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Abstract 

In this paper, first a new homotopy perturbation method for solving a fractional order nonlinear telegraph equation 

is introduced. By applying the proposed method, the nonlinear equation is translated to linear equations for per 

iteration of homotopy perturbation method. Then, the obtained problems are solved with separation method. In the 

examples, it is illustrated that the exact solution is obtained in one iteration by conveniently separating source term 

of equation. 
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1. Introduction 

The use of fractional telegraph equation has 

become increasingly popular in recent years. The 

fractional telegraph equation has recently been 

considered by several authors. (Ford et al. 2013) 

proposed a finite difference method for the two-

parameter fractional telegraph equation and a 

stability condition of the numerical method is 

obtained. (Orsingher and Zhao (2003) discussed the 

numerical solution of the time-space fractional 

order telegraph equation. 

(Orsingher and Beghin (2004) studied the 

fundamental solutions to time-fractional telegraph 

equations of order 2𝛼. Recently, (Garg et al. (2013), 

considered space-time fractional telegraph equation 

with composite fractional derivative with respect to 

time and Riesz-Feller fractional derivative with 

respect to space. 

The analytical solutions of fractional telegraph 

equation have been reported in literature. (Chen et 

al. (2008) proposed a method of separating 

variables for solving a linear time-fractional 

telegraph equation. 

(Fino and Ibrahim (2013) proposed the analytical 

solutions of fractional telegraph equation under 

inhomogeneous Dirichlet and Neumann boundary 

conditions. The reproducing kernel theorem was 

used to solve the time-fractional telegraph equation 

with Robin boundary value conditions by (Jiang 

and Lin 2011).  
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The homotopy perturbation method was first 

proposed by the Chinese mathematician (He 1999). 

Considerable research work has been conducted 

recently in applying the homotopy perturbation 

method to a class of linear and non-linear equations 

including (Chakraverty and Behera (2013), (Demir 

et al. (2013) and (Chowdhury et al. (2013). The 

Laplace transform method has been applied to a 

wide class of ordinary differential equations, partial 

differential equations, integral equations and 

integro-differential equations. In these problems it 

is necessary to calculate the Laplace transform and 

inverse Laplace transform of certain functions. The 

inverse of Laplace transform is usually difficult to 

compute by using the techniques of complex 

analysis, and there exist numerous numerical 

methods for its evaluation (Ouloin et al. 2013).  

Fractional differential equations have been the 

focus of many studies due to their frequent 

appearance in various applications in fluid 

mechanics, biology, physics and engineering 

(Dimovski 1990, Samko et al. 1993). In (Zhao and 

Deng 2014), a novel predictor-corrector method, 

called Jacobian-predictor-corrector approach, for 

the numerical solutions of fractional ordinary 

differential equations, which are based on the 

polynomial interpolation, was presented. (Yang et 

al. (2013) proposed the Cantor-type cylindrical-

coordinate method in order to investigate a family 

of local fractional differential operators on Cantor 

sets. In (Chalco-Cano, et al. 2013), the authors 

studied an initial value problem for a fractional 

differential equation using the Riemann-Liouville 
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fractional derivative.  

In this paper, a new modified homotopy 

perturbation technique is used to convert the 

fractional nonlinear telegraph equation to fractional 

linear telegraph in per iteration of modified 

homotopy perturbation method (MHPM). By using 

separation of variables the obtained linear problems 

are solved analytically.  

2. Background theory 

We begin by stating some preliminary definitions 

from fractional calculus. There exist different 

approaches to fractional derivatives (Dimovski 

1990, Samko et al. 1993). 

 

Definition 1. (Dimovski 1990) A function 𝑓: 𝑅 →
𝑅+ is said to be in the space𝐶𝜈, with 𝜈 ∈ 𝑅, if it can 

be written as 𝑓(𝑥) = 𝑥𝑝𝑓1(𝑥) with 𝑝 > 𝜈, 𝑓1(𝑥) ∈
𝐶[0, ∞) and it is said to be in the space 𝐶𝜈

𝑚 if 

𝑓(𝑚) ∈ 𝐶𝜈 for 𝑚 ∈ 𝑁 ⋃{ 0}.  

 

Definition 2. (Luchko and Gorenflo 1999) The 

Riemann-Liouville fractional integral of 𝑓 ∈ 𝐶𝜈 

with order 𝛼 > 0 and 𝜈 ≥ −1 is defined as: 
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Definition3. (Podlubny 1998) The Riemann-

Liouville fractional derivative of 𝑓 ∈ 𝐶−1
𝑚  with 

order 𝛼 > 0and 𝑚 ∈ 𝑁 ⋃{ 0}, is defined as:  
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Definition 4. (Podlubny 1998) The Caputo 

fractional derivative of 𝑓 ∈ 𝐶−1
𝑚  with order 𝛼 >

0and 𝑚 ∈ 𝑁 ⋃{ 0}, is defined as: 
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Definition 5. (Podlubny 1998) A two-parameter 

Mittag-Leffler function is defined by the following 

series  

 

𝐸𝛼,𝛽(𝑡) = ∑
𝑡𝑘

𝛤(𝛼𝑘+𝛽)

∞
𝑘=0 .                                       (4) 

 

Definition 6. (Luchko and Gorenflo 1999) A 

multivariate Mittag-Leffler function is defined as  
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where 𝑏 > 0, 𝑙1, 𝑙2, ⋯ , 𝑙𝑛 ≥,|𝑧𝑖| < ∞, 𝑖 = 1,2, ⋯ , 𝑛. 
 

Definition 7. Let us define the Laplace-transform 

(LT) operator 𝜑 on a function  𝑢(𝑥, 𝑡), (𝑡 ≥ 0) by  
 

 
0

( , ); ( , )stu x t t s e u x t dt


              (6) 

 
and denote it by 𝜑{𝑢(𝑥, 𝑡); 𝑡 ↦ 𝑠} = 𝐿(𝑢(𝑥, 𝑡)), 

where 𝑠 is the LT parameter. For our purpose here, 

we shall take 𝑠 to be real and positive.   

Consequently, the LT of Mittag-Leffler function 

has the following form:  
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Lemma 2.1. (Luchko and Gorenflo 1999) Let 

𝜇 > 𝜇1 > 𝜇2 > ⋯ > 𝜇𝑛 ≥ 0, 𝑚𝑖 − 1 < 𝜇𝑖 ≤
𝑚𝑖 , 𝑚𝑖 ∈ 𝑁0 = 𝑁 ⋃{ 0}, 𝑑𝑖 ∈ 𝑅, 𝑖 =
1,2, … , 𝑛.Consider the initial value problem  
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where the function g(x) is assumed to lie in 𝐶−1, if 

𝜇 ∈ 𝑁, in 𝐶−1
1 , if 𝜇 ∉ 𝑁 and the unknown function 

𝑦(𝑥) is to be determined in the space 𝐶−1
𝑚 . This has 

solution 
 

𝑦(𝑥) = 𝑦𝑔(𝑥) + ∑ 𝑐𝑘

𝑚−1

𝑘=0

𝑢𝑘(𝑥), 𝑥 ≥ 0, 

 
where 
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fulfills the initial conditions 
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The function  
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is a particular case of the multivariate Mittag-

Leffler function (Luchko and Gorenflo 1999) and 

the natural numbers 𝑙𝑘, 𝑘 = 0,1, … , 𝑚 − 1, are 

determined from the condition  
 

{
𝑚𝑙𝑘

≥ 𝑘 + 1,

𝑚𝑙𝑘+1 ≤ 𝑘.
 

 
In the case 𝑚𝑖 ≤ 𝑘, 𝑖 = 1,2, … , 𝑛, we set 𝑙𝑘: = 0, 

and if 𝑚𝑖 ≥ 𝑘 + 1, 𝑖 = 1,2, … , 𝑛, then 𝑙𝑘: = 𝑛. 

3. Modified homotopy perturbation method 

The homotopy perturbation method is power and an 

effective method for solving nonlinear problems. 

There are several modification of this method.  

In this paper, for solving the fractional nonlinear 

telegraph equation  
 

𝐷𝑡
2𝛼𝑢(𝑥, 𝑡) + 𝑎𝐷𝑡

𝛼𝑢(𝑥, 𝑡) = 𝐾
𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2 +

ℎ(𝑢(𝑥, 𝑡)) + 𝑓(𝑥, 𝑡),                                             (8) 
 
with given initial and inhomogeneous boundary 

conditions, we first apply a proper transformation 

such as 𝑢(𝑥, 𝑡) = 𝑊(𝑥, 𝑡) + 𝑉(𝑥, 𝑡) for converting 

the inhomogeneous boundary conditions for 

homogeneous boundary conditions that result in  
 

𝐷𝑡
2𝛼𝑊(𝑥, 𝑡) + 𝑎𝐷𝑡

𝛼𝑊(𝑥, 𝑡) = 𝐾
𝜕2𝑊(𝑥,𝑡)

𝜕𝑥2 +

ℎ(𝑊(𝑥, 𝑡) + 𝑉(𝑥, 𝑡))   + 𝑓(𝑥, 𝑡).                         (9) 
 

Now, for solving (9) we apply a MHPM as 

follow:  
 

𝐷𝑡
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                                    +𝑓1(𝑥, 𝑡) + 𝑝𝑓2(𝑥, 𝑡),          (10) 
 

where𝑓1(𝑥, 𝑡) + 𝑓2(𝑥, 𝑡) = 𝑓(𝑥, 𝑡), 𝑝 is imbedding 

parameter that varies from zero to one. By 

assuming 𝑊(𝑥, 𝑡) = ∑ 𝑊𝑖
∞
𝑖=0 (𝑥, 𝑡)𝑝𝑖 and 

substituting it in (10), we obtain  
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where𝐴𝑘, 𝑘 = 0, 1, … are Adomian polynomials 

and are obtained as: 
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For more details see (Irandoust-Pakchin et al. 

2013). All of the obtained problems in (11)-(13) are 

linear with homogeneous boundary conditions, so 

they can be solved by separation method.  

The success of this method is based on the proper 

choice 𝑓1 of source term of 𝑓. In the examples it has 

been shown that with a proper choice of the 𝑓1, the 

solution can be obtained in two iterations of 

MHPM.  

4. Inhomogeneous fractional nonlinear telegraph 

equation with Dirichlet boundary condition 

In this section, we determine the solution of the 
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fractional nonlinear telegraph equation (8) with the 

initial and Dirichlet boundary conditions  
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In order to solve the problem with 

inhomogeneous boundary, first it should be 

transformed into an homogeneous boundary 

condition. For this purpose let  
 
𝑢(𝑥, 𝑡) = 𝑊(𝑥, 𝑡) + 𝑉(𝑥, 𝑡), 
 
where𝑊(𝑥, 𝑡) is a new unknown function and  
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For solving (18) we use the MHPM and obtain 

corresponding problems with homogeneous 

boundary conditions in (11)-(13). Now we consider 

the method of separation of variables for solving 

them. By assuming 𝑊0(𝑥, 𝑡) = 𝐹0(𝑥)𝑇0(𝑡) and 

substituting it in (11), we obtain an ordinary linear 

differential equation for 𝐹0(𝑥):  
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′′(𝑥) + 𝜆2𝐹0(𝑥) = 0, 𝐹0(0) = 𝐹0(𝑋) = 0     (21) 
 
and a fractional ordinary linear differential equation 

for 𝑇0(𝑡) as follows:  
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eigenfunctions of Sturm-Liouvill (21) are  
 

2 2

02
, ( ) ( ) sin ( )

1,2,...

n n

n n x
F x

X X

n

 
  



  (23) 

 
Now we seek a solution of the inhomogeneous 

problem in (11) of the form  
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We assume that the series can be differentiated 

term by term. In order to determine (𝐵0)𝑛(𝑡), we 

expand 𝑓1(𝑥, 𝑡) as a Fourier series by the 

eigenfunctions sin(
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) as follows  
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Substituting (24) and (25) into (11) yields  
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By orthogonal properties of sin(
𝑛𝜋𝑥

𝑋
), we obtain  
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∑ (∞
𝑛=1 𝐵0)𝑛(0) sin(

𝑛𝜋𝑥

𝑋
) = 𝑔1(𝑥),                      (29) 

 

),()(sin)0()( 2
1

0 xg
X

xn

t

B

n
n 










                (30) 

 
which yields  
 

,)(sin)(
2
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2
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0
2

0

0
10
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X

xn
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Xt

B

dx
X

xn
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X
B

x

n

x

n
















       (31) 

 
For each value of 𝑛, (28) and (31) make up a 

fractional initial value problem.  

According to lemma 2.1, the fractional initial 

value problem with 𝜇 = 2𝛼, 𝜇1 = 𝛼 ≤ 1 = 𝑚1,

𝜇2 = 0 = 𝑚2, 𝜆1 = −𝑎, 𝜆2 = −𝐾(
𝑛𝜋

𝑋
)2, 𝑚 = 2 

has the solution  
 

1 2
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1
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1
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1
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i
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n
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n
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B t E

t
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E t t

B t
t

t

E t

   
   

 

   
     

 

 
     

   

  

 





 
 

 

 

 

    

 

 



    




  






 

 







2

2, ) .t    

(32) 

 
Hence we get the solution of the initial boundary 

value problem (11) in the form  
 

)(sin)()(),(
1

00
X

xn
tBtxW

n
n







  

 



0

1

2 1 2 2
( ,2 ),2

0
1

0 2
0 2

1 0
1

2 2
( ,2 ),0 1 2

1 2
1 20

( ,2 ),1 1 2
1 1

sin ( ) ( , ( )

( ) ( ) ( ) (0)
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( , ( ) )

( ) (0)
1!

( , (

i

i

i

i

t

n

n n i
i l

n i
i

n x n
E a

X X

t
f t d B t

n
E at t

X

B t
t E

t

n
at

X

  
  

 

 
   

 
   



 
  

  












 

 

  

 

  
 

  


  




  




 

 

 

 





2 2) ) .t  



  (33) 

 
In similar way, we can obtain 𝑊𝑘, 𝑘 = 1,2, … 

from (12) and (13). Note that in calculating 𝑊𝑘+1, 
the value of 𝐴𝑘 is known from previous stages. 

Then, in spite of the main problem of telegraph, all 

of the problems in (11)-(13) are linear and hence 

solving them is simple with respect to the main 

problem.  

Note that an important observation that can be 

made here is that the success of the proposed 

methods depends mainly on the proper choice of 

the functions 𝑓1and 𝑓2. Furthermore, this proper 

selection of the components 𝑓1 and 𝑓2 may provide 

the solution only in two iterations of MHPM.  

In this section, the solution of the fractional 

nonlinear telegraph equation (8) is determined with 

the initial and Neumann boundary conditions  
 

1 2

1 2

( ,0) ( ), ( ,0) ( ),

0 ,

(0, ) ( ), ( , ) ( ), 0

t

x x

u x x u x x

x X

u t t u X t t t

 

 

 

 

  

  (34) 

 
where 𝜙1(𝑥),  𝜙2(𝑥),  𝜓1(𝑡),  𝜓2(𝑡) are as defined 

in section 4.  

In order to solve the problem assume that  
 

𝑢(𝑥, 𝑡) = �̃�(𝑥, 𝑡) + �̃�(𝑥, 𝑡), 
 

where �̃�(𝑥, 𝑡) is a new unknown function and  
 

,)(
2

)()(
),(

~
1

212 xtx
X

tt
txV 





          (35) 

 
that fulfills the boundary conditions  
 

).(),(
~

,)(),0(
~

21 ttXVttV xx              (36) 

 

The function �̃�(𝑥, 𝑡) is satisfied in the problem 

with homogeneous boundary conditions:  
 

2

2

2

1 2

( , ) ( , )

( , )
( ) ( , ),

( ,0) ( ), ( ,0) ( ),

0 ,

(0, ) 0, ( , ) 0,

0,

t t

t

x x

D W x t aD W x t

W x t
k h W V f x t

x

W x g x W x g x

x X

W t W X t

t

   


   
 


 


 
  

 



            (37) 

 
where 
 

2
2 2

1 2

2
1 2 1 1

( , ) ( , ) ( ( ) ( ))
2

( ( ) ( )) ( ( ) ( ))

t t

t t t t

x
f x t f x t D t D t

X

a D t D t D t D t

 

   

 

   

   

  

 (38) 

 
and 
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2
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),0()0()0(
2
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112

2
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ttt
X

x
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X

x
xxg








(39) 
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For solving (37) we use MHPM  
 

2

2

2

1 2

( , ) ( , )

( , )
( )

( , ) ( , ).

t tD W x t aD W x t

W x t
K ph W V

x

f x t pf x t

  


 



 

                      (40) 

 

By assuming 
i

i
i ptxWtxW ),(

~
),(

~

0






  and 

substituting it in (40), we again obtain fractional 

linear problems (11)-(13) with homogeneous 

boundary conditions.  

With a similar manner in section 4, we solve the 

corresponding homogeneous equation in (11) by the 

method of separation of variables.  

In this situation the eigenvalues and 

eigenfunctions: 
 

2 2

02
, ( ) ( ) cos( ), 1,2,....n n

n n x
F x n

X X

 
     (41) 

 
Now we seek a solution of the inhomogeneous 

problem in (11) of the form  
 

).(cos)()(),(
~

1
00

X

xn
tBtxW

n
n







                (42) 

 
In order to determine (𝐵0)𝑛(𝑡), we expand 

𝑓1(𝑥, 𝑡) as a Fourier series by the eigenfunctions 

cos(
𝑛𝜋𝑥

𝑋
) as follows  

 







1

11 ),cos()()
~

(),(
~

n
n

X

xn
tftxf


                 (43) 

 
Then 
 


x

n dx
X

xn
txf

X
tf

0
11 .)(cos),(

~2
)()

~
(


         (44) 

 
Substituting (42)-(43) into (11) yields  

 

2
0 0

1 1

2
0 1

1 1
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n n
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n n
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n x n x
D B t a D B t
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n n x n x
k B t f t

X X X

  

  

 

 

 

 



  

 

 

   (45) 

 

By orthogonality properties of cos(
𝑛𝜋𝑥

𝑋
), we get  
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2
0 1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ),

t n t n

n n

D B t aD B t

n
K B t f t
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                    (46) 

 

where 
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1

0 xg
X
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B

n
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                  (47) 











1
2

0 )()cos()0()(
n

n xg
X
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t

B 
                (48) 

 
which yields  
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2
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x

n

x

n

n x
B g x dx

X X

B n x
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t X X















     (49) 

 
For each value of 𝑛, (46) and (49) make up a 

fractional initial value problem.  

According to lemma 2.1, the fractional initial 

value problem with 𝜇 = 2𝛼, 𝜇1 = 𝛼 ≤ 1 = 𝑚1,

𝜇2 = 0 = 𝑚2, 𝜆1 = −𝑎, 𝜆2 = −𝐾(
𝑛𝜋

𝑋
)2, 𝑚 = 2 

has the solution  
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1
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       (50) 

 
Hence we get the solution of the initial boundary 

value problem (11) in the form  
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1
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1

2 1 2 2
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0
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i l
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i
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W x t B t
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n x n
E a
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t
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2 2
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i

n
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X

 
   


  

 
   

 


(51) 

 

In a similar way, we can obtain �̃�𝑘, 𝑘 = 1,2, … 

from (12)-(13). Note that in calculating �̃�𝑘+1 the 

value of 𝐴𝑘 is known from previous stages. So, in 
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spite of the main problem of telegraph, all of the 

problems in (11)-(13) are linear with homogeneous 

boundary conditions.  

5. Examples 

In this section, we consider two examples with 

different initial and boundary conditions and source 

term. We show that by suitable selecting 𝑓1 and 𝑓2 

in source term, the exact solution is obtained in two 

iterations of MHPM.  

 

Example 1. 

Consider the fractional nonlinear telegraph equation  
 

2

2

2

( , ) ( , )

( , )
sin( ( , )) ( , ),

t tD u x t aD u x t

u x t
K u x t f x t

x

 


  



 (52) 

 
with the initial and Dirichlet boundary conditions  
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tu x x u x x x

u t u t t t
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where 
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In order to solve the problem, we first transform it 

into a homogeneous boundary condition. For this 

purpose, let  
 

,1),(),(),(),(  txtxWtxVtxWtxu  

 
where 𝑊(𝑥, 𝑡) is a new unknown function and is 

satisfied in problem with homogeneous boundary 

conditions:  
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   (54) 

 
where 
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For solving (54), we apply MHPM  
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                        (55) 

 

By assuming 





0
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i

i
i ptxWtxW  and 

substituting it in (55), we obtain (11)-(12).  

Where ),(
~

),(
~

),(
~

21 txftxftxf   and  
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and 
 

.0)(,)5(sin)( 21  xgxxg   

 
We solve the corresponding homogeneous 

equation in (11) by the method of separation of 

variables. With similar calculation in section 4 we 

obtain a Sturm-Liouville problem and an ordinary 

linear differential equation with respect to 𝑥 and 𝑡 

respectively. The eigenvalues and eigenfunctions of 

obtained Sturm-Liouville are,  
 

...,2,1,)(sin

)()(, 0
22
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                               (56) 
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Now we seek a solution of the inhomogeneous 

problem in (11) of the form  
 

).(sin)()(),(
1

00 xntBtxW n
n






                 (57) 

 
By substituting this in (11) and using of 

arguments in section 4 we have  
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By orthogonal properties of sin(
𝑛𝜋𝑥

𝑋
), from (58) 

we have  
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(𝐵0)𝑛(0) = 2 ∫ sin(
1

0
5𝜋𝑥) sin( 𝑛𝜋𝑥)𝑑𝑥 =

{
1,   𝑛 = 5,

0,   𝑛 ≠ 5,
                                                       (62) 

 

(
𝜕𝐵0

𝜕𝑡
)𝑛(0) = 0. 

 
For each value of 𝑛, (59) and (62) make up a 

fractional initial value problem. According to 

lemma 2.1, the fractional of this problem has the 

solution  
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Taking the Laplace transform from both sides of 

(63), we get  
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From (64) and (65), we get  
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Therefore, we have  
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Again by arguments in section 4, we have  
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Then, the exact solution of the fractional 

nonlinear telegraph equation given in example 1 is  
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Example 2. Consider the fractional nonlinear 

telegraph equation  
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with the initial and Neumann boundary conditions  
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By assuming  
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For solving (68) we use MHPM  
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By assuming �̃�(𝑥, 𝑡) = ∑ �̃�𝑖
∞
𝑖=0 (𝑥, 𝑡)𝑝𝑖 and 

substituting it in (69), we again obtain 

corresponding (11)-(13), where  
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Similar progress in example 1, we first apply 

separation method for the corresponding 

homogeneous equation in (11). The eigenvalue and 

eigenfunction of obtained Sturm-Liouville problem 

are  
 
𝜆𝑛 = 𝑛2𝜋2,   (𝐹0)𝑛(𝑥) = cos( 𝑛𝜋𝑥),    𝑛 = 1,2, ….    (70) 
 
By assuming 
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𝑛=1 𝐵0)𝑛(𝑡) cos( 𝑛𝜋𝑥).                (71) 

 
and substituting in (11) we get  
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By apply lemma 2.1, we have  
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Taking the Laplace transform from both sides of 

(76) we get  
 
𝐿[(𝐵0)𝑛(𝑡)] = 0,   𝑛 ≠ 3,5                                 (77) 
 
and 
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From (77) and (78), we get  
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Therefore, the solution of (11) given the 

Neumann boundary conditions is in the form:  
 

).5(cos)3(cos)5(),(
~

0 xtxttxW   
 

 
Again with similar progress in example 1, and by 

some computations, we obtain  
 

...,2,1,0),()
~

( 0  itxW i  
 
Then the exact solution of the fractional nonlinear 

telegraph equation (66) with given conditions in 

(68) is  
 

.)5(cos)3(cos)5(),( 2 xtxxtxttxu   

 

6. Conclusions 

In this paper, we considered the fractional nonlinear 

telegraph equation with Dirichlet and Neumann 

boundary conditions. Analytical solutions were 

obtained in both cases by using MHPM and 

separation method. We derived the exact solutions 

in the closed form for the two problems. We 

assume is possible to applying the proposed method 

for other boundary conditions such as Robin 

boundary condition. 
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