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Abstract– This article deals with the study of generalized solution for the vibration of functionally 
graded (FG) microbeam in the context of the dual phase lag model. Numerical results are 
presented for the FG beam subjected to a ramp-type heating and has exponentially varying 
material properties through the thickness. The effect of the ramping time parameter is studied on 
the lateral vibration, temperature, displacement, stress, the moment and the strain energy of the FG 
microbeam. The influence of the thickness of the beam is also analyzed. A comparison of the 
results for different theories is presented. The results obtained theoretically have been computed 
numerically and are presented graphically. Some particular cases are also discussed in the context 
of the problem.           
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1. INTRODUCTION 
 

Thermal stresses arise in many areas and have been subjects of interest. They are frequently important 
factors in determining material life. In coupled thermoelasticity (CTE) theory, if an elastic continuum is 
subjected to a mechanical or thermal disturbance, the effect of the disturbance will be felt instantaneously 
in both fields as governing equations are coupled. Physically, this means that a portion of the disturbance 
has an infinite velocity of propagation. Such behavior is physically inadmissible. Biot [1] developed the 
coupled theory of thermoelasticity to deal with a defect of the uncoupled theory that mechanical causes 
have no effect on the temperature. However, this theory shares a defect of the uncoupled theory in that it 
predicts infinite speeds of propagation for heat waves. This implies that the thermal wave propagates with 
an infinite speed, which is physically unrealistic. Lord and Shulman (LS) [2] proposed a model with one 
relaxation time. They aim to attempt eliminating the paradox of infinite velocity of thermoelastic 
disturbances inherent in the classical CTE. After a few years, Green and Lindsay (GL) [3] formulated a 
more explicit, temperature rate dependent thermoelasticity, model with two relaxation times. 

The dual-phase-lag (DPL) model is proposed by Tzou [4, 5]. The interactions between phonons and 
electrons on the microscopic level is described as retarding sources causing a delayed response on the 
macroscopic scale. For macroscopic formulation, it would be convenient to use the DPL mode for 
investigation of the micro-structural effect on the behavior of heat transfer. The physical meanings and the 
applicability of the DPL mode have been supported by the experimental results (Tzou [6]). 

Many authors have studied the vibration and heat transfer process of beams (Fang et al. [7]). Some of 
them investigated the thermally-induced displacements and stresses of a rod using the Laplace 
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transformation technique (Huniti et al. [8]). Others studied the problem of transverse vibrations of a beam 
induced by a mobile heat source (Kidawa-Kukla [9]). Boley [10], Manolis and Beskos [11], and Rao [12] 
analyzed the vibrations of a simply supported rectangular beam subjected to a suddenly applied heat or 
exposed to rapid surface heating or other heat sources. Misra et al. [13] studied the thermoelastic 
interactions in an elastic half space subjected to a ramp-type heating. 

Functionally graded materials (FGMs) are new inhomogeneous materials which have been widely 
used in many engineering applications such as nuclear reactors and high-speed spacecraft industries [14-
19]. The mechanical properties of FGMs vary smoothly and continuously from one surface to the other. 
Typically these materials are made from a mixture of ceramic and metal or from a combination of 
different materials. The ceramic constituent of the material provides the high-temperature resistance due to 
its low thermal conductivity. The ductile metal constituent on the other hand, prevents fracture caused by 
stresses due to the high temperature gradient in a very short period of time. 

The present paper attempts to study the vibration of FG microbeam induced by ramp-type heating in 
the context of the DPL model. The Laplace transform method is used to determine the lateral vibration, 
temperature, displacement, stress and its moment, and the strain energy of the microbeam. Numerical 
results are presented for the FG beam that is subjected to a ramp-type heating and has exponentially 
varying material properties through the thickness. The effects of the ramping time parameter of thermal 
vibration and phase lags are studied and represented graphically. 
 

2. BASIC EQUATIONS 
 
The DPL proposed by Tzou [6] is such a modification of the classical thermoelastic model in which the 

Fourier law is replaced by an approximation to a modified Fourier law with two different time 

translations: a phase-lag of the heat flux q  and a phase-lag of temperature gradient  . A Taylor series 

approximation of the modified Fourier law, together with the remaining field equations lead to a complete 

system of equations describing a dual-phase-lag thermoelastic model. The model transmits thermoelastic 

disturbance in a wave-like manner if the approximation is linear with respect to q  and  , and 

q <0  , or quadratic in q  and linear in  , with 0>q  and 0> . This theory is developed in a 

rational way to produce a fully consistent theory which is able to incorporate thermal pulse transmission in 

a very logical manner. In equilibrium, the beam is unstrained, unstressed and at temperature 0T  

everywhere. If we assume ),,( tzxT  to be the transient temperature distribution, the transient temperature 

change can be defined as 0TT  , assumed to be such that 1/ 0 T . 

The DPL model proposed by Tzou [6] is a modification of the classical thermoelastic model in which 

the Fourier law is replaced by an approximation of the equation: 

),), ((   tXKt qXq                                           (1) 

where q  is the heat flux vector, K  is thermal conductivity tensor and X  is the position vector. The 
model transmits thermoelastic disturbances in a wave-like manner if Eq. (1) is approximated by 
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Equation (2) together with the energy balance equation for a rigid heat conductor led to the generalized 
hyperbolic heat conduction equation. Then, the general heat conduction equation corresponding to the 
model of thermoelasticity with DPLs takes the form: 
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where eC  is the specific heat per unit mass at constant strain,   is the material density,   is the stress-
temperature modulus, Q  is the heat source and zwyvxue  ///  is the volumetric strain. The 
constitutive equations are given by 

 ,)(2 0 ijijkkijij TTee                                       (4) 

where ij  is the stress tensor and ij  is Kronecker's delta. The strain-displacement relations are given by 
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Let us now recall the well-known relations between Lamé's moduli  ,   and Poisson’s ratio   and 
Young’s modulus E  as 
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Some special cases of thermoelastic theory are given according to the values of all parameters as: 

a) Equation of coupled thermoelasticity (CTE) theory 

The equations CTE theory are obtained when 032  q   and 11  . 

b) Lord and Shulman's (LS) thermoelasticity theory 

For LS theory, 0 , 121  , 03   and 00  q  where 0  is the first relaxation time. 

c) Equations of generalized thermoelasticity with dual phase lag (DPL) theory 

The DPL theory is given by setting 321 1   , 0q  and 0 . 
 

3. FORMULATION OF THE PROBLEM 
 
Beams with rectangular cross-sections are mostly employed in MEMS resonators. A micro-resonator can 
be modeled as an elastic prism beam with either doubly clamped or simply supported ends. Here we 
consider a thin elastic beam with dimensions of length )(0 LxL  , width 2)/2/( bybb   and 
thickness 2)/2/( hzhh  . We define the x-axis along the axis of the beam and the y- and z-axes 
correspond to the width and thickness, respectively. In equilibrium, the beam is unstrained, unstressed and 
at temperature 0T  everywhere. If we assume ),,( tzxT  to be the transient temperature distribution, the 
transient temperature change can be defined as 0TT  . The formulation of the problem is based on 
generalized thermoelasticity without energy dissipation. 

 
Fig. 1. Schematic diagram for the FG microbeam 
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A new model of FGMs is presented to treat the governing equations of the thermoelastic microbeam 
subjected to a ramp-type heating. Based on this model, the effective material property )(zP  gradation 
through the thickness direction is presented by [20, 21] 

 ,/ln,e)( cm
/)2(

m PPnPzP P
hhznP                                              (7) 

where mP  and cP  represent the metal and ceramic properties, respectively. This study assumes that 
Young’s modulus E , material density  , thermal conductivity coefficient K  and the stress-temperature 
modulus   of the FGM change continuously through the thickness direction of the beam according to the 
gradation relation given in Eq. (7). It is to be noted that the material properties of the considered beam are 
metal-rich (fully metal) at the lower surface )2/( hz   and ceramic-rich (fully ceramic) at the upper 
surface )2/( hz   of the beam. 

The beam undergoes bending vibrations of small amplitude about the x-axis such that the deflection 
is consistent with the linear Euler-Bernoulli theory. That is, any plane cross-section initially perpendicular 
to axis of beam remains, plane and perpendicular to the neutral surface during bending. Thus the 
displacements are given by 
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x

w
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


                                          (8) 

where w  is the lateral deflection. Substituting this Euler-Bernoulli assumption into Eq. (8), with the aid of 
Eq. (7), gives the thermal conduction equation for the beam without the heat source )0( Q , as 

              





























zh

n

zx
K Khhzn

m
t

K


2
1e

2

2

2

2
/)2(  

,ee
2

1
2

2

0
/)2(/)2(

2

2
2

321 



























 




x

w
TzC

tt
m

hhznhhzne
mmqq

eC

t
                     (9) 

where mK , m , m  and eCm  are, respectively, the thermal conductivity, the material density, the stress-
temperature modulus, and the specific heat per unit mass at constant strain of the metal material. In 
addition, one gets the relations: 

,/,)2/(1 mmmmmmmm  KCE e                                       (10) 

in which mE  is Young's modulus, m  is the thermal expansion coefficient, m  is Poisson's ratio and 

m  is the thermal diffusivity, all of the metal material. Note that the parameters Kn , n  and eC
n  are 

given in Appendix A. 
There is no heat flow across the upper and lower surfaces of the beam (thermally insulated), so that 

z /  should disappear at the upper and lower surfaces of the beam 2/hz  . For a very thin beam 
(microbeam), assuming that the temperature increment varies sinusoidally along the thickness direction. 
That is 

 .sin),(),,( 1 h
ztxtzx                                                               (11) 

Now, substituting Eq. (11) into Eq. (9) and integrating the resulting equation with respect to z  through 
the beam thickness from 2/h  to 2/h , yields 
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where  , eC  and   are given in Appendix A. 
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The constitutive Eqs. (4) are reduced to the uniaxial tensile stress 
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where En  and En  are given in Appendix A. The flexure moment of the cross-section is given, with the 
aid of Eq. (7), by 
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where E  and E  are given in Appendix A. 
The equation of motion for the microbeam is given by 
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where bhA   is the cross-section area. Substituting Eq. (14) into Eq. (15), one can obtain the motion 
equation as 
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where EEE   /  and mm / Ec  . 

Now, let us consider the two ends of the microbeam are simply-supported: 
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Let us also consider the microbeam is loaded thermally by a ramp-type heating incidents into the 

surface of the microbeam 0x , 
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where 0t  indicates the length of time to rise, the heat is non-negative constant and is called ramp-type 

parameter and 0  is constant, this means that the boundary of the half-space, which is initially at rest and 

has a fixed temperature 0T , is suddenly raised to a temperature equal to the function )(tf  and maintained 

at this temperature from then on. Considering the aspect of rise of time, various authors investigated many 

applications in which the ramp-type heating is used [22, 23]. 

Assuming that the boundary Lx   is thermally insulated, there is no variation of the temperature on 

it. This means that the following relation will be satisfied 
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The governing equations can be put in the dimensionless forms using the following parameters: 
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So, the governing equations and the bending and stress are simplified as (dropping the primes for 
convenience) 
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If the thermoelastic coupling effect is disregarded )0( 4 A , the governing equations consisting of the 
non-Fourier thermal conduction equation and the motion equation of the beam can be expressed as 
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Comparing Eq. (21) with Eq. (25) shows that it is much more difficult to solve the governing equation of 
the CTE case than to solve that of the uncoupled case. 
 

4. SOLUTION IN THE LAPLACE TRANSFORM DOMAIN 
 
In order to solve the problem, both the initial and boundary conditions should be considered. The initial 
conditions of the problem are taken as 
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The closed form solution of the governing and constitutive equations may be possible by adapting the 
Laplace transformation method. Applying the Laplace transform to Eqs. (21), one gets the field equations 
in the Laplace transform space as 
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where an over bar symbol denotes its Laplace transform, s  denotes the Laplace transform parameter. 
Eliminating 1  or w  from Eqs. (27) gives the following differential equation for w or 1 : 
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where the coefficients A , B  and C  are given by 
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Eq. (28) can be factorized into the following equation 
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The solution of the governing equations, Eqs. (28) in the Laplace transformation domain can be 
represented as 
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where iC  and iF  are parameters depending on s . The compatibility between these two equations and 
Eqs. (28), gives 
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Then, the bending moment M  and stress x  given in Eqs. (20) and (21) in the Laplace domain with the 
aid of the above equation, become 
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Also, the axial displacement after using Eq. (32) takes the form 
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In addition, the strain will be 
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Note that, the strain energy which is generated on the beam is given, after using Laplace transform, by 
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Note that, after using Laplace transform, the boundary conditions take the forms 
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Substituting Eqs. (36) into the above boundary conditions gives 

 ],[][][ DCF                                                               (43) 
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The unknown parameters iC  and 3iC , 1,2,3i  can be obtained by solving Eq. (43). This completes the 
solution of the problem in the Laplace transform domain. 

 
5. NUMERICAL INVERSION OF THE LAPLACE-TRANSFORMED EQUATIONS 

 
To obtain a solution of the problem in the physical domain, the transforms in Eqs. (36)-(41) are inverted. 
In order to invert the Laplace transform in the above equations, we adopt a numerical inversion method 
based on a Fourier series expansion [24]. In this method, any function in Laplace domain can be inverted 
to the time domain as 

       ,1/Re
2 1 








 


N

n

n
ct

tinc
c

t

e
t   

where Re  is the real part and i  is imaginary number unit. For faster convergence, numerous numerical 
experiments have shown that the value of c  satisfies the relation 7.4ct  [25]. 
 

6. NUMERICAL RESULTS AND DISCUSSION 
 
With a view to illustrating the analytical procedure presented earlier, we now consider a numerical 
example for which computational results are given. The results depict the variations of the non-
dimensional lateral vibration, temperature, displacement, stress, moment and strain energy distribution in 
the context of DPL theory. The aluminum as lower metal surface and alumina as upper ceramic surface 
are used for the present microbeam. The material properties are assumed to be as: 
Metal (aluminum): 
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Ceramic (alumina): 
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The reference temperature of the microbeam is 2930 T K. The aspect ratios of the beam are fixed 
as 10/ hL . The figures were prepared by using the dimensionless variables which are defined in Eq. 
(20) for a wide range of beam length when 1L . The computations were carried out for 12.0t  sec 
and 10  . Numerical analysis has been carried out by taking range x  from 0.0 to 1.0. The results are 
depicted in different figures in order to show the variation of different fields with respect to the x  
coordinate. The numerical results are obtained and presented graphically in Figs. 2-4. 
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Fig. 2. (a) The transverse deflection, (b) the temperature, (c) the displacement, (d) the thermal stress, (e) the strain 

energy and (f) the bending moment, distributions of the FG microbeam for different  
values of DPLs )2.0,12.0,6/( 0  tthz . 

 



A. E. Abouelregal and A. M. Zenkour 
 

IJST, Transactions of Mechanical Engineering, Volume 38, Number M2                                                                  October 2014 

330

Figures 2a to 2f are drawn to give comparison of the results obtained for the non-dimensional lateral 
vibration, temperature, displacement, stress, moment and strain energy at 2.00 t . The graphs in Figs. 2a 
to 2f represent six curves predicted by three different theories of thermoelasticity obtained as a special 
case of the DPL model. The computations were performed for one value of time, namely for 12.0t  and 
various values of the parameters q  and  . The values of q  and   can judge whether the wavelike 
behavior in the DPL heat conduction is dominant or not. However, it can be found from the numerical 
results that the shift times q  and   may play a more important role in this task. 

Figure 2a depicts the distribution of the lateral vibration w  through the length of the beam when the 
ramping time parameter 0t  remains constant. It always begins at the zero value and non-uniformly 
vibrates through the beam length to vanish once again at the end of the beam. This satisfies the boundary 
condition at beam boundaries. The behavior of CTE model may be different from those of LS and DPL 
models. The peak values of non-dimensional lateral vibration occurs near the ends of the microbeam at 

1.0x  and 9.0x , respectively. 
Figure 2b shows that the temperature   decreases as the axial distance x  increases to move in the 

direction of wave propagation in the range 45.00  x  and then it increases. This disturbance may be due 
to the thermally loaded ( ramp-type heating) incidents into the surface of the microbeam. The temperature 
of CTE model may differ from those of the other theories. 

Figure 2c suggests that the axial displacement u  moves directly in the direction of wave propagation. 
Once again, the behavior of CTE model may be different from those of LS and DPL models near the beam 
end only )( Lx  . The axial displacement attains a stationary maximum value at 2.0x . 

Figure 2d plots the axial stress x  of the FG microbeam when the ramping time parameter 0t  
remains constant. In fact, the given stress x  is changed to positive first and achieves its maximum at 

45.0x  in the cases of LS and DPL models. In the case of CTE model, the stress s x  reaches its 
maximum at 9.0x . 

Figure 2e shows that the strain energy W of the microbeam obtains different behaviors according to 
the models used. The values in classical theory of thermoelasticity (CTE model) are quite similar 
compared to those of other theories. The strain energy W  may be moved in the direction of wave 
propagation through the beam length. 

Figure 2f investigates the non-dimensional bending moment M  predicted by the three different 
theories of thermoelasticity. The behavior of LS model is completely different from that of CTE model.  

In Figs. 3a to 3f, the DPL model is used to investigate the non-dimensional lateral vibration, 
temperature, displacement, stress, moment and strain energy for different values of the ramping time 
parameter 0t . In order to observe the effect of the parameter 0t  on the values of different field variables 
we carry out our computation for three different non zero values of the parameter 0t  (0.2, 0.4, 0.6). Some 
values for the field quantities are computed for 6/hz   with different values of x . The field quantities 
such as temperature, stress and displacement depend not only on the state and space variables t  and x , 
but also on rise-time parameter 0t . It has been observed in Figs. 3a to 3f that, the finite rise-time 
parameter plays a vital role on the development of all the studied fields. The increase in the value of the 
ramping time parameter causes decreasing in the values of all the fields, which is very obvious in the peak 
points of the curves. Also, the damping of the strain energy is increased when the ramping time parameter 
increases. In most of the earlier studies, mechanical or thermal loading on the bounding surface is 
considered to be in the form of a shock. However, the sudden jump of the load is merely an idealized 
situation because it is impossible to realize a pulse described mathematically by a step function; even very 
rapid rise-time (of the order of 10−9 s) may be slow in terms of the continuum. 

Figures 4a to 4f present, in three dimensions, the temperature, displacement, stress, strain, and the 
strain energy of the beam at constant value of the ramping time parameter 4.00 t  and wide range of 
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thickness 2/1/2/1  hz . In those figures, the effects of the changing of the thickness on all the 
studied fields are pronounced. When the thickness increases the values of all the studied fields increase 
and it is very obvious at the peak points of the curves. It is concluded that different gradient parameters 
produce different distributions of the thermal stresses. 
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Fig. 3. The effect of the ramping time parameter on (a) the transverse deflection, (b) the temperature, (c) the 

displacement, (d) the thermal stress, (e) the strain energy and (f) the bending moment,  
distributions of the FG microbeam )01.0,12.0,6/(  athz . 
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Fig. 4. (a) The transverse deflection, (b) the temperature, (c) the displacement, (d) the thermal stress, (e) the strain 

energy and (f) the bending moment versus the axial and thickness directions )2.0,12.0( 0  tt  

 
7. CONCLUSION 

 
In this work, the influence of the non-Fourier effect on heat transfer and the thermoelastic wave is studied. 
When very fast phenomena and small structure dimensions are involved, the classical law of Fourier 
becomes inaccurate. A more sophisticated model is then needed to describe the thermal conduction 
mechanisms in a physically acceptable way. Modern technology has enabled the fabrication of materials 
and devices with characteristic dimensions of a few micrometers. Examples are super lattices, micro-
wires, and quantum dots. At these length scales, the familiar continuum Fourier law for heat conduction is 
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expected to fail due to both classical and quantum size effects [26]. A model of generalized 
thermoelasticity with DPLs for an elastic FG microbeam is constructed.  

The Laplace transform technique is used to obtain the general solution for any set of boundary 
conditions. The exact solution of the generalized thermoelasticity theory governing equations for a 
coupled and nonlinear/linear exists only for very special and simple initial and boundary problem. In view 
of calculating general problems, a numerical solution technique is to be used. For this reason the Laplace 
transform technique is chosen.  

The general solutions are applied to a specific problem of an Euler–Bernoulli microbeam induced by 
a ramp-type heating. The inverse Laplace transforms are computed numerically, and the comparisons are 
shown in figures to estimate the effects of the thickness and the ramping time parameter on all the studied 
fields. A comparison is made with the results predicted by the three theories. 

The following conclusions can be obtained based on the above analysis: 

 The ramping time parameter has a significant effect on the field quantities. 
 The PLs have a great effect on the distribution of field. 
 Our results indicate that the thermal stresses can be relaxed for some specified gradients. In 

engineering application, this feature permits one to choose appropriate gradients to make the FG 
beams safe in structural integrity when subjected to high-temperature change of the inner or outer 
environment. 

 The method used in the present article is applicable to a wide range of problems in 
thermodynamics and thermoelasticity. 

 Results obtained in this paper may be considered as more general in the sense that they include the 
combined effect of graded and an ramping time heating. 

 Physical applications are found in the mechanical engineering, geophysical, and industrial sectors. 
 The theories of coupled thermoelasticity (CTE) and generalized thermoelasticity with one 

relaxation time (LS) can be extracted as special cases. 
 There are significant differences for field quantities under the three theories due to essential 

differences between the CTE theory CTE, the LS theory and DPL theory. 
 The distribution in LS theory is near to that in DPL theory, whereas the distributions in the CTE 

theory are different from that in DPL theory. This is in agreement with [27] in which the DPL 
model is an extension of the LS model. 
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APPENDIX A 

The parameters Kn , n  and eC
n  appearing in Eq. (9) are given according to Eq. (1) as  

,/ln,/ln,/ln ccmmcmcm
ee

CK CCnnKKn e     
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where cK , c , c  and eCc  are, respectively, the thermal conductivity, the material density, the stress-temperature 

modulus, and the specific heat per unit mass at constant strain, of the ceramic material. 

Equation (12) gives mmm / KC e  , KCC ee   /  and K  / , where 
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The parameters En  and En  appearing in Eq. (13) are given by 

,/ln,/ln ccmmcm  EEnEEn EE   

in which c  and cE  are the thermal expansion coefficient and Young's modulus of the ceramic material, 

respectively. 

The coefficicents E  and E  appearing in Eq. (14) are given by 
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