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Abstract: The brass tubes with foam cores of AlSi7SiC3, AlSi7SiC3Fe1 and AlSi7SiC3Fe3 were 
produced as the crush-boxes with circle and square cross-section. Then axial compressive behavior 
and energy absorption capability of the foam-filled tubes were investigated during the quasi-static 
progressive plastic buckling. The uniaxial compressive stress–strain curves of the foam-filled brass 
tubes exhibited that the compressive stress enhanced smoothly with the increase of the strain and 
no stress oscillations occurred in the plastic deformation region throughout the tests. The yield 
stress and the elastic modulus of the foam-filled brass tubes slightly decreased with the increase of 
Fe wt. % in the foam cores. Moreover, with the increase of Fe powder from 1wt. % to 3wt. %, the 
absorption energy of the foam-filled brass tubes decreased slightly dependent on the tubes cross-
section. The strain-hardening exponent of the tubes with the Al7Si -3SiC-(+Fe) foam cores were 
found to be lower than the tubes with the Al7Si-3SiC foam cores without Fe. However, the 
increase of Fe powder from 1wt. % to 3wt. % caused the approximate elimination of strain-
hardening and the plastic deformation behavior tends to be approximated to an ideal-plastic 
behavior up to the densification strain. The results indicate that all of the compression responses 
are due to the Micro and Macro-defects within the foams cellular structure as well as the tubes 
cross-section geometry.           

 
Keywords: Metal foam, Composite, Brass tube, Plastic buckling, Compression response, Absorption energy, 
Intermetallic compound, Foam-filled tubes  
 

1. Introduction 

Aluminum closed-cell foams have developed in variety of industries, due to their unique combination of 

mechanical and physical properties [1–3].They demonstrate a distinct and high energy absorption capacity 

during compression test under uniaxial loading [3]. In auto industry, thin-walled tubular structures have 

been applied as energy absorbers or crush-boxes because of their progressive plastic buckling under 

uniaxial compressive loading. The crush of the thin-walled tubes is dependent on thickness, size, shape of 

cross-section, and material of tubes [3-4]. In recent decades, engineers have attempted to replace the 

empty space into the thin-walled tubes by the metal foam cores. The result of replacing indicated that 

foam-filled tubes stabilize the irregular plastic buckling pattern that led to the improvement of energy 

absorption up to 30% [4-6]. In fact, the metal foam provides internal support for the tube thin wall so that 

it causes to create more plastic hinges per unit length of tube. Therefore, the absorption energy during 

progressive plastic buckling under uniaxial quasi statics will be increased [5, 7]. Studies done by Langseth 

et al., show that plateau stress for the metal foam-filled tubes is higher than the algebraic summation of 

plateau stress of the empty tube and the meal foam itself. Moreover, area under their stress-strain curves of 

the foam-filled tubes approximately illustrated an increase of 30-40% with respect to the empty tubes [7-
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8]. A nominal compressive stress-strain curves of the foam-filled tube has three regions including: i) 

elastic deformation, ii) soft plastic deformation together with cells crushing at long plateau stress up to 

densification strain, iii) hard plastic deformation after densification strain or bulk deformation with ultra 

strain-hardening rate. However, the curve of the soft plastic deformation (long plateau stress) region has 

different pattern such as exponential, power law, linear, wave oscillations, and mix of them [6, 8]. It is 

possible that the wave oscillations of the plateau stress eliminated by changing the composition and the 

cellular structure of metal foam cores. It has been reported that the presence of ceramic particles and 

chemical elements in the foam liquid leads to become brittleness, helps to create the wave oscillation and 

the strain-hardening in the region (ii) of the compressive stress-strain curve [9]. In this case, there are a lot 

of papers about mechanical properties and absorption energy of Al foam, Al- alloys foam, and Al 

composites foam as filler of thin-walled steel tubes [4-5, 9]. Quality of the Al composite foams has 

significant influence on the pattern of the elastic and the plastic deformation of the foams and Al 

composite foam filled tubes [10-11]. Results show the interaction between the tubes and the filler metal 

foam, which leads to higher energy dissipation and changed progressive plastic buckling modes. 

Experiments present that the buckling process of thin-walled tubes is accompanied by progress of 

localized plastic mechanisms and some folds are appeared on the wall of tubes. Therefore, the numerical 

analysis and computer simulation of the filled thin-walled tubes is very complicated. However, some 

papers that simplified mechanisms were proposed to predict and modeled the buckling response of the 

filled tubes for simple shape (circular and square) under variety loading conditions. The simplified models 

lead to simple solution and therefore, can be used efficiently in preliminary design of energy absorbing 

systems [3, 5, 11]. However, such models are limited to aluminum and steel tubes and they are not a 

model or report for the brass tubes. 

Therefore, in this investigation as the second part of the paper with reference number [12], attempt 

has been made to evaluate the effect of the AlSi7SiC3(Fe) foams as filler of thin-walled brass tubes and its 

cross-sectional shape on the behavior of progressive plastic buckling, under the condition of quasi-static 

uniaxial compression load. 
 

2. Experimental procedures 

In order to investigate the mechanical properties of energy absorber elements during plastic deformation, 

three types of tubes with foam cores, namely AlSi7SiC3, AlSi7SiC3Fe1, and AlSi7SiC3Fe3 with 25-32 

PPI, were prepared based on a method that have been mentioned in Part-I [12]. Two types including circle 

and square tubular moulds with the thickness of 1 mm, and outside diameters of 22 mm and square cross-

section of 22x22 mm were cut with the height of 1.5 times of their diameters from 70Cu-30Zn brass tubes, 

respectively. The uniaxial quasi static loading on the foam-filled tubes were then performed using 25 kN 

Instron 8502 test machine at a crosshead speed of 2.5 mm/minute and 1.3x10-3 (1/sec) strain rate at room 

temperature. The curves of force-displacement were plotted then for all the Foam-Filled Tubes (FFT). In 

order to identify the samples, they were coded as "FFT-Z-X-Y” and ET-Z-X-Y”. Each code includes three 

parts: "Z", "X" and "Y". The letter "Z" refers to geometry of moulds (S=square, C=circle) and the letter 

"X" refers to diameter of foam cross-section as a millimeter, and "Y" indicates weight percent of the Fe 

powder in foams (Y= 0% or 1% or 3%). The letters "ET" and "FFT" refer to the empty tubes and the 

foam-filled tubes, respectively. Figure 1 shows all square and circle tubes that have been filled by foam 

cores based on the above coding.  
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Table 1. Determine the "n" and "k" coefficients of strain-hardening equation for all  
samples in Fig. 3, based on procedure mentioned in Ref. [12] 

sample 

code 
Equation for (n1) Equation for (n2) n1  n2 k1 k2 

lines intersection 

ln(ε) ln (σ) 

FF
T

-C
-2

2-
0 

ln (σ) =0.36ln(ε)+3.136 ln (σ) =2.25ln(ε)-3.88 

0.
4 

2.
2 

3.
1 

-3
.9

 

3.
7 

4.
5 

FF
T

-S
-2

2-
0 

ln (σ) =0.44ln(ε)+3.15 ln (σ) =1.86ln(ε)-2.22 

0.
4 

1.
9 

3.
2 

-2
.2

 

3.
8 

4.
8 

FF
T

-C
-2

2-
1 

ln (σ) =0.11ln(ε)+3.52  ln (σ) =2.58ln(ε)-5.68 

0.
1 

2.
6 

3.
5 

-5
.7

 

3.
7 

3.
9 

F
F

T
-S

-2
2-

1 

ln (σ) =0.31ln(ε)+2.97 ln (σ) =2.42ln(ε)-5.01 

0.
3 

2.
4 

3.
0 

-5
.0

 

3.
8 

4.
1 

F
F

T
-C

-2
2-

3 

ln (σ) =-0.06ln(ε)+3.39 ln (σ) =1.58ln(ε)-2.70 

-0
.1

 

1.
6 

-3
.4

 

-2
.7

 

3.
7 

3.
2 

FF
T

-S
-2

2-
3 

ln (σ) =0.073ln(ε)+3.46 ln (σ) =1.55ln(ε)-2.16 

0.
1 

1.
6 

3.
5 

-2
.2

 

3.
8 

3.
7 

 
It can be observed from Table 1 that the addition of Fe element significantly affects the strain-

hardening exponent of the foam-filled tubes. The strain-hardening exponent of the AlSi9SiC3Fe3 foam-
filled tubes is lower than the AlSi9SiC3 foam-filled tubes for both the square and the circle cross-section. 
Therefore, coefficient varieties of "n1" and "k1" from equation  were plotted up to the strain 
densification (soft deformation) for both the square and the circle tubes with foam cores in Fig. 4. In Fig. 
4, for the foam-filled tubes, the increase of Fe powder from 1 to 3wt. % causes a decrease in the strain 
hardening exponent "n1" from 0.4 toward 0.1 and then to -0.1 for the circle tubes, and also from 0.4 
toward 0.3 and then to 0.1 for the square tubes. However, coefficients of k1 are approximately constant 
(3.2±0.25) for the square tubes in spite of the circle tubes. It seems that varieties of "n1" and "k1" for the 
square tubes are more reliable than the circle tubes for different foam cores. Because the negative 
coefficient of "n1=-0.1" for FFT-C-22-3 sample indicates a structural defect in the foam core to exist. 
Whereas, the square tubes have a constant plastic strength coefficient "k" and their strain-hardening 
exponent "n" decrease with the increase of Fe element (see Fig. 4). Therefore, the addition of Fe within the 
AlSi9SiC3 foam core can change positive slope of the strain-stress to a slope of approximately zero in 
plastic deformation region. In other words, there is a horizontal line on the stress-strain curves during the 
densification strain individually for the square tubes with 3wt. % Fe (i.e. n1=0.4 toward n1=0.1). 

nK 
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iii) During the AlSi7SiC3(Fe) foaming process by powder metallurgy route, some intermetallic such as 
α+β and α+δ formed dependent on the cooling rate and the percentage of Fe, which can strongly affect on 
mechanism of the plastic hinge formation.  
iv)The Fe additive in the composite foams affected on the strain-hardening exponent of the foam-filled 
tubes so that the foam with 3 wt. % Fe, the strain-hardening can be approximately eliminated, individually 
for the square cross-sectional tubes because the strain-hardening exponent for tube with AlSi7SiC3 foam 
core reduced from n=0.4 toward n=0.1 for AlSi7SiC3Fe3. 
v) All foam-filled brass tubes revealed the work-hardening phenomenon during the uniaxial compression 
loading; however additional 3wt. % Fe within the foam core can eliminate the work-hardening. 
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