy
perturbation technique is used to convert the
fractional nonlinear telegraph equation to fractional
linear telegraph in per iteration of modified
homotopy perturbation method (MHPM). By using
separation of variables the obtained linear problems
are solved analytically.

2. Background theory

We begin by stating some preliminary definitions
from fractional calculus. There exist different
approaches to fractional derivatives (Dimovski
1990, Samko et al. 1993).

Definition 1. (Dimovski 1990) A function f:R —
R* is said to be in the spaceC,,, with v € R, if it can
be written as f(x) = xPf;(x) with p > v, fi(x) €
C[0,00) and it is said to be in the space C]* if
f e ¢, form € N U{0}.

Definition 2. (Luchko and Gorenflo 1999) The
Riemann-Liouville fractional integral of f € C,
with order « > 0 and v = —1 is defined as:

Jef (t)—r( )j t -2)“*f (0)dr,

a>0,t >0,
J% (t)=f (t) M

Definition3. (Podlubny 1998) The Riemann-
Liouville fractional derivative of f € C™ with
order @ > 0and m € N U{ 0}, is defined as:

DEF (D)= T 1), @)

m—-1l<a<m, meN.

Definition 4. (Podlubny 1998) The Caputo
fractional derivative of f € C™ with order a >
O0and m € N U{ 0}, is defined as:

JfME),m-1l<a<m,meN
D7 f(t) =9 d" f(1)

—_— a=m

dtm (3)

Definition 5. (Podlubny 1998) A two-parameter
Mittag-Leffler function is defined by the following
series

o tk
Eqp(t) = Zk:om- 4)

Definition 6. (Luchko and Gorenflo 1999) A

multivariate Mittag-Leffler function is defined as
E(a1,az.-~~.an),b (21,22, ,2)

g .

: ®)
p IRt N PSR F(b.,.ZaJ )

where b > 0, 1,15, , 1, =,|z;| < »,i =1,2,-

Definition 7. Let us define the Laplace-transform
(LT) operator ¢ on a function u(x,t), (t = 0) by

$lu (x byt —93}::I:e_“lj(x,t)dt ©6)

and denote it by ¢@{u(x,t);t~ s} = L(u(x,1t)),
where s is the LT parameter. For our purpose here,
we shall take s to be real and positive.

Consequently, the LT of Mittag-Leffler function
has the following form:

l(Emﬂﬁ»:IwE“Emﬁamt

gs k+1F(ak + ,8) (7)

Lemma 2.1. (Luchko and Gorenflo 1999) Let
W> g > Py > > Uy 20,m —1 <y <
mi,miEN():NU{O}, diER,iz
1,2, ...,n.Consider the initial value problem

-2 A(D"y)(z) = g(x),
i=1
y"(0)=c, e Rk=01...,m-1lm-1<u<m,
where the function g(x) is assumed to lie in C_,, if
U EN,in CL,, if u & N and the unknown function

y(x) is to be determined in the space C™. This has
solution

m-1

YO = Yy () + ) (), x 20,
k=0
where

yy(x) = f th-1 Eyu(t)g(x —t)dt
0

and
WK
u (x) = M -+ Zld xcou SR G4
k=0,1,..,m-1,

fulfills the initial conditions
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Ulgl)(O) :5k| ,k,l :O,l,..., m_l.
The function
E(~),o‘(x) = E(y—yl,...,,u—,un),o-(dlxy_y1 1ty dnxﬂ_ﬂn)

is a particular case of the multivariate Mittag-
Leffler function (Luchko and Gorenflo 1999) and
the natural numbers [,k =0,1,..,m—1, are
determined from the condition

{mlk = k+ 1,
my 1 < k.

In the case m; < k,i =1,2,...,n, we set [;: =0,
andifm; 2 k+1,i=12,..,nthenl;:=n.

3. Modified homotopy perturbation method

The homotopy perturbation method is power and an
effective method for solving nonlinear problems.
There are several modification of this method.

In this paper, for solving the fractional nonlinear
telegraph equation

2
DZ%u(x,t) + aDfu(x,t) = K% +

h(u(x, t)) + f(x, ), (8)

with given initial and inhomogeneous boundary
conditions, we first apply a proper transformation
such as u(x,t) = W(x,t) + V(x,t) for converting
the inhomogeneous boundary conditions for
homogeneous boundary conditions that result in

2
D*W (x,t) + aDEW (x,t) = K 220

h(W(x,t) +V(x, 1) + f(x,0). 9)

Now, for solving (9) we apply a MHPM as
follow:

DZ*W (x,t) + aDfW (x, t)
_ IV L e
- axz 14 ( (xP )
+V(x,1t))

+(xt) + pfa(x, ), (10)

wheref; (x,t) + f(x,t) = f(x,t), p is imbedding
parameter that varies from zero to one. By
assuming W(x,t) = X2, W; (x, t)p and
substituting it in (10), we obtain

D2W, (X ,t)+aDAW, (X ,t)
_k WD) e ),
ox
Wo(x ,0)=g,(x),
p°:y Wy (x,0)=g,(x),
0<x <X,

W,(0,t)=0, W,(X ,t)=0,
t>0,

(11)

D2W, (x ,t)+aDW, (X ,t)
oW, (x ,t
L
1. Wl(X,O)ZO, Mll)t (X,O)ZO, (12)
10<x <X,
W,(0,t)=0, W,(X ,t)=0,
t >0,

+,(x 1) +A,,

DXW, (x ,t)+aDW, (x,t)
oW, (x ,t)
aXZ
W, (x,0=0, @), (x,0)=0, (13)

| 0<x <X,
W, (0,t)=0, W, (X ,t)=0,
t >0,

=K +A 4,

whered,, k =0,1,... are Adomian polynomials
and are obtained as:

k ©
A, =§pkh(ENi PV )|,0, k =0,1,.... (14)
i=0

For more details see (Irandoust-Pakchin et al.
2013). All of the obtained problems in (11)-(13) are
linear with homogeneous boundary conditions, so
they can be solved by separation method.

The success of this method is based on the proper
choice f; of source term of £. In the examples it has
been shown that with a proper choice of the f;, the
solution can be obtained in two iterations of
MHPM.

4. Inhomogeneous fractional nonlinear telegraph
equation with Dirichlet boundary condition

In this section, we determine the solution of the
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fractional nonlinear telegraph equation (8) with the
initial and Dirichlet boundary conditions

ux,0)=e(x), u (x,0)=p,(x),
0<x <X,u(0,t)=w,(t), (15)
u(X t)=w,(),t>0.

In order to solve the problem with
inhomogeneous boundary, first it should be
transformed into an homogeneous boundary
condition. For this purpose let

u(x,t) =W(x,t) +V(x,t),
whereW (x, t) is a new unknown function and
vV (X,t) — ¥, (t); Vll(t)

that satisfies the boundary conditions

V0,0 =u(t), V(X,1)=y,(1). (17

The function W (x, t) is satisfied in problem with
homogeneous boundary conditions:

X+ (1), (16)

DXW (x,t)+aDW (x ,t)=

a%/vafé t) +hW 4V )+f (x 1),

W (x,0) =g, (x), W, (x ,0) = g,(x), (18)
0<x <X ,W (0,t)=0W (X ,t)=0,

where

Fou) =1 00+ (OFmO-DFp®)  (g)
+a(Diy 0~ Dy O)]- (O + D)

and

0,(X) = ¢a(x)——[%<0> v1(0)]-14(0),

0:0) =0, (0) 5[0 O~ O] g0
) ).

For solving (18) we use the MHPM and obtain
corresponding  problems  with  homogeneous
boundary conditions in (11)-(13). Now we consider
the method of separation of variables for solving
them. By assuming W,(x,t) = Fy(x)T,(t) and

substituting it in (11), we obtain an ordinary linear
differential equation for Fy(x):

Fo" () + 22Fo(x) = 0, Fp(0) = Fo(X) =0 (21)

and a fractional ordinary linear differential equation
for Ty (t) as follows:

DT, +aDf T, + K £ T, =O0. 22)

The eigenvalues and corresponding
eigenfunctions of Sturm-Liouvill (21) are

n2 2
A= (R () =sin() o
n=1,2,

Now we seek a solution of the inhomogeneous
problem in (11) of the form

Wox.) = 2 (B),Osin (5. ey

We assume that the series can be differentiated
term by term. In order to determine (By),(t), we
expand f;(x,t) as a Fourier series by the
eigenfunctions sin(%) as follows

ry T . NaX

Le)=2 (00N (5. @
n=L

Then

(.0=2 [Fx0sin e o

Substituting (24) and (25) into (11) yields

D%(B,), (t)sm(”ix)+

M

>
Il
LN

D (By), (1)sin () @0

NzX

K( % sin(=—) (Bo)n )

5"’48

>
Il
[N

I
HMS

+i( ) Osin(7):
By orthogonal properties of sin(%), we obtain
D (B,), (t) +aD¢" (By), (t)
) (28)
(—) (Bo)a (1) = (F)a (1),

where



427

1JST (2014) 38A4: 423-433

nmx

2n=1(Bo)n(0) sm(—) = g1(%), (29)

oB . NX
SEMONCEH =60,
which yields

(B, (0) == [/ 5, (0sin (")

(22,0 == [[9.09sin ()

(1)

For each value of n, (28) and (31) make up a
fractional initial value problem.

According to lemma 2.1, the fractional initial
value problem with p=2a,4y =a<1=m,,
U =0=m,, 1, =—a, 1, = —K(r;—n)z, m=2
has the solution

t
(BO)n (t) - I TyilE(;tf/tl i), 1(212417#1 ) ﬂQTH#Q)

0 2
()t —2)d 7 +(By), (0){t + ) Atem

! i=lg+1l (32)
E (u=p, pr= 1), 0+ 1+ =1y (;ilt e ’ﬂ’Ztﬂ 'uz)j|

@), (0){ Wt

i=L+1
E(#*Hlv#*l/z)v]-*l*#*M (ﬂit o, ;tzt o )]

Hence we get the solution of the initial boundary
value problem (11) in the form

Wo(x,t) = Z(B)(t)sln( )

N nzx o « nrz o
=3 sin () [0 g (- (G
n=1

(f), t —7)dz+(By), (0){ + Z 402 @)

i=ly+1

E(a,Za),0+l+2a—,u, (_aI ’_(Y)th ):‘

GBO O tl 2 t1+2a—,u, E
+( )n( ) TR Z ﬂ'i (a.2a) 1414204
at ll i=L+1

car -0y |

In similar way, we can obtain W, k=12, ...
from (12) and (13). Note that in calculating Wy,
the value of A, is known from previous stages.
Then, in spite of the main problem of telegraph, all
of the problems in (11)-(13) are linear and hence

solving them is simple with respect to the main
problem.

Note that an important observation that can be
made here is that the success of the proposed
methods depends mainly on the proper choice of
the functions fiand f,. Furthermore, this proper
selection of the components f; and f, may provide
the solution only in two iterations of MHPM.

In this section, the solution of the fractional
nonlinear telegraph equation (8) is determined with
the initial and Neumann boundary conditions

u(x,0)=¢(x), u.(x,0)=g¢(x),
0<x <X, (34)
u, 0,t) =y (t), u, (X t)=y,(t),t =0

where ¢, (x), ¢,(x), Y,(t), P,(t) are as defined
in section 4.
In order to solve the problem assume that
u(x, t) = W(x,t) + V(x,0),

where W (x, t) is a new unknown function and
V(X t) ‘//2 (t) l//l( ) X2 +l//1(t)X, (35)

that fulfills the boundary conditions

V.0, =p1@), V(X ) =w,@1). @6

The function W (x, t) is satisfied in the problem
with homogeneous boundary conditions:

D2W (x,t)+aDW (x,t) =
K Wmuﬁ V) +F L),

W (x,0) = g, ()W, (x ,0) = g, (), S
0<x <X,
W, (0,t)=0W (X ,t)=0,
t >0,

where

FOxt)= )+ oo [ (D9 ()= Dwy(t) + (38)
a( Dy, (1) - Dy, (1)) |-(DEwy (1) + Dey (1))

and

(X)) =4(x)— [’/’2 O (O)] v(0), (39)

9, (N =¢(x)- [(wz)t(O) () (0)]- (), 0).
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) where

For solving (37) we use MHPM

DEW(x,t)+aDAW(x,t) = >-(8),(0)00s(37) = 6,(x), @)

aZ\N(x 1)

o TP @ SEHOwsG=00 @
+f.(x,t)+pf,(x,t).
(X0 +pl(x1) which yields
g WD =SW(x.t)p and 2 (x N7X

By assuming (x,1) ; L(x,0)p' an (Bo)n(o)zfjo gl(x)cos(xi)dx,
substituting it in (40), we again obtain fractional (49)

linear problems (11)-(13) with homogeneous
boundary conditions.

With a similar manner in section 4, we solve the
corresponding homogeneous equation in (11) by the
method of separation of variables.

In this situation the eigenvalues and
eigenfunctions:

2 2

Xz’

N7zX

A = (F),(x)= cos(—) n=12,.. (41)

Now we seek a solution of the inhomogeneous
problem in (11) of the form

W) =2 (B), Ocos(5).

In order to determine (Bg),(t), we expand
fi(x,t) as a Fourier series by the eigenfunctions
nmx
cos(T) as follows

L) =2 (0.0csC) @

Then

(0,0 =2 [FxoosPyox

Substituting (42)-(43) into (11) yields

3'D%(B,), ()oos(") +aZD B,). (t)cos("X)
= X X7 @)
Z —*( r)](” cos(%) +Z t)cos(")

By orthogonality properties of cos(%), we get
tha(Bo)n (t)+abD”(By), (t)
nrx ~
K (7)2(80)n (t) =(f.), ),

(46)

(0,0 =2 [} 9 ) cos (T,

For each value of n, (46) and (49) make up a
fractional initial value problem.

According to lemma 2.1, the fractional initial
value problem with u=2a,u =a<1=m,,
Up=0=my A =—a, 2, =-KE)? m=2
has the solution

(BO)n (t) = J.; TluilE(,”_/-‘lr.u_#Z)rl
Az, e e )(f ), (t —7)d 7+

2

@0©F+ZMW”

i=lg+1

o (50)
E(ﬂ—;ﬁ,u—ﬂz),0+l+ﬂ—#i (ﬂ'ltﬂ " JQt# ﬂz)]
2
680 ) (0) { Z /’i1tl+/—l_/1i
i=l;+1

E(/“/"l_ﬂz)vl+1+#_ﬂi (ﬂit o ! ﬂQt s )]

Hence we get the solution of the initial boundary
value problem (11) in the form

nzx

W, (x ,t)=i(80) Ocos()
=3 008 ([ 7 (a5 - (G5) - (51)

n=l

(f),t —0)dz+(B,), (o){ + Z A02en

i=lg+1l

« N o oB
E amosnn (2~ (0 )} %0),0

2 1+2a—14 a nz 24 2a
1| Z ﬂ’it E(a 2a) 1+1+2a-14 (_at _(7) t ) .

i=l+1

In a similar way, we can obtain W,, k = 1,2, ...
from (12)-(13). Note that in calculating W, the
value of A is known from previous stages. So, in
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spite of the main problem of telegraph, all of the
problems in (11)-(13) are linear with homogeneous
boundary conditions.

5. Examples

In this section, we consider two examples with
different initial and boundary conditions and source
term. We show that by suitable selecting f; and f,
in source term, the exact solution is obtained in two
iterations of MHPM.

Example 1.
Consider the fractional nonlinear telegraph equation
D2u(x,t)+aD u(x,t)

62u (x,t) (2)
ox?

+sin(u(x,t))+f (x,t),
with the initial and Dirichlet boundary conditions

u(x,0)=sin(bzx)+1, u,(x,0)=x, 0<x <1, (53)
u (0t)=1 u(t)=t+1 t=>0,

where
f(x,t)
—sin (50| 2L+ e
I'(y, +1-2a)
1sa Y ey vt 4
I'(y, +1-)
1—‘(}/24—1) Sa 1—‘(7/24—1) tyz—a
I'(y,+1-2a) I'(y,+1-a)
t1—2a tl—a
+X2( + ) —sin ((2t" +5t" +1)
I2-2a I'2-a

xsin (57x) +tx +1).

In order to solve the problem, we first transform it
into a homogeneous boundary condition. For this
purpose, let

u(x,t)=W(x,t)+V (x,t) =W (x,t) +tx+1,

where W (x,t) is a new unknown function and is
satisfied in problem with homogeneous boundary
conditions:

DXW (x,t)+aDW (x,t)

aWa)fx t)+sm W 4V )+ (x,t),

W (x,0)=sin(5zx), W, (x,0)= 0,0<x <1, (54
W (0,t)=0 W (Lt)=0 .

where

f(x,t)
o C(y,+1) 2
=sin (57x) {2—1“(7/1 1120 t

C(x+1)
I'y,+1-a)

+5a T

F(yZ +1) t}/z*Z(x

+K(Br)? (2t +5t7 +1)+2
G V2R T2a)

+5a r(72 +1) tVz—a:|

I'(y,+1-a)
—sin((2t™ +5t" +1)sin (5zX) +tx +1).
For solving (54), we apply MHPM
D2“W (x,t) +aDW (x,t)
K W)

X (55)

+ psin(W +V)

+ f,(x,t)+ p F,(x,1).

By assuming \/\/(x,t):iV\li(X,t)pi and

substltutmg itin (55) we obtaln (11)-(12).
Where f(X t)= f, () + f, ,(X,1) and

f,(x,1)
. I'(y, +1)
=sin (5 2— = 7
in ”X)[ T (7, +1-2a)
r(?’l +1)
I'(y, +1—a)
2 r(yZ +1) ty2—2a a 1—‘(7/2 +1) t72‘0‘
I'(y, +1-2a) I'(y,+1-a)
f,(x,t) =—sin ((2t" +5t72 +1)sin (52) +tx+1)

n-2a

+5a t/"7% + K(57)2 (2t +5t7 +1)

and

6 (X) =sin(57), g,(x)=0.

We solve the corresponding homogeneous
equation in (11) by the method of separation of
variables. With similar calculation in section 4 we
obtain a Sturm-Liouville problem and an ordinary
linear differential equation with respect to x and t
respectively. The eigenvalues and eigenfunctions of
obtained Sturm-Liouville are,

Ay =0, (Fy)y(X)

. (56)
=sin(n2x), n=1,2,...
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Now we seek a solution of the inhomogeneous 0B, .
problem in (11) of the form Z( ), (0)sin (nzx) =0, (61)
Wo (X't) = Z(Bo)n (t)Sin (nﬂX) (57) (Bp)n(0) =2 fol sin( 57x) sin(nmx)dx =
n= 1, n=5,
By substituting this in (11) and using of (62)

arguments in section 4 we have
> D (B,), (t)sin ()
n=1
D (B,), ®)si
+ay D*(B,), (t)sin (n2x) )
— K(n7z)?sin (n7) (By),, ()

+
M 2D

(), (© sin(nx),

Il
LN

n

where
(1,0 =% [T, 0sin (r0) ox

_JH(®), n=5
10, n#5
with
1_‘(7/1 +1) —2a
Ht)=2——* "~ _tn
® I'(y, +1-2a)

1—‘(71 +1)
'y, +1-«a)
+K (57)% (2t +5t72 +1)

F(}/Z +1) t;/z—Za

I'(y, +1-2a)

I(y, +1)
I'(y,+1-«a)

n-a

+5a

V2—a&

By orthogonal properties of sin(=>), from (58)
we have

tha (Bo)n (t) + aDta (Bo)n (t)

0: (59)
+K(nz)?(By), (t) = (f)), (1),
where
3 (By), (0)sin (nx) =sin (572x), (60)

0, n=#5,

GO0 =0.
For each value of n, (59) and (62) make up a
fractional initial value problem. According to

lemma 2.1, the fractional of this problem has the
solution

(B).(0)

()( )df+( 1).(0)

Za_lE(a 20,24 (AT, —K(n7)* 7

(—ar”,~k(nz)**) (63)

O

H(t 7), n=>5,
dr
n=b,

0, n¢5

Taking the Laplace transform from both sides of
(63), we get

L[(B,).(1)]=0, n=5 (64)
and
L [(B )s (t)] (65)

LU T2 0 (-ar® ,—K(67)? 7% H(t-7)de]
+ L[]

-L[g, (-at” ,— K Gz)t>) L[H (t)]+—

(a,2a).2a

| ok (-at?)t (K (5m) )<t
‘LLZ;Z;[ JF(2a+Ila+(k I)Za)}

><L[H(t)]+%

o K (k) (—a)k (— 2\ k-,
st
<L[H 0]+
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1 & (—K(57r)) K
?Z 52 (K(5 )? 1)
[H(t)]+f
1 1

T KGR, as”
= KEap
x(2 r(71+1) +2a 1—‘(7/1"‘1)

Sy1—2a+1 571 —a+l

+1)

1_‘(7/2"'1) 5 1_‘(7/24_1)_i_K(sz_)Z

S yo—2a+1 S yo—a+l

[2 TGa+D) , T0r +1)}) !

S n+l S 7o+l

21“(7/1 +1) N 5I(y, +1) 1

S n+l S 7o+l S

From (64) and (65), we get

2t +5t2 +1 n=5,
0, n=>5.

(Bo)n(0) = {

Therefore, we have
W, (X,t) = (2t +5t" +1)sin (57x).

Again by arguments in section 4, we have

W), (x,t)=0,i=1,2,...

Then, the exact solution of the fractional
nonlinear telegraph equation given in example 1 is

u(x,t) =(2t" +5t” +1)sin (52x) + tx +1.

Example 2. Consider the fractional nonlinear
telegraph equation

D *u (x t)+aDfu(x,t)

=K +u?(x,t)+ f(x,1),

with the initial and Neumann boundary conditions
u(z,0) = cos(3rz) + , u,(2,0) = 2%, 0 <z <1,
u,(0,2) =1 u,Lt)=2t+1 ¢>0

(67)

and

- CB+Y)  poa,, T(B+Y) 4,
f(X't)‘Cos(sﬂx){r(,aufza)tﬂ A Gea)
C(y+1) |72 4 g ['(y+1) )
[(y+1-2a) [(y+1l-a)

+K@r)2(t? +1)]+ COS(SHX){

1-2a tla
K@n)* tﬂ)]”(r(z 20) T2-a)

—[(tﬁ +1)cos (3x) +17 cos (5x7) +1x? + x[.

By assuming
u(x,t) =W(x,t)+V (X,t) =W (X, 1) + b + X,
we get

D2W (x,t)+aDW (x,t)

W (X )+t x )2+ (). ©8)

W (x,0) =cos(37x ), W, (x,0)=0 ,
W, (0t)=0, W, (Lt)=0, t=>0,

where
F(x,1) = cos(3m) {F(;(ﬂf_l;a)t p-aa

+a7r(rﬂ(f Il) S K@ +1)}

+c0s(57x) _TG+D) 72« +a7r(y +1) tre
T'(y+1-2a) I'y+1l-a)

+K(32)2(t")]
- [tﬂ +1) cos(3xx) +17 cos(5x7)

+1x? +x]2.
For solving (68) we use MHPM
DZ“W (X, t)+aDfW(x, t)
oW (X, t) -
———+ph(W+V)

+ T, (x,0)+ pf, (X, 1),

Kk (69)

By assuming W(x,t) =X2,W; (x,t)p' and
substituting it in (69), we again obtain
corresponding (11)-(13), where

9,(X) =cos(3), g,(x)=0

and
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r(s+1)
[(B+1-2a)

fL(x,t) = COS(371X){ p-2a

+[F(Fﬂ(ﬁ;rl) U K@ 4

I'(y+1)
I'(y+1-2a)

y—2a

+ cos(Snx){

I'(y+1)
I'y+1l-a)
f,(x,t)= —[(t/’ +1) cos(3x7) +t7 cos(5x7)

G K(37r)2(t'3)}

2
0+ x|

]

Similar progress in example 1, we first apply

separation method for the

corresponding

homogeneous equation in (11). The eigenvalue and
eigenfunction of obtained Sturm-Liouville problem

are
A =n?m?, (F)n(x) = cos(nnx), n=12,... (70)
By assuming
Wo(x,t) = Z7-1(Bo)n(t) cos(nmx). (71)
and substituting in (11) we get
DE* (By), (1) + DY (B, () )
+k(n7)(By), (1) = (1), (1),
where
Y 1(Bo)n(0) cos(nmx) = cos(3mx), (73)
i 1(52,(0) cos(nmx) = 0, (74)
which yields

2 rl 5 n=3
(By),(0) _I_[Ocos(Bzzx) cos(nzx) dx_{oy =3
(B'9)n(0) =0, (75)

where
(£, =2[ F,(x,t) cos(n) dx
H({t), n=3
=4 G(t), n=5
0, n=35,
with

_ TB+)
H(t)_l"(ﬁ+1 20)

+a%tﬂ “ k@) +1),
__ T(r+))
e = 'y +1-2a)

+k (B (t).

B-2a

y—2a

a r(}/ + 1) t}/—a
I'y+1l-a)

By apply lemma 2.1, we have

(B).(t) = [, 7E,,, ,,(-az", ~K(nz)*1)
%@ ,),(0)

(—ar”,—K(nx)*r*

7)dr + (B

X(
=J. a2a , 2a
H(t-7), n=23
xq G(t—-7), n=5 dr

0, n#35

5 n=3
* 0, n=#3.

(76)

Taking the Laplace transform from both sides of

(76) we get

L[(Bo)n(®)] =0, n#3,5

and
L[(B,)s(®)]

= LU 2ot E, (—ar“,—K(37r)zrz“)

H(t-7)dr]+ L[5]
= 1[B, (-0t ~K(3) t?”)}
<L[H()] +§

« i (k o 2 42a\k-}
_ (ot (KB

1

2 (m +

N s (78)
From (77) and (78), we get

(77)
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t’+5, n=3
(By)n () =11, n=5
0, n=35.

Therefore, the solution of (11) given the
Neumann boundary conditions is in the form:

W, (X, t) = (t” +5)cos(32x) +t” cos(52x).

Again with similar progress in example 1, and by
some computations, we obtain

W) (x,t) =0, i=1,2,...

Then the exact solution of the fractional nonlinear
telegraph equation (66) with given conditions in
(68) is

u(x,t) = (t” +5)cos(32x) +t7 cos(57x) +tx2 + X.

6. Conclusions

In this paper, we considered the fractional nonlinear
telegraph equation with Dirichlet and Neumann
boundary conditions. Analytical solutions were
obtained in both cases by using MHPM and
separation method. We derived the exact solutions
in the closed form for the two problems. We
assume is possible to applying the proposed method
for other boundary conditions such as Robin
boundary condition.
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