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Abstract 

This paper introduces a mesh generating algorithm for solving the traffic flow equation as a conservation law 
equation. The idea behind the new method is to use the characteristic curves and moving non-oscillatory finite 
volume method. In addition, when characteristic curves intersect, the proposed scheme uses shock speed equation 
in order to improve computational efficiency. We also compare the obtained results with the corresponding 
solutions computed by the moving mesh method. 
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1. Introduction 

We propose to investigate traffic phenomena from the 
macroscopic point of view, using models derived from 
fluid-dynamics consisting of hyperbolic conservation 
laws. In recent years, many interesting works have 
developed in the numerical treatment of PDEs, giving 
rise to conservation laws and, particularly, the traffic flow 
equation:  
 
பఘሺ௫,௧ሻ

ப௧
൅

பிሺఘሺ௫,௧ሻሻ

ப௫
ൌ 0,																																													           (1) 

 
The LWR model (Lighthill and Whitham, 1955; 

Richards, 1956) is known as a simple continuum model, 
in which the relationships among three aggregate 
variables are modeled: traffic density ߩሺݔ,  ሻ, flow rateݐ
,ݔሺߩሺܨ ,ݔሺݑ ሻሻ, and space mean speedݐ  ሻ. In this modelݐ
,ݔሺߩሺܨ ሻሻݐ ൌ  ,represent time and space ݔ and ݐ while ,ݑߩ
respectively. In the LWR model, the velocity is given by 
some specific known function ݑ ൌ ሻ for 0ߩሺݑ ൑ ߩ ൑ 1. 
There are also other higher order models. Examples of 
such models including the traffic model are given in 
(Jiang et al., 2002; Payne, 1971; Tang et al, 2010; Zhang, 
1998). 

In (Jiang et al., 2002), the traffic model is described by 
the following system of partial differential equation: 
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where						ܨ൫ߩሺݔ, ,ሻݐ ,ݔሺݑ ሻ൯ݐ ൌ  		,ݑߩ
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,ݔሺݑ൫ܩ ሻ൯ݐ ൌ ௨మ

ଶ
െ ܿ଴ݑ and ݃ሺݔ,  .ሻ is the generation rateݐ

In order to efficiently model numerical solution of 
these equations, it is convenient to resort to an adaptive 
grid technique that automatically concentrates the spatial 
nodes in the regions of rapid solution variations (i.e., the 
wave moving fronts). Several moving mesh techniques 
have been introduced in the past for solving the problems 
governed by the hyperbolic conservation laws (Huang et 
al., 1994; Huang and Russell, 2011; Soheili et al, 2012; 
Stockie et al., 2001; Tang and Tang, 2003). 

In this paper, an adaptive moving mesh algorithm 
based on the characteristic curves is presented. The 
following section will briefly describe the coupled 
equations and the finite-volume formulation used in our 
computations. The moving mesh algorithm will be 
discussed in this Section, and several numerical tests will 
be given in Section 3. We then compare the numerical 
results of the new method and moving mesh method 
(MMPDE5) in section 4. Finally, concluding remarks and 
a summary of findings are given in Section 5.  

2. New adaptive numerical method  

Our adaptive numerical scheme is based on two 
independent parts: a mesh-generation algorithm and a 
numerical solution algorithm. For numerical solution, we 
use non-oscillatory finite volume method (Godlewski and 
Raviart, 1996; Leveque, 2002; Nessyahu and Tadmor, 
1990) and for mesh-generation, we apply characteristic 
curves and shock speed of equation. 

2.1. Non-oscillatory finite volume method for a system of 
equations 

We begin with a brief description of the Non-
oscillatory finite volume schemes used to numerically 
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solve the equations (1) and (2). The moving Non-
oscillatory method that we have just used in the traffic 
equations (Soheili et al, 2013), can also be applied to a 
system of equations. However, this method can be 
extended to a system of equations with the source term:  
 

			ቐ
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Suppose	ݔ௝

௡ ൌ ௠௜௡ݔ ൅ ሺ݆ െ
ଵ

ଶ
ሻΔݔ௝,

௡	ݐ௡ ൌ ௡ିଵݐ ൅ Δݐ௡, 

where Δݔ௡
௝ , Δݐ௡ are small spatial and temporal scales 

around the time ݐ ൌ   .௡ݐ
Let  
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ே
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௡,					ܥ௝
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భ
మ
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The value ݑത௝

௡ will approximate the average value over 
the ݆th cell ܥ௝ at time ݐ௡:  
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where Δݔ௝

௡ ൌ ݔ
௝ା

భ
మ

௡ െ ݔ
௝ି

భ
మ

௡  is the length of the ݆-th cell. 

We then construct its piecewise linear interpolant  
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The slopes ݓ௝

௡, ௝ݏ
௡ are first-order approximations of 

௝ݔ௫൫ߩ
௡, ௝ݔ௫ሺݑ 	,௡൯ݐ

௡,  ௡ሻ. Here, we have used theݐ
generalized minmod reconstruction with  
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where ߠ ൌ 2 has been chosen. 
Integrating (3) over ሾݔ௝

௡, ௝ାଵݔ
௡ ሿ ൈ ሾݐ௡,   ௡ାଵሿ yieldsݐ
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and  
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In a method with changing mesh widths, the stability 
criterion for the time step is more important. It is 
essential to note that the CFL condition is only a 
necessary condition for stability (and hence 
convergence). The standard CFL limit reads (Leveque, 
2002) 
 

ఘܨ|
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To enforce higher accuracy, the Courant number will 
here be limited by a parameter ࣝ, thereby limiting the 
time step to:  
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Where 0 ൏ ࣝ ൏ 1		and λଵ൫ݔ௝

௡൯	, λଶ൫ݔ௝
௡൯ are the 

eigenvalues of the Jacobian matrix of the flux function ܨ. 
Therefore, the flux integrals in (8) and (9) can be safely 

approximated by the mid-point quadrature leading to  
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ߩ ቀݔ௝
௡, ௡ାݐ

భ
మቁ ൎ ௝ݔ෤௡൫ߩ

௡൯ ൅
୼௧೙
ଶ
௝ݔ௧൫ߩ

௡,                   (11a)	௡൯,ݐ
 

u	ሺݔ௝
௡, ௡ାݐ

భ
మሻ ൎ ௝ݔ෤௡ሺݑ

௡ሻ ൅
୼௧೙
ଶ
௝ݔ௧ሺݑ

௡,  ௡ሻ,                   (11b)ݐ
 
and from (5a) and (5b), we have ߩ෤௡ሺݔ௝

௡ሻ ൌ ௝ߩ̅
௡ and 

௝ݔ෤௡ሺݑ
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௡. 
The time derivatives ߩ௧ and ݑ௧ in (11a) and (11b) are 

respectively obtained from (3)  
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௡, ௡൯ݐ ൌ െܨ௫,						ݑ௧൫ݔ௝
௡, ௡൯ݐ ൌ െܩ௫ ൅ ݃,							       (12) 

 
and the space derivatives ܨ௫,  ௫ in (12) are computedܩ
using the minmod limiter.  

2.2. Mesh redistribution 

In this section, we briefly describe the second main part 
of our new method which is new mesh redistribution 
method. We steer mesh points by considering the 
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characteristic curves as a moving mesh equations. For the 
scalar conservation law:  
 
பఘሺ௫,௧ሻ
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we are led to the following system of coupled ODEs: 
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where the first equation determines the location of 
characteristic curves in time. 
For the system of conservation laws: 
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ப௫
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where ܷ ൌ ሺߩሺݔ, ,ሻݐ ,ݔሺݑ a 2 ,ܣ ሻሻ் andݐ ൈ 2 matrix, is 
the Jacobian of ܨ in (1). Assume that the system is 
strictly hyperbolic, i.e., all eigenvalues of the matrix A 
are real, and the corresponding eigenvectors span Թଶ. 
The eigenvalues ݒଵሺܷሻ,  are the ܣ ଶሺܷሻ, of the matrixݒ
characteristic speeds, i.e., the equations 
 
ௗ௫

ௗ௧
ൌ 				,ଵሺܷሻݒ

ௗ௫

ௗ௧
ൌ  ଶሺܷሻ,                                          (16)ݒ

 
are the characteristic curves equations. 
 

 
 

Fig. 1. Mesh trajectories and mesh crossing 
 

In our new method, we move points using 
characteristic curves, i.e., ݔ௝

௡ିଵ’s at ݐ௡ିଵ in Fig. 1 move 
to ݔ௝

௡’s at ݐ௡ following characteristics. 
In fact, we use the discretization of characteristic 
equation  
 

ቊ
௝ݔ
௡ାଵ ൌ ௝ݔ

௡ ൅ Δݐ௡ݒሺܷሺݔ௝
௡, ,௡ሻሻݐ

଴ݔ ൌ ேݔ								,ܽ ൌ ܾ,
                         (17) 

 
where for system (15), ݒ can be ݒଵ or ݒଶ or their average. 
We then couple this equation with equations (10a) and 
(10b). 

If the characteristic curves intersect as it is shown in 
Fig. 1, then, ݔ௝

௡ାଵ ൏ ௝ିଵݔ
௡ାଵ at time ݐ ൌ  ௡ାଵ, and so meshݐ

crossing will be produced. For this reason, we move these 
points by another strategy using the fact that two 
characteristics intersect when a shock wave is generated. 

2.2.1. Shock Speed and Non-crossing Mesh 

In the context of vehicle traffic, a shock wave is an 
abrupt change in traffic density. A shock wave will have 

a velocity of propagation. The shock velocity is like the 
velocity of density or traffic waves that is not related to 
the vehicle speed. When a shock wave is generated, 
characteristics intersect. It then represents a mathematical 
discontinuity (abrupt change) in ݑ ,ߩ, or ܨ. 

Consider a segment ሾݔଵ,  ଶሿ of one-lane road, andݔ
suppose that the density of the traffic in this segment has 
a discontinuity at a point ߦሺݐሻ. We divide up the integral 
giving the number of vehicles ܰ in this segment at the 
point ߦ:  
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Conservation of number gives  
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பఘ

ப௧
ൌ െ

பி

ப௫
ൌ 0, in the integrals and applying the 

fundamental theorem of calculus, we have  
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so we have  
 

ሺߩሺߦାሻ െ ሻሻିߦሺߩ
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ௗ௧
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If the shock speed is ܵ ൌ
ௗక

ௗ௧
, this is sometimes written 

simply as ܵሾሾߩሿሿ ൌ ሾሾܨሿሿ, where ሾሾ. ሿሿ represents the jump 
across the shock. 

For a scalar conservation law, we can divide by 
ሺߩሺߦ൅ሻ െ   :െሻ and obtain the shock speedߦሺߩ
 

ܵ ൌ
ிሺఘሺకశሻሻିிሺఘሺకషሻሻ
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In general ߩሺߦା, ,ିߦሺߩ ሻ andݐ  ሻ, stands just to the rightݐ

and the left of the shock, vary with time and the shock 
speed also varies. 

For systems of equations, ߩሺߦାሻ െ  ሻ andିߦሺߩ
ାሻሻߦሺߩሺܨ െ  ሻሻ are both vectors while ܵ is still aିߦሺߩሺܨ
scalar. Now we cannot always solve for ݏ to make (21) 
hold. Instead, only certain jumps ߩሺߦାሻ െ  ሻ areିߦሺߩ
allowed, namely those for which the vectors ܨሺߩሺߦାሻሻ െ
ାሻߦሺߩ ሻሻ andିߦሺߩሺܨ െ  .ሻ are linearly dependentିߦሺߩ

Now let us consider the situation whereby two 
characteristics intersect as Fig. 1 at time ݐ௡ to time ݐ௡ାଵ. 
When in general ݔ௝

௡ାଵ ൑ ௝ିଵݔ
௡ାଵ, we move points ݔ௝

௡, ௝ିଵݔ
௡  

using the following equation: 
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ൌ ܵ,                                                                          (23) 

 
or  
 

ቊ
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௡ ൅ ܵΔݐ௡,

଴ݔ ൌ ேݔ								,ܽ ൌ ܾ,
                                            (24) 

 
as can be seen in Fig. 2. 
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Fig. 2. New mesh trajectories  
 

The basic idea of our algorithm can be summarized as 
follows: 
 
Algorithm 1  
Let	ܲ ൌ  ,׎
1. (I) Given a uniform mesh of the physical domain and 
mesh points	ሼݔ଴

଴, ଵݔ
଴, . . . , ேݔ

଴ሽ. Then compute the grid 

values ߩ௝
ሾ଴ሿ andݑ௝

ሾ଴ሿ, ݆ ൌ 1, . . . , ܰ െ 1 based on the cell 

average for the initial	ߩሺݔ, 0ሻ, ,ݔሺݑ 0ሻ. 
(II) Assume ݔ௝

௡, ௝ߩ
௡ and ݑ௝

௡ were obtained. 
2.  Computeߩሺݔ

௝ା
భ
మ

௡ , ݔሺݑ ௡ାଵሻ andݐ
௝ା

భ
మ

௡ ,  ௡ାଵሻ based onݐ

non-oscillatory finite volume method, 
(II) If ݆ ב ܲ then move grid ݔ௝

௡ to ݔ௝
௡ାଵ based on 

characteristics equation (17), else based on shock speed 
equation (24). 
Ifݔ௝

௡ାଵ ൑ ௝ିଵݔ
௡ାଵ, Move grids ݔ௝ିଵ

௡ , ௝ݔ
௡ to ݔ௝ିଵ

௡ାଵ, ௝ݔ
௡ାଵ 

based on shock speed equation (24), and	ܲ ൌ ܲ ׫ ሼ݆ െ
1, ݆ሽ. 

(III) Computeݔ
௝ା

భ
మ

௡ାଵ ൌ
௫ೕ
೙శభା௫ೕశభ

೙శభ

ଶ
, ݆ ൌ 1, . . . , N െ 1. 

(Iv) Update numerical solution ߩ
௝ା

భ
మ

௡ାଵ and ݑ
௝ା

భ
మ

௡ାଵ on the 

new gridsሼݔ
௝ା

భ
మ

௡ାଵሽ. 

3. If ݐ௡ାଵ ൑ ܶ, then ߩ
௝ା

భ
మ

ሾ଴ሿ : ൌ ߩ
௝ା

భ
మ

௡ାଵ, 

ݑ
௝ା

భ
మ

ሾ଴ሿ : ൌ ݑ
௝ା

భ
మ

௡ାଵ, ݔ
௝ା

భ
మ

ሾ଴ሿ : ൌ ݔ
௝ା

భ
మ

௡ାଵ, and go to step 2. 

 
Some remarks on step 2. 
Vector ܲ shows the points that move by the shock speed 
equation (24). 

After obtaining the new grid ሼݔ
௝ା

భ
మ

௡ାଵሽ, we need to update 

ߩ .at these grid points (i.e ݑ and ߩ
௝ା

భ
మ

௡ାଵ, ݑ
௝ା

భ
మ

௡ାଵ). For this 

purpose, we use the formula obtained from the 
perturbation method (Tang and Tang, 2003). Numerical 
solutions are updated on the new grids ሼݔ

௝ା
భ
మ

௡ାଵሽ (at the 

same time) using,  
 
ݑ
௝ା

భ
మ

௡ାଵ ൌ ௝ାభݔሺݑ௝ߚ
మ

௡ , ௡ାଵሻݐ െ ෞሻ௝ାଵݑ௝ሺሺܿߛ െ ሺܿݑෞሻ௝ሻ,        (25) 

 
where  
 
௝ߛ ൌ ሺݔ௝ାଵ

௡ାଵ െ ௝ݔ
௡ାଵሻିଵ,								ߚ௝ ൌ .௝ߛ ሺݔ௝ାଵ

௡ െ ௝ݔ
௡ሻ, 

 
and 
 

ሺܿݑෞሻ௝ ൌ
௝ܿ

2
ሺݑ௝

ା ൅ ௝ݑ
ିሻ െ

| ௝ܿ|
2
ሺݑ௝

ା െ ௝ݑ
ିሻ. 

 
The ௝ܿ is defined by ௝ܿ ൌ ௝ݔ

௡ െ ௝ݔ
௡ାଵ, and 

 

௝ݑ		
േ ൌ ௝േభݑ

మ
൅
1
2
ሺݔ௝ െ ௝േଵሻݔ ሚܵ௝േభ

మ
, 

 
where ሚܵ௝േభ

మ
 is an approximation of the slope ݑ௫ at ݔ௝ାభ

మ
, 

and is  

ሚܵ
௝ା

భ
మ
ൌ ሺ݊݃݅ݏሺ ሚܵ

௝ା
భ
మ

ା ሻ ൅ ሺ݊݃݅ݏ ሚܵ
௝ା

భ
మ

ି ሻሻ
| ሚܵ
௝ା

భ
మ

ା ሚܵ
௝ା

భ
మ

ି |

| ሚܵ
௝ାభ

మ

ା | ൅ | ሚܵ
௝ା

భ
మ

ି |
, 

 
with  

ሚܵ
௝ା

భ
మ

ା ൌ
ݑ
௝ା

య
మ

௡ െ ݑ
௝ା

భ
మ

௡

௝ାయݔ
మ
െ ௝ାభݔ

మ

,				 ሚܵ
௝ା

భ
మ

ି ൌ
ݑ
௝ା

భ
మ

௡ െ ݑ
௝ି

భ
మ

௡

௝ାభݔ
మ
െ ௝ିభݔ

మ

. 

 
For more details see (Tang and Tang, 2003). 

3. Numerical results 

In this section, we illustrate the performance of the new 
moving mesh finite volume method.  
 
Example 1. First, we test our adaptive mesh generation 
algorithm with the equation (1) from (Leveque, 2002). 
Let ݃ሺݔ, ሻݐ ൌ 0 and the flux function ܨሺߩሺݔ, ሻሻݐ ൌ
  .i.e ,ߩ ሻ varies linearly withߩሻ, and ܷሺߩሺܷߩ
 
ܷሺߩሻ ൌ ௠௔௫ሺ1ݑ െ 0		ݎ݋݂						,ሻߩ ൑ ߩ ൑ 1. 
 

At zero density (empty road) the speed is ݑ௠௔௫, but 
decreases to zero as ߩ approaches to 1. Then the flux 
function is defined: 
 
ሻߩሺܨ ൌ ሺ1ߩ௠௔௫ݑ െ   ሻ.                                                (26)ߩ
 

We first suppose that at ݐ ൌ 0 the density on the road is 
given by 
 
,ݔሺߩ 0ሻ ൌ 0.25 ൅ 0.7݁ሺିఉ௫

మሻ,                                      (27) 
 
with ߚ ൌ 0.01, ௠௔௫ݑ ൌ 1.Since ݒሺߩሻ ൌ ௠௔௫ሺ1ݑ െ  ,ሻߩ2
the mesh equation should be:  
 
ௗ௫

ௗ௧
ൌ ௠௔௫ሺ1ݑ െ  .ሻߩ2

 
Figure 3(a) shows the numerical solutions at time 

ݐ ൌ 25 computed in (Leveque, (2002) by Clawpack and 
the new proposed scheme. A very high quality of the 
computed solution can be observed, especially at the 
contact discontinuity. Figure 4 shows the close-up view 
of the Fig. 3(c). 
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ܩ							 ൌ ቈ
0

௨೐ି௨

்
቉                                                             (29) 

 
The eigenvalues of the matrix ܣ are ߣଵ ൌ u, ଶߣ	 ൌ ݑ െ

ܿ଴. 
Thus the characteristics curves are  

 
ௗ௫

ௗ௧
ൌ ଵߣ ൌ 				,ݑ

ௗ௫

ௗ௧
ൌ ଶߣ ൌ ݑ െ ܿ଴.                               (30) 

 
The shock speed is 

 
ௗ௫

ௗ௧
ൌ

ி೐ሺఘభሻିி೐ሺఘమሻ

ఘభିఘమ
,				                                                      (31) 

 
where ܨ௘ ൌ  at ߩ ଶ are the amount ofߩ ଵ andߩ and ߩ௘ݑ
ܺ ൌ െ∞ and ܺ ൌ ൅∞ respectively. 

 
The results at time ݐ ൌ 10 under the characteristic 

curves 
ௗ௫

ୢ௧
ൌ ଵߣ ൌ  ,(called 1௦௧-characteristic) ݑ

ௗ௫

ௗ௧
ൌ ଶߣ ൌ

ݑ െ ܿ (called2௡ௗ-characteristic), and also 
ௗ௫

ௗ௧
ൌ

ଵ

ଶ
ሺߣଵ ൅

 ,ଶሻ (called the average of 1௦௧- and 2௡ௗ-characteristics)ߣ
are shown in Figs. 6(a), 6(b). Figures 6(c), 6(d) and 6(e) 
show the corresponding mesh trajectories with different 
mesh speed based on 1௦௧- and 2௡ௗ- and the average of 
both characteristic curves, respectively. 

4. Characteristic curves and moving mesh method 

It is useful to compare the method introduced in the 
previous sections with the moving mesh method that has 
been used in (Soheili et al, 2013). 

 
Example 4. We apply the moving mesh method 
introduced in (Soheili et al, 2013) for Example 3. In this 
case, the mesh equation is given by modified 5ܧܦܲܯܯ: 
 
ப௫

ப௧
ൌ

ଵ

ఛெ

ப

பక
ሺܯ

ப௫

பక
ሻ,                                                        (32) 

 
where ܯ is the arc-length monitor function:  
 

ܯ ൌ ሺ1 ൅ ሻ்ሻܷ׏ሺܷ׏ߙ
భ
మ,                                              (33) 

 
where ܷ is defined by (28). Then we combine the moving 
mesh method and new adaptive method together. One 
way to do this is to compute the mesh based on modified 
MMPDE5 and based on the characteristic curves first and 
then generate the new one using the average of them. 

Figure 7 shows the mesh generated using (32), (30) 
(and (31)) and using a combination of them. As can be 
seen, the numerical results are almost the same and since 
the CPU time in the introduced method is much less than 
the CPU time in MMPDE method and, on the other hand, 
in situations when time is an important factor, the new 
method would be more useful. 

 
 
 
 
 
 
 
 

 
Fig. 5. Example 2. Top: Computed solution at t=36, with N=100 mesh points. Bottom: corresponding characteristics and mesh trajectories 
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Fig. 6. Example 3. (a), (b): Computed density and speed at t ൌ 600s with different mesh speed. (c), (d) and (e):  
The mesh trajectories corresponded to the 1 and 2 and average of 1, 2 -characteristics respectively 

 

 
 

Fig. 7. Example 2. (a), (b): Computed solution at t ൌ 600s with different mesh speeds. (c), (d): The mesh  
trajectories with mesh speed based on moving mesh method and combined method respectively 

 

5. Conclusions  

It is important to apply proper numerical treatment to the 
macroscopic models in the simulation of traffic flow. In 
the present paper, we have attempted to present a new 
method with mesh selection based on the characteristics 
and shock speed equations, for solving macroscopic 
traffic flow models. The accuracy of our results are 
derived from combining the high resolution scheme for 
the physical equations with a new mesh generation 
method that uses characteristics.  

The application of this method for traffic flow 
problems demonstrates that the new method is an 
effective scheme to obtain sharp resolution of traffic flow 
features with large gradients such as shock waves. The 
method is suitable for any nonlinear system of hyperbolic 
PDEs based on conservation laws, where numerical 
conservation is guaranteed. 

Some numerical experiments have shown the 
effectiveness of our approximation. The comparison of 

the MMPDE5 and our new mesh generation method has 
been presented too. 
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