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Abstract 

In this work, different types of chaotic 1-manifolds which lie on the chaotic spheres or on a torus are introduced. 

Some types of retractions of the chaotic spheres affect on the 1-chaotic systems, and other types of retractions 

occur to the geometric manifold but make the 1-chaotic manifold invariant. The existed retractions are discussed 

through new proved theorems. Also we construct different types of folding of 1-chaotic manifolds which are 

homeomorphic to S¹and their indicatrixes. 
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1. Introduction 

In this section, we present some definitions and 

background about chaotic manifolds and some 

geometric transformations. 
 
Definition 1.1. (El-Ghoul, 2001 & Kostelich 1996). 

The chaotic manifold is a manifold changed by time 

into homeomorphic manifolds either with fixed 

points pi, i=1, 2,..., n or with no-fixed points . 
 
Definition 1.2. (Thurston, 1977). An n-dimensional 

manifold is a Hausdorff topological space such that 

each point has an open neighborhood 

homeomorphic to the open �-dimensional disc 

�� = {�	��ⁿ: |�| < 1}. 
 
Definition 1.3. (Docarmo, 1976 & El-Abed, 2007). 

A geodesic in Riemannian manifold � is a 

parametrized curve � such that the velocity vector 

(� ∗) is parallel along γ. 
 
Definition 1.4. (El-Ghoul, El-Ahmady & A. El-

Abed  2007). Canonical geodesic equations is a 

non-linear system of differential equations such that  
�
�� �

��
����� − � ��

����� = 0, � = 1, ������  
Where  = 1/2#$²�����and #$²����� = #�₁²������ +
#�₂²������+. . . +#�*+�����	 . 
 
Definition 1.5. (El-Kholy, 1981 & Robertson, 

1977). For Riemannian manifolds � and , (not 

necessarily of the same dimension), a map -:� →
, is said to be a topological folding of � into , if, 
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for each piecewise geodesic path �: / → �	(/ =
[0,1] ⊆ �), the induced path - ∘ �: / → , is 

piecewise geodesic. If, in addition,		-:� → , 

preserves lengths of paths, we call f an isometric 

folding of � into ,. Thus an isometric folding is 

necessarily a topological folding. Many types of 

foldings are discussed and some applications are 

introduced in (Difrancesco, 2000 & El-Abed, 

2013).  

 

Definition 1.6. (Franchetti, 2003 & Goodykoontz, 

1985). A subset 6 of a topological space 7 is called 

a retract of 7 if there exists a continuous map 

8: 7 → 6 (called a retraction) such that 8(9) = 9 

for any 9 ∈ 6.Many types of retractions are also 

presented in (Michael, 2002 & Pellicer, 2004).  

2. Main results 

In what follows we introduce different types of 

folding of 1-chaotic manifolds which are 

homeomorphic to ;¹and their indicatrixes. Consider 

a system of 1-chaotic manifolds homeomorphic to 

;¹ with =� = 0 and indecatrix representation >($) 
= (�′� , @′� ; B₁���, B₂���. . . ; B₁, B₂, . . . ) as in Fig. 1. 

 

 
 
Fig. 1. indicatrix representation of chaotic 1-manifolds 

such that �′�=CD$	$, @′�=$��	$,	B₁���, B₂���,… are the 

 
1M  
  

C

M
1

1  

  

C

M
1

2  

  

C
M

1

2  

  C
M

1

1  

  

Indecatrix representation 
,...),,...;,;,(

2121 µµµµii yx ′′



 

 
IJST (2014) 38A3 (Special issue-Mathematics): 373-377                                                                                                                               374 
 

physical characters of the outside system, B₁, B₂, . .. 
are the physical characters of the inside chaotic 

manifolds of ;¹. The indicatrix representation of the 

geometric one is (�E� , @E�; 0,0, . . . ; 0,0, . . . ) The 

representation of the interior system is 

(�′� , @′�; 0,0. . . ; B₁, B₂, . . . ) for the outside system 

will be (�′� , @′� ; B₁���, B₂���. . . ; 0,0, . . . ). 
(a)Folding without singularity: Let -₁:�¹ → �², 
be a folding of the pure geometric into itself 

without singularity, then this folding induces two 

systems of foldings 

-G̅�:�H�GI → �H�+I , -G�: ��GI → ��+I 

such that �² is homeomorphic to �H�+I , ��+I, the 

indecatrices representation is invariant. See Fig. 2. 
 

 
 

Fig. 2. Nonsingularity folding with invariant 
 

So we obtain the following:  

 

Theorem 2.1. Any folding of 1-chaotic manifold 

without singularity to itself preserves the 

indecatrices of the chaotic manifold invariant. 

 

Corollary 2.1. The folding of pure chaotic 1- 

manifold without singularity to another chaotic 

changes in its indicatrix. 

 

Proof: Define a folding -∗���GG: �HGGI → �H++∗I,  of pure 

chaotic 1- manifold �HGGI on another pure chaotic 

�H+GIsuch that -∗���GG(�HGGI) = �H++∗Ithen its geometric 

and the other chaotic manifolds not change but the 

indecatrix representation will be 

(�E� , @E�; 0; -∗���GG(B₂���), BJ���. . . ; B₁, B₂, . . . ) instead of 

(�′� , @′�; B₁���, B₂���. . . ; B₁, B₂, . . . ). See Fig. 3. 

 

 
 
Fig. 3. Nunsingularity folding with variant indecatrix 

(b) Folding with singularity: Consider the folding 

-₂:�¹ → �², -₂ restricted on the geometric one, 

then there are induced systems of foldings  

-+̅�: �H�GI → �H�+I , -+�: ��GI → ��+I, 

which induce a folding of the indicatrix as shown in 

Fig. 4. 
 

 
 

Fig. 4. Singularity folding and indicatrix 
 
Hence we can formulate the following  

 

Theorem 2.2. The folding of 1-chaotic manifold 

with singularity induces a folding for its indecatrix. 

Now we will discuss the effect of retraction on the 

indecatrix. Let 8₁:�H�GI → �H�GI ,,such that 8GKB̅LM =
NHO
*P, then the retraction will reduce the density 

function. The indecatrix will be in the form 

(�E� , @E�; BG���, …
NHO
*P , . . . ; B₁, B₂, . . . ). see Fig. 5. 

 

 
 

Fig. 5. Retraction of the density function 
 

if	8+:�H�GI → �H�GI, 8+KB̅LM = NHO
*R, �₂ > �₁, similarly if 

8JKB̅LM = NHO
*T,�₃ > �₂ > �₁, and so on we get  

limL→Y 8L ZNHO*O[ = 0, in this case the indecatrix is 

(�E� , @E�; B̅G���, … B̅L\G, 0, … , B̅L]G	. . . ; B₁, B₂, . . . ) 
So, the limit of all retractions  for all physical 

characters of chaotic 1- manifolds will have the 

indecatrix (�E� , @E�; 0,0, … ,0,0, . . . ) 
 

Corollary 2.2. Any variation of the curvature of 

chaotic 1- manifolds does not induce any variation 

on indecatrix representation curvature. 
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Proof: Since the indecatrix representation of chaotic 1- 

manifolds is ($) = (�′� , @′�; B₁���, B₂���. . . ; B₁, B₂, . . . ), then 

>′($) = (�′′, @′′, 0) for the geometric manifold and 

>′�($) = (�′′, @′′, B̅�), >′�($) = (�′′, @′′, B�) for 

chaotic systems, which have a unique curvature 

^($) = |>′($)| = 1. 
In this section we will present some types of 

chaotic 1- manifolds which lie on the chaotic 

spheres, some kinds of retractions of the chaotic 

spheres that affect on the 1-chaotic systems, also 

other types of retractions that occur onto the 

geometric manifold but make the 1-chaotic 

manifold invariant without any change. 

Consider a system of chaotic 1- manifolds ∪ $�GI  

lie on the chaotic spheres as in Fig. 6. 
 

 
 
Fig. 6. Retraction of chaotic 1-manifolds lie on chaotic 

spheres 
 

If 8G: {∪ $�+I − �̀} →∪��I where ∪ $�+I are the 

chaotic spheres and ∪ ��I are the retracted chaotic 

manifolds and  �̀ , `\� 	are any two antipodal points 

of the sphere $�+I 	then we find 8G�({∪ $�+I −
�̀})	,� = 1,2, . . .. have two dimension and the 1-

chaotic manifolds are still invariant. The limit of 

this type 8G� will be these chaotic 1- manifolds i.e., 

limL→Y8G�({∪ $�+I − �̀}) =	∪ $�GI   

see Fig. 7. 
 

 
 

Fig. 7. The limit of retraction r1i 
 

Let 8+: {∪ $�+I − a�} →∪ b�I , such that ∪ b�I  are 2-

chaotic manifolds that intersect with chaotic 1- 

manifolds ∪ $�GI , in this case the chaotic manifolds 

∪ $�GI 	will be variant under this retraction and, in 

the end, we obtain limL→Y8G�({∪ $�+I − �̀}) =	∪ #�GI 

where ∪ #�GI are chaotic 1- manifolds, 

while	 limL→Y8G�({∪ $�+I − a�}) = 0- chaotic manifolds. 

See Fig. 8. 
 

 
 

Fig. 8. Limit of retration r2i 
 
Hence we obtain the following.  

 

Theorem 2.3. The limit of retractions of 2-chaotic 

manifolds ∪ $�+I to 1-chaotic manifolds	∪ $�GI which 

lie on them is not followed by a variant in the 1-

chaotic manifolds ∪ $�GI  

 

Theorem 2.4. The limit of retractions of 2-chaotic 

manifolds, ∪ $�+I chaotic manifolds ∪ #�GI intersect 

perpendicular with the 1-chaotic manifolds ∪
$�GIchange ∪ $�GI 	to 0-chaotic manifolds. 

Now, we will discuss the effect of the geodesic 

retraction of the chaotic spheres on the chaotic 

stereographic projections 

Let us consider a sphere $G+ of radius unity, with 

the differential equation 77c + ddc + eec = 0, then 

its chaotic equations will be 7�	7�c + d�d�c + e̅	e̅c = 0, 

and 77c + ddc + eec = 0. see Fig. 9 
 

 
 

Fig. 9. Stereographic projection 
 

The relation between the set of points on the 

geometric sphere $G+	(7, d, e), and any point on the 

geometric plane f	(�, @, 0) is 

7 = +g
gR]hR]G, d = +h

gR]hR]G , e =
gR]hR\G
gR]hR]G	

Then there are two induced systems 

K7� , d� , e� 	M ∈ $G�+ , K7� , d� , e�	M ∈ ;G�+  

and two chaotic systems of pure chaotic planes 

K�� , @�, 0	M ∈ f� , ��� , @� , 0	� ∈ f�  

we can obtain chaotic 1-manifolds by the following 

retraction of ($G+ − { �̀})  
8: ($G+ − { �̀}) → $GG which induce two types of 

geodesic retractions of the chaotic spheres $G�
+

 

8� : ($G+ − {`�}) → $GG	and	8�: ($G+ − {`�}) → $GG, which 

must be followed by stereographic projections 

retractions 

				8∗:	f → �¹, which induce, 

 	8H�∗:	f�� → ��¹, 	8�∗: 	f� → �¹	,	see Fig. 10. 
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Fig. 10. Geodesic retraction of the chaotic spheres 
 
So we can state the following theorem: 

 

Theorem 2.5. The geodesic retraction of chaotic 

spheres induce two chaotic retractions of the 

stereographic projections which reduce the 

dimension of chaotic stereographic planes f� 
Let the tours  = ;₁¹ × ;₂¹ be a 2-manifold 

which have chaotic 1-manifolds ∪ $JGI  and let us 

introduce the following retractions on  , 
1. 8G:  − ;+G →∪ $JGI , 
2. 8+:  − ;+G → $jG, kℎm8m	$jG ∈   

3. 8J:  − ;GG → 9��non$ 

4. 8p:  − ;GG → $qG	, $nCℎ	>ℎ9>	$qG ∈  ,	 as shown 

in Fig. 11. 
 

 
 

Fig. 11. Retraction preserve the 1-chaotic manifolds 
 
Then we obtain the following theorem: 

 

Theorem 2.6. The retraction 8₁( − ;+G) of a 

geometric manifold does not change the 1-chaotic 

manifolds ∪ $JGI 	while the retraction 8₂( − ;+G)	of 

a geometric manifold removes the 1-chaotic 

manifolds. 

 

Theorem 2.7. The retraction 8J( − ;GG)	of a 

geometric manifold preserves the dimension of 

chaotic manifolds ∪ $JGI  but the retraction 8p( −;GG) induces 0-chaotic manifold. 

 

Proof:	∪ $JGI  represent 1-chaotic manifolds that lie 

on the torus  = ;₁¹ × ;₂¹ (2-manifold), since 

8G( − ;+G)= ∪ $JGI so this type of retraction gives 

the same 1-chaotic manifolds ∪ $JGIwhile the 

retracion 8+( − ;+G) leads to the circle $jG ∈   as 

shown in Fig. 12. Since $jG ∉	∪ $JGIthen the 1-

chaotic manifolds ∪ $JGIvanish. 

In retracion 8J( − ;GG)of a geometric manifold 

the torus   becomes annulus of dimension 2 but has 

different geometric characteristics, so ∪ $JGIalso 

preserve its dimension. While the retraction of 

8p( − ;GG) decreases the dimension of the torus   

to 1 which is the dimension of circle$qG	. Then we 

get a decreasing in dimension of 1-chaotic 

manifolds ∪ $JGI 	to 0-chaotic manifolds. 

3. Application 

In this section we introduce an application in the 

medical field. 
 

 
 

Fig. 12. Eyeball instruction 
 
Let the eyeball represent 2- manifold (geometric) 

and its 2-chaotic manifolds can be sclera, choroid, 

retina, lens, cornea, vitreous body and lacrimal 

secretion carry 1-chaotic manifolds as central 

retinal artery, vein and nerve. 

Small size malignancy behind the eye can affect 

the eyeball (eye deformity) with its layers without 

effecting blood vessels and nerves (1- manifold) 

while 

huge size malignancy can affect eyeball layers and 

also affect blood vessels and nerves. 

External trauma can change the size of eyeball 

leading to rupture of eye, lens dislocation and 

retinal detachment associated with blood vessels 

lesions. 

Glaucoma increase the size of eye without change 

in artery, vein and nerve 
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