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Abstract

This paper introduces a mesh generating algorithm for solving the traffic flow equation as a conservation law
equation. The idea behind the new method is to use the characteristic curves and moving non-oscillatory finite
volume method. In addition, when characteristic curves intersect, the proposed scheme uses shock speed equation
in order to improve computational efficiency. We also compare the obtained results with the corresponding

solutions computed by the moving mesh method.
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1. Introduction

We propose to investigate traffic phenomena from the
macroscopic point of view, using models derived from
fluid-dynamics consisting of hyperbolic conservation
laws. In recent years, many interesting works have
developed in the numerical treatment of PDES, giving
rise to conservation laws and, particularly, the traffic flow
equation:

ap(xt) | F(p(xb) _
at + ax =0,

D

The LWR model (Lighthill and Whitham, 1955;
Richards, 1956) is known as a simple continuum model,
in which the relationships among three aggregate
variables are modeled: traffic density p(x,t), flow rate
F(p(x,t)), and space mean speed u(x, t). In this model
F(p(x,t)) = pu, while t and x represent time and space,
respectively. In the LWR model, the velocity is given by
some specific known functionu = u(p) for 0 < p < 1.
There are aso other higher order models. Examples of
such models including the traffic model are given in
(Jiang et al., 2002; Payne, 1971; Tang et al, 2010; Zhang,
1998).

In (Jiang et a., 2002), the traffic model is described by
the following system of partial differential equation:

at ox
du(xt) | 9G(u(xt)) _ (2)

{GP(XI) + OF(px)ux,t)) _ 0,
at + T - g(p(x, t)! u(x! t)),

where F(p(x, t), u(x, t)) = pu,
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G(ulx,t) = “72 — cou and g(x, t) isthe generation rate.

In order to efficiently model numerical solution of
these equations, it is convenient to resort to an adaptive
grid technique that automatically concentrates the spatial
nodes in the regions of rapid solution variations (i.e., the
wave moving fronts). Several moving mesh techniques
have been introduced in the past for solving the problems
governed by the hyperbolic conservation laws (Huang et
al., 1994; Huang and Russell, 2011; Soheili et a, 2012;
Stockie et a., 2001; Tang and Tang, 2003).

In this paper, an adaptive moving mesh agorithm
based on the characteristic curves is presented. The
following section will briefly describe the coupled
equations and the finite-volume formulation used in our
computations. The moving mesh algorithm will be
discussed in this Section, and several numerical tests will
be given in Section 3. We then compare the numerical
results of the new method and moving mesh method
(MMPDES) in section 4. Finally, concluding remarks and
asummary of findings are given in Section 5.

2. New adaptive numerical method

Our adaptive numerical scheme is based on two
independent parts: a mesh-generation algorithm and a
numerical solution algorithm. For numerical solution, we
use non-oscillatory finite volume method (Godlewski and
Raviart, 1996; Leveque, 2002; Nessyahu and Tadmor,
1990) and for mesh-generation, we apply characteristic
curves and shock speed of equation.

2.1. Non-oscillatory finite volume method for a system of
equations

We begin with a brief description of the Non-
oscillatory finite volume schemes used to numerically
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solve the equations (1) and (2). The moving Non-
oscillatory method that we have just used in the traffic
equations (Soheili et al, 2013), can also be applied to a
system of eguations. However, this method can be
extended to a system of equations with the source term:

dp(xt) | OF(p(x,t)u(xt)) -0
at ax ! (3)

du(xt) | 9G(u(xt))

e T = 9(p(x, ), u(x, ).

, 1
Suppose xj* = Xmin + (j — E)ij'} ty, = th—q + Aty,

where Ax,{, At,, are small spatial and tempora scales
around thetime t = t,,.

Let
N

Xmin Xmax] = U Cjnr Cj‘rl = [xjn_%' x}:,%]-
j=1
The value )" will approximate the average value over
the jth cell ¢; attlmetn.

ﬁ}n Axn fc" p(x t )dx (4a)
— 1
ul' = o dep u(x, t,)dx, (4b)

where Ax[ = x]."+3 - xj"_l is the length of the j-th cell.
2 2

We then construct its piecewise linear interpolant
pr(x) =pj + Wj"(x - xj”), x €}, (53
at(x) =ul +s/'(x —x"), x€C. (5b)

The slopes w}*, s/* are first-order approximations of

px(xftn),  uy(x/,t;). Here, we have used the
generalized minmod reconstruction with

n—

wj
. P}-Pj1 PJ41—P) Pla—P]
mmmad(e; 1 PP g P ) 012, (6
R AR TP IR S PP
sf=
Iy Ly an gt
. u'j uj 1 u]+1 u} u]+1 u}
minmod | 6 = o o ,0 m 7 |
=X X g X
6 €[12], @)

where 6 = 2 has been chosen.
Integrating (3) over [x]', x[ 1] X [ty tny1] Yields

—n+1 1 x7+1 ~n d
Pjst _A_xjn » pr(x)dx
J
~ g F (1)) ~ FloGF,eD1dE, ()
Ax? tn P j+1 P j o ’
and

Yl

1
_n+1 _ A_fn n(x)dx
l

tnyr
f [F (e, ) — FCuCaf )]t

+ Ift,[n+1 fx;{+1 glp(x,t),u(x,t))dxdt. 9)

In a method with changing mesh widths, the stability
criterion for the time step is more important. It is
essential to note that the CFL condition is only a
necessary  condition for stability (and hence
convergence). The standard CFL limit reads (Leveque,
2002)

FAt <1 GAt<1 V Ax, At
Fal <1 I |1 vaxae

To enforce higher accuracy, the Courant number will
here be limited by a parameter C, thereby limiting the
time step to:

Ax ij” }
IE,(DI G, @)

AxT? AxT
C’mm — —’},
{lh AN

Where 0<C<1land A(x]'),2,(x) ae the

eigenvalues of the Jacobian matrix of the flux function F.
Therefore, the flux integralsin (8) and (9) can be safely

approximated by the mid-point quadrature leading to

At, _len{

—n+1 n
]+_ xj?l)pj + (x]:n+1 - xj+%)pj+1
Wj+1
—(x. R D e e 70?]
Atn
[F(p( ) = F(p(, "), (208)
ottt = ! [(x" 1= xu + (= x Dy
Jt;  Ax™, U+ T JHL T
I3
s

S:
j+1 (xn

O 7)?]
2

o (6 ) ~ Gt )

+_

1 ftn+1 f i g(o(x, t),u(x, t))dxdt, (10b)

where

1 - Aty
p (xj", tn+z) ~ p"(xj”) + %pt(xj", tn), (11a)
u  £3) ~ an(x) + 2 “" w (2 ), (11b)

and from (58 and (5b), we have p™(x]") = p} and
at(x) = 1.

The time derivatives p;, and u, in (11a) and (11b) are
respectively obtained from (3)

pt( tn) =-F, ut(xjn’ tn) =—0G+9 (12)
and the space derivatives F, G, in (12) are computed
using the minmod limiter.

2.2. Mesh redistribution

In this section, we briefly describe the second main part
of our new method which is new mesh redistribution
method. We steer mesh points by considering the
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characteristic curves as a moving mesh equations. For the
scalar conservation law:

Ip(xt) + OF(p(x.t))

o o =9, (13)

we are led to the following system of coupled ODEs:

dx _0F _ dp _

E = ap - 17(,0), at g(x' t)' (14)
where the first eguation determines the location of
characteristic curvesin time.

For the system of conservation laws:

au o
AW =G,  x€R t>0, (15)

where U = (p(x,t), u(x, t))T and 4, a 2 x 2 matrix, is
the Jacobian of F in (1). Assume that the system is
strictly hyperbolic, i.e., al eigenvalues of the matrix A
arereal, and the corresponding eigenvectors span R2.
The eigenvalues v, (U), v, (U), of the matrix A are the
characteristic speeds, i.e., the equations

dx

T=nl), T=v) (16)

are the characteristic curves equations.
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Fig. 1. Mesh trajectories and mesh crossing

In our new method, we move points using
characteristic curves, i.e., x]-"‘l‘s a t™ ' in Fig. 1 move
to x;*'sat t™ following characteristics.

In fact, we use the discretization of characteristic
equation

)

+1
{xn =x" + Aty v (U (%], t™), 7
Xg = Q, XN = b:

where for system (15), v can be v; or v, or their average.
We then couple this equation with equations (10a) and
(10b).

If the characteristic curves intersect as it is shown in
Fig. 1, then, x/'** < xJ“4! at time t = t™**, and so mesh
crossing will be produced. For this reason, we move these
points by ancther strategy using the fact that two
characteristics intersect when a shock wave is generated.

2.2.1. Shock Speed and Non-crossing Mesh

In the context of vehicle traffic, a shock wave is an
abrupt change in traffic density. A shock wave will have

a velocity of propagation. The shock velocity is like the
velocity of density or traffic waves that is not related to
the vehicle speed. When a shock wave is generated,
characteristics intersect. It then represents a mathematical
discontinuity (abrupt change) in p, u, or F.

Consider a segment [xq,x,] of onelane road, and
suppose that the density of the traffic in this segment has
a discontinuity at a point (t). We divide up the integral
giving the number of vehicles N in this segment at the
point &:

N = fxip(x' t)dx + f;z p(x, t)dx. (18)

Conservation of number gives

anN _

dac in - F"z
) €
=% dx+p(§) % (19)
Xy d
+ 7 L - p(E) T

Using Z—’t’ = —3—i = 0, in the integrals and applying the
fundamental theorem of calculus, we have

dN

i F, —F, )
= —F(p(£)) + Fy, + p(§) %2 (20)
+F(p(E)) — Fe, + p(ED .

so we have

(r(€+) —p(-)) Z—i =F(p) = F(p($4))- (21)

If the shock speed is S = Z—i, this is sometimes written
simply as S[[p]] = [[F]], where [[.]] represents the jump
across the shock.

For a scaar conservation law, we can divide by
(p(§+) — p(¢—) and obtain the shock speed:

_ F(ED-F(PE)
S RN (22)

In general p(é,,t) and p(é_, t), stands just to the right
and the left of the shock, vary with time and the shock
speed al so varies.

For systems of equations, p(é,) —p(é-) and
F(p(éy)) — F(p(¢2)) are both vectors while S is still a
scalar. Now we cannot always solve for s to make (21)
hold. Instead, only certain jumps p(¢,) —p(¢) are
allowed, namely those for which the vectors F(p(é,)) —
F(p(§-)) and p(¢,) — p(§-) arelinearly dependent.

Now let us consider the situation whereby two
characteristics intersect as Fig. 1 at time t™ to time t™*1,
When in general x/'** < x/*", we move points x*, xJ*,
using the following equation:

ax _

=5 (23)

or

)

1 _
{x-’” = x]' + SAty, (24)
Xy = aq, Xy = Db,

ascan beseeninFig. 2.
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Fig. 2. New mesh trgjectories

The basic idea of our algorithm can be summarized as
follows:

Algorithm 1

LetP =0,

1. (1) Given a uniform mesh of the physica domain and
mesh points{xd,x?,...,x5}. Then compute the grid
values p][-O] andu][o], j=1,...,N—1 based on the cell
average for the initial p(x, 0), u(x,0).

(I1) Assume x}*, pj* and w* were obtained.

2. Computep(x]_#, n+1) and u(x].+l, t,+1) based on

non-oscillatory finite volume method,

() If j¢P then move grid x/' to x**' based on

characteristics equation (17), else based on shock speed
equation (24).
Ifx*t < x/™', Move grids x>, x]* to x/!, x*!

based on shock speed equation (24), andP =P U {j —
1,j}.
(1)) Computex

n+1+xn+1

Lo _
=22 j=1,.. N-1

(Iv) Update numencal solution P; +1 and w5 on the
1 it
2

2

n+1

n+1

new grlds{x .

30 tyer < T thenp Rt p]n:_l,

[0] n+1 _[0] n+1

u pi=ulr, x]+l —x]+1 ,and go to step 2.

Someremarkson step 2.
Vector P shows the points that move by the shock speed
equation (24).

After obtaining the new grid {x"“} we need to update

p and u at these grid points (i.e. p"+1 "“) For this

purpose, we use the formula obtamed from the
perturbation method (Tang and Tang, 2003). Numerical
solutions are updated on the new grids {x”“} (at the

same time) using,

u;f%l = ﬁju(xjrﬂr%, t"* 1) —y((C0) j41 — (C0))), (25)
where
(x]n++11 ?H-l)_l' ﬁj =Yj- (xﬂm - xjn)'

and

(fﬁ)j=—(u +tu )_M(] u;).

The¢; isdefined by ¢; = x* — x***, and
uf Sty (xJ %j+1)S j+b

where §j+1 is an approximation of the slope u, at X,
-2 2

andis . .

S A= (szgn(5+ 1) + Slng(S 1))M
IS/, |+|5 1|

with

L S

e

For more details see (Tang and Tang, 2003).

3. Numerical results

In this section, we illustrate the performance of the new
moving mesh finite volume method.

Example 1. First, we test our adaptive mesh generation
algorithm with the equation (1) from (Leveque, 2002).
Let g(x,t) =0 and the flux function F(p(x,t)) =
pU(p), and U(p) varieslinearly with p, i.e.

Ulp) = umax(1—p), for 0<p<1

At zero density (empty road) the speed is u;,q,, but
decreases to zero as p approaches to 1. Then the flux
function is defined:

F(p) = umaxp(1 - ,0) (26)

We first suppose that at t = 0 the density on theroad is
given by

p(x,0) = 0.25 + 0.7¢-A**), (27)

with 8 = 0.01, upa, = 1.Since v(p) = Upar (1 — 2p),
the mesh equation should be:

d
d_JtC = uma.x(1 - Zp)-

Figure 3(a) shows the numerical solutions at time
t = 25 computed in (Leveque, (2002) by Clawpack and
the new proposed scheme. A very high qudity of the
computed solution can be observed, especialy at the
contact discontinuity. Figure 4 shows the close-up view
of the Fig. 3(c).



333

1JST (2014) 38A3 (Special issue-Mathematics): 329-336

(8} Density at time =25

+ Computad by CLAWPACK

[1] %‘—_H_‘__—h“---—-_.____ Computed by the niw adaptie msthad

g | i .

o ) . ] . r M:I_esnlzammu_lesl ]‘ ) m_ . - ) [} Char alc:: tics ?
| [ “11\( I ] \ ‘l U\ \h\ H\ll 3 hﬁf{r‘};}jﬁ’?i
| n ! | %H"\ | \\ | I
) sl ~ _]:]i H\%ﬁ | \ \ \ \ \\I 15t , I)." J ;'};"f:;,ff{;?%r
il A . Ml
U *, | \\ \ \” ) 1 F- v Ifzf/ e N i ’I’m“i?ﬂrf /
o )X'/.Ji’ffr:r . ||Il'|\‘\:\\k\\\ \\\‘ A \ll \ ‘ Ll /] ll J Hrl"a'rl:’x J"h’r ll'l _'n o l'{,ff?ﬂ J"i:l;";:lir;" IIJ lt \\\\\ '\\\;‘:'\ ‘:l'll'l |]IjI Il",."ll:‘, r"ff'll:f:l}fl';,%:':’;

¥

Fig. 3. Example 1. Top: Computed solution at t=25, with N=120 mesh points by new adaptive
method and Clawpack. Bottom: The corresponding characteristics and the mesh trajectories

Fig. 4. Close-up view of the shock formation in Example 1

Let T* signify the critica time in which for the first
time, characteristic curves intersect. T* is given by
Godlewski and Raviart (1996),

1

T* = —— =
min(a, 0)’ @

d
mlnlgav(uo(w)-

In this example, @ = —0.1201 and as can be seen in
Fig. 4, the characteristic curves intersect at T* = 8.3264
when shock starts to form. The shock velocity is given by

[1=(p(§+) + p(§-))] o mesh
speed at shock regioniis,

dx?
dt

= [1 = (pCeiir tn) + p(xity, ta))]-

Example 2. For the second example, we consider one
more simulation for special cases corresponding to
previous traffic problem in which the initial data is the
following piecewise constant function:

1, 0<x<10,
p(x,0) = {0.25, —40 < x < 0.

Figure 5 can be interpreted as cars approaching a traffic
jam, or aline of cars waiting for a traffic light to change.
Note that the solution to the traffic problem may consist
of ashock waveasin Fig. 5.

Example 3. For the last example, we consider the system
(2), with the following initial and boundary conditions

0) = {p(xo,t) = 0.04(veh/m), 0<x<10,
P(50) = p(xy, 0) = 0.18(veh/m), 10 < x < 20.

0) = {u(xo,t) =u,(p(xg,t)), 0<x<10,
U®0) =1y, ) = u,(pCey, £)), 10 < x < 20.

The equilibrium speed-density relationship developed
in (Del Castillo and Benitez, 1995) is applied

up = up[1 — exp(1 - exp(i—’; (’%" - )],

where u; is the free-flow speed; p,, is the maximum
density and c,, isthe kinematic wave speed under the jam
density. The test road section is 20 km long. Parameter
values used are es follows (Jiang et al, 2002):

veh
=0.2 .

m

=cy =11 m/s.

=30 n
uf - s’ Pm
T =10s, c¢p

The model can be written as

pu 0
(0, - e) =(2)

In comparison with (15), we have

o-[f)

(28)

=[o u-c
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0
G= [ue—u] (29)
T

The eigenvalues of the matrix A are 4, =u, 4, =u—
Co-
Thus the characteristics curves are

dx

d

d—’t‘=/11=u, Z=lh=u—cq (30)
The shock speed is

ax _ Fe(p1)=Fe(p2) 31)

dt P1—P2

where F, = u,p and p; and p, are the amount of p at
X = —oo and X = +oo respectively.

Theresultsat timet = 10 under the characteristic

curvesi—f = A; = u (called 15¢-characteristic), % =1, =
1

u — c (called2™-characteristic), and also & = - (4, +

A,) (called the average of 15¢- and 2™¢-characteristics),
are shown in Figs. 6(a), 6(b). Figures 6(c), 6(d) and 6(€)
show the corresponding mesh trajectories with different
mesh speed based on 15¢- and 2™¢- and the average of
both characteristic curves, respectively.

4. Characteristic curves and moving mesh method

Example 4. We apply the moving mesh method
introduced in (Soheili et a, 2013) for Example 3. In this
case, the mesh equation is given by modified MMPDES5:

6x_i6 ox

ot ~mmar M) (32)
where M is the arc-length monitor function:
M = (1+ aVU(VU)T)z, (33)

where U is defined by (28). Then we combine the moving
mesh method and new adaptive method together. One
way to do thisisto compute the mesh based on modified
MMPDES and based on the characteristic curvesfirst and
then generate the new one using the average of them.

Figure 7 shows the mesh generated using (32), (30)
(and (31)) and using a combination of them. As can be
seen, the numerical results are almost the same and since
the CPU time in the introduced method is much less than
the CPU time in MM PDE method and, on the other hand,
in situations when time is an important factor, the new
method would be more useful.

It is useful to compare the method introduced in the
previous sections with the moving mesh method that has
been used in (Sohelli et a, 2013).

(&) Density at time t=36

T T T T T T
1=
=
g
g 05~ =
&
] | | 1 | | | | | |
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Fig. 5. Example 2. Top: Computed solution at t=36, with N=100 mesh points. Bottom: corresponding characteristics and mesh trajectories
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Fig. 6. Example 3. (a), (b): Computed density and speed at t = 600s with different mesh speed. (c), (d) and (e):
The mesh trajectories corresponded to the 1 and 2 and average of 1, 2 -characteristics respectively
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Fig. 7. Example 2. (a), (b): Computed solution at t = 600s with different mesh speeds. (c), (d): The mesh
trajectories with mesh speed based on moving mesh method and combined method respectively

5. Conclusions

It is important to apply proper numerical treatment to the
macroscopic models in the simulation of traffic flow. In
the present paper, we have attempted to present a new
method with mesh selection based on the characteristics
and shock speed equations, for solving macroscopic
traffic flow models. The accuracy of our results are
derived from combining the high resolution scheme for
the physical equations with a new mesh generation
method that uses characteristics.

The application of this method for traffic flow
problems demonstrates that the new method is an
effective scheme to obtain sharp resolution of traffic flow
features with large gradients such as shock waves. The
method is suitable for any nonlinear system of hyperbolic
PDEs based on conservation laws, where numerical
conservation is guaranteed.

Some numerical experiments have shown the
effectiveness of our approximation. The comparison of

the MMPDES and our new mesh generation method has
been presented too.
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