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Abstract

In this article, the discrete time state space model with first-order autoregressive dependent process noise is
considered and the recursive method for filtering, prediction and smoothing of the hidden state from the noisy
observation is designed. The explicit solution is obtained for the hidden state estimation problem. Finaly, in a
simulation study, the performance of the designed method for discrete time state space model with dependent

process noise is verified.
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1. Introduction

Some phenomena with time varying systems can be
modeled as the state space models that are very
common in engineering and physics applications
for example, in modeling GPS and inertia
navigation, target tracking, telecommunications,
stochastic optimal control and control engineering
(Grewal et al., 2001; Bar-Shalom et a., 2001;
Kiaipio and Kirubarajan, 2005; Julier and Uhlmann,
2004; Sarkka, 2007; Farnoosh and Nabati, 2013).
Some applications of non-linear and non-Gaussian
state space modelling in earthquake counts, polio
counts, rainfall occurrence data, glacia varve data
and daily returns on a share by means of hidden
Markov models are presented in (Langrock, 2011).
State estimation of a system that changes over time
using a sequence of noisy measurements made on
the system is the main purpose in these models
because the state vector contains all relevant
information required to describe the system under
investigation. The Kalman filter that is well
described in the literature (Kalman, 1960) considers
estimation of the dynamic state from noisy
measurements in the class of estimation problems
in linear Gaussian state space models. Its modified
methods like the Extended Kalman filter (EKF), the
Unscented Kalman filter (UKF) and Gaussian filter
have been applied in non-liner Gaussian state space
models (Julier and Uhlmann, 2004; Sarkka, 2007
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Wu et al., 2006). Sequentiad Monte Carlo (SMC)
methods, which provide very good approximations
to the optimal filter under weak assumptions for
non-linear non-Gaussian state space models, have
been studied in many recent researches (Kantas et
al., 2009; Andrieu et a., 2010; Doucet et al., 2000).
Optimal smoothing and numerous approximation
methods that are closely related to the optimal
filtering, for computing estimates of current and
future states of the system have been studied in
works of (Godsill et a., 2004; Sarkka, 2008). Many
types of state space models based on their
applications have been studied in recent years.
Structured autoregressive state space models and
hidden state filtering based on SMC in these models
have been presented in (Prado and Lopes, 2013).
State space modeling of linear stochastic time-delay
systems and optimal state estimate based on mean-
square filtering problem is studied in (Basin et a.,
2011). The process and measurement noise in these
models are both assumed independent over time but
the case of dependent noise processes might be
more common in practice (Kailath et al., 2000).
Analyzing of these models based on estimation of
the hidden state with the particle approach by
considering two types of dependence noise between
process and measurement is studied in (Saha,
2012). In many applied areas including
econometrics and environmental signal processing,
independence of process noise is an unredlistic
assumption. In this note, dependence of process
noise with first-order autoregressive is considered
and the optimal filtering, prediction and smoothing
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problem for linear systems with dependent process
noise over observations is treated to obtain the
optimal estimate and the error covariance. As a
result, the optimal estimate equations are derived
and the performance of the designed optimal
estimate for this system with dependent process
noise is verified. To the best of knowledge, the
related optimal filtering, prediction and smoothing
problem for the state space model with dependent
process noise has not been investigated.

The outline of this paper is as follows. In Section
2, the discrete state space model with first-order
autoregressive as the process noise is described.
The filtering and prediction problem of the hidden
state in view of the optimal estimate and the error
variance are derived in section 3, respectively.

Section 4 represents the smoothing problem of
the hidden state and in sections 4.1 and 4.2 the
explicit solution for the lag-one and the lag-two
covariance is derived. In section 5, Some numerical
simulation examples performed by R programming
software are conducted to verify the accuracy of the
proposed method. Some conclusions are given in
section 6.

2. Problem formulation

The discrete time linear state space model
considered in this paper is

X = AX 1+
Y = HiX +r, 1

where g is the process noise, I, ~ N(O,R) is
the measuremet noise with covariance matrix R.
The measurement, Y, , is a g-dimensional vector
and the state, X, , is a p-dimensional vector. Time

is indexed by K that runs from O to N and the
matrices A, H, and R are assumed to be

known. The dependent process noise is defined as
the first- order autoregressive vector, AR(1)

Ok = AQ1 Uy, 2

where U, ~N(0,Q) is independent and

identically distributed (i.i.d) with zero mean and
covariance matrix Q . The model (1) can be written
as

% = (Ac+ )% 1~ (PA )X 2 T Uy
= A% —BX ,+U,
Y = HeX +1, (©)

where A= (A +p) and B=(pA ;). U, and

X, are independent for each K. Also at time 0 and

1 there are no measurements, only the prior joint
distribution. The system state dynamics depend on

adelayed state X,_; and X,_, and also U, and I,
are assumed independent in the model (3).
Thedistribution of X = (X, X, )" isasfollows:

f(x) =
(2r)

1
P
‘|zp @

i eXp(—%(X—ﬂ)'Z’l(X—u)),

where X = (X, X, )" isa2p- dimensional vector
with the mean 1 = (u'y,4,) and T is the

covariance matrix between X, and X with
2px2p dimensiona

3 = |:200 Z:01j| (5)
Z10 2ll

The estimation problem is to find the best
estimate of the unobserved state X, , given the
measurements Y, ={Y,,..., Y.}, to time S by
noting that Y, and Y, are empty. When S<K,

S=k and S>K the problen is cdled a
prediction, filtering and smoothing, respectively.
The following definitions will be used for solving
these estimation problems.

M = E(x [Y0), ©)
Pk, = Bl —mE ) (%, —m )} v

When K, =k, =Kk, in (7), p; will be written for
convenience.

3. Filtering and prediction problem of the
hidden state

The stated filtering problem is solved by the
followng theorem.

Theorem 1. The optimal filtering equations for the
model (3) can be evaluated in closed form with
initial conditionsm =my, Nt =m, pd =2,
Pl =2, and pio =X for k=2,...,n

1. The prediction step for the mean and covariance
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isasfollows:

nf* =(A+onf—(A )L,
Ftﬁl =(A+p d:i A+ —(A+p Fﬁkfz (A
~(A)AG A+ +HADHZ(AY +Q

2. The update step for the mean and covariance is
asfollows:

(8)

& = Y —Hm,

S, =HpH +R

ke = ptilHlk Sy

m =mt + ks, ©)
Pc =P - P H L STH

Proof (i): The derivations of (8) and (9) follow
from straight forward calculations,

= Am - Bmc;

= (Ak + ,0) m;'fj - (pA<—l) ml':zz (10)
Note that the conditional expectation equality

E(%_ 1Y) = EX  |Yn),h=12 is valid

(Basin et a., 2005; Pugachev and Sinitsyn, 2001).

The prediction covariance matrix can be written as

P = EL(% — M) 4 —m)')

= E{[A(X; — mll::ll) -B(X, — mlt;) +U,]

[A(X, — m::ll) - B(X ., — m::;) +u,]’}

= ARG A — AN B~ BRA + BB +Q

= (Ac+P)PL(A+P) = (Ac+ ) Pai o (PAL)

—(PAL) p::;k—l(pk +p)' +(PAL) pll:j (PA L)' +Q. (12)

Proof (ii): First, the innovations are defined for
k=2,...,nas

& =Y —E(Y [Yen)

=Y —E(H X+ [Yes) =Y — Hkmfil-

12

Not that E(g,) =0 and

S, =var(g,) = var[y, —H,m"]
=var[H, (% - mll<(_l) +1,]

=H, p'H' +R (13)

Furthermore, the conditional covariance between

X, and &, given Y, , is

CoV(X, & | Y1) = cov X, H (X — m':‘l) +1 Y4l

-— k,l 1
- pk H k- (14)

Using these results, the joint conditional
distribution of X, and &, given Y, , is

{xk}mlw N ({th pkk’i_l p|l:1H|k:|). (15)
&y 0 H Py S

Using the properties of the conditional
expectation of normal distribution, the mean and
variance of the filtering distribution can be written
as

ml'<( = E(X Y1 Vi) = E(X [V, &)

=m + ke (16)

and

p'k( = E{ (X, _rnll:)(xk _ml';)!} =var (X | Y1, &,)
=p - P HYSTH R (17)

4. Smoothing problem of the hidden state

The purpose of the optimal smoothing is to
compute the marginal posterior distribution of the
state X, at the time step k after receiving the
measurements up to atime step N.

Theorem 2. The optimal smoothing equations for
the model (3) can be evaluated in closed form with

initial conditions mM_ and p;, for k = n,...,2.

The smoothing step for the mean and covariance is
asfollows:

Jea SIPE(A+P) = P (PA) TR
m, =m + 3, (m —mE), (18)
Pes = p:j +J, (P - p:ﬂ)\]'k-l-

Proof: The proposed solution to this smoothing
problem is based on (Shumway, 2006). First we

define 7, ={l,-. sl Ueipseo U} and
Vi = EO4a [ Yiea X% =M 73) for
k=2,...,n.Because Y, ;, X, —M " and 7,
are mutually independent and generate Yn , and also

X,_; and 7, areindependent, ¥, _; can be written
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as
= mﬁ + ‘]k—l(xk - rnllzil)’ (19)
where

Jia = coV(X 4, X — mtf_l)( p:_l)_l

= COV(Xk 1 A(Xk 17 mll:ll) - B(kaz - m::zz) + uk)( ptil)il
=[pIA - P, LBT(EE ™
=[PL(A+P) — P2 (PA D) TR ™ 20)

Because Y, ;, X —M‘ " and 7, generate Y,,
the equation (18) is obtained

m, = E( 1Y)
= mlzj + Jk—l(n‘ll? - @71)' (21)

The smoothing covariance, Py ,, is obtained by

straight-forward  calculations. By using the
smoothing mean in the equation (18),

Xea =My = (X g — m:j) =Ja(m - m:71)1 (22)

Multiplying each side of (22) by the transpose of
itself and making an assumption, smoothing
covariance is obtained.

Pa = P+ J B (M) —mi)(ml - mE) 10
— k-1 k-1 '

= Pea T dea (P = P ) s (23)
since the cross-product terms are zero and

E(mTm™) = E(xX) - P 24)

E(mlr:mlE ) = E(kalk ) - pli1 (25)

4.1. The lag-one covariance smoother

For the state space model specified in the model
(3, with k., J,, (k=2,...,n), obtained from
Theorem (1) and (2), the lag-one covariance can be
writtenfor K =n,n-1,...,3,

Fflk 2 Pk lk 2 ‘1< 1(('%4',0){1:;
-(PA) pk 2k 17 pk,k—l)‘] k2 (26)

by considering the initial condition

Pros = (1 =KH (A + ) Py

-(PAL) pn 2n 1 (27)

Proof: We first calculate the lag-one covariance
Px 4 Using the Theorem (1) and (2)

Pis = B{O6 = MO (X — M)’}

= E{[(% - m;f_l) -k (yx —H kmi_l)]

[(Xk—l - mI:j) - ‘Jk—l(kk (yk —-H kml:_l))]’}

= E{[(% M) =k (H (% —m) +1)]
(X2 = M) = I (ke (H (6 =M + 1))} (28)

expanding terms and taking expectation, we can
write

pkkl pkkl ple k' '~k H pkkl
+ ke (H T H HR)K 3y (29)

using the following equations

Pt = EL(% — M) (X — M)}

= E{[ A%, — M) = B(%_, —M2) +ud[%, — M1}
= Ap|l<( pk 2k 11 (30)
and

pll:_lHlk = kk(Hkpllz_lHlk_i'R)! (31

the equation (29) is obtained as follows:

plk(klz(l K Hk)pkkl

=(l - ka)(Ap pk 2k1
= (I - kkH k)((A< + ,0) pk—l - (pA<—1) p::;,k—l)' (32)

By substituting K =N in the equation (32), the
equation (27) is obtained.

The basic step in the derivation of (26) is to use
the Theorem (2)

X =My = (X q— mk )+ (m] - m ), (33)
and

-, = (X, — M2+ I, (M, —my?), (34)

Next, multiply the left-hand side of (33) by the
transpose of the left-hand side of (34), and equate
that to the corresponding result of the right-hand
sides of (33) and (34). Then, making an assumption
of both sides, the result reduces to the equation
(26).
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nr:-1k-2 = ptjk 27 Yk 1E[(rd<1 _nfl)(nﬁ-l _th:f)']‘]lk—Z

= Peaka— J. 1(pkk 1 pEk D'

= pkk’llk 2= dia (AR pk 21~ Pric) 'k
= pk Lk 2= 1((A<+,0)

—(pA) pk 2k 17 pk,k—l)‘] k-2 (39

4.2. The lag-two covariance smoother

For the state-space model specified in the model
(3, with k., J,, k=2,...,n, obtained from
Theorem (1) and (2), the lag-two covariance can be
writtenfor K =n,n-1,...,3,

Pe 1k s pk 1k 3~ k—l(pllj,k—z ~ Prex-2)d ks (36)

with initial condition

pr?,n—Z = (1 =k,H)(A, + ) by 1n »—(PA L) prT:z2

+(kH, )((Ph +P)Phs
—(pA] 1) pn 2 n 1) H 'n—l k'n—l ‘J 'n—2 . (37)

Proof: Similar to the process of proving the lag-
one covariance smoother, we first calculate the lag-

two covariance pl':‘k_z using the Theorem (1) and
2

Piok-e = B{ D4 =M%, —mc, ]

= E{[(% —m™) =k (Y —H M)

[(kaz - n']ltzz) - kaz(ntfl - miif)]'}

= E{[(% —m™) =k (H, (% —mh) +1,)]
[(% > =MD = Jo (ks (Hy 1 (% = M) +1,))]')
=(I-k Hk)(Apk 1k-2 Bp )
+(kH, = 1D(ApT - k2k DH K k—15'k-2-

By substituting K =n in the equation (38), the
equation (37) is obtained. The basic step in the
derivation of (36) is to use the mean of smoothing
in the Theorem (2)

Xeg =My = Xy — mtll) + 3, (my - @71): (39)
and
X3 =M 5= (X 35— mk 3)+‘]k Sy, — mk 2) (40)

Next, multiply the left-hand side of (39) by the
transpose of the left-hand side of (40), and equate
that to the corresponding result of the right-hand

sides of (39) and (40). Then, taking expectation of
both sides, the result reduces to the equation (36).
n< 1k-2 n< 1k-3 15(“13 _@71)(w72 _ntg)’]yks

Jia( plk(,k—z — Prr2)d s (41)

= pk—l,k—S -

5. Simulation study

This section presents an example of designing the
optimal estimate of the hidden state for a state
space model (3) with dependent process noise . For
this purpose, the simulation is carried out for this

model with A =A_, =1, p=05, the

measurement noise variance R=1.2 and the
process noise variance Q =1.5. The following

initial  values are assigned: M, =0, m =1,
2,=0.7, 2,=1 and X,; =0.2. The simulated
hidden state of the system, X, and the

observations, Y, , are shown in Fig. 1.

<

2 + Obsenatons
— Hidden states

Fa A
“7 —{"'.;# ‘w + - o

0 0 40 &0 &0 100

Fig. 1. The simulated state X; (solid ling) and the

observations Y, (star)

The purpose is to estimate the hidden state using
the optimal estimation method based on a discrete

state space form of the model. N =10 values of
the corrupted states Y, , the states X, , the mean

and variance of the prediction mlf_l, pif"l, the

filtering M, pf and the smoothing M, p;
distribution for estimation of the state in the model
are obtained and are illustrated in Table 1. As we
see, P> P> Py

In Fig. 2, the mean value of the prediction, the
filtering and the smoothing distribution for
k=1,..,n=10 are shown as lines and their
confidence intervals which are computed by
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mt£1.96y pi ! mf +1.96,/pf and m?il-%\/lITQ
as dashed lines. The simulation results obtained
from Table 1 and Fig. 2 show that the prediction of
the current is more uncertain than the
corresponding filtered value, which in turn, is more
uncertain than the corresponding smoother value.
Consequently, the confidence interval for smoother
is shorter than the filter and the filter is shorter than
the predicted. Figure 3 shows the mean values with
confidence interval of the prediction, the filtering
and the smoothing of the hidden state,

X = (Xyer %) K =1,...,25, that is simulated

from the model with A<:A<_1=(; cl)J

p= 0.7 02 , the measurement noise variance
0.2 07

R= 90 and the process noise variance
0 09

Q:((Z) 2} The following initial values are

assigned: m, = (0.5,0.79’, m =(2,11)’,

s = 1 0), (002 0) and 5 = 0.01 0.01)
o1 21‘[ 0 o.z) © {001 001
The simulation results show a definite advantage of

the designed optimal estimate with regard to
proximity of the estimate to the real state value.

Fig. 2. The simulated values of X, , for k =1,..,10 are
shown as points. In top, middle and bottom panel, the
mean of prediction mL(_l , the mean of filter m:: and the

mean of smoother mQ with their confidence intervals
are shown as aline and dashed lines, respectively

6. Conclusion

The discrete time state space model is considered
and an optimal filtering, prediction and smoothing
method is proposed to estimate the hidden state
from the noisy observation. In the presented model,
dependent process noise is defined as first-order
autoregressive AR(1). The closed form is obtained
for the optimal estimate and the error variance. The
simulation results show that the values of the
estimated calculated close to the real values of the
simulated hidden state. Furthermore, the confidence
intervals are found for trajectories of the solution.
We observed that the smoothers, the filters and the
predictions for the state having the best confidence
intervals, respectively.

Table 1. Predictions, filters and smoothers

k k n

t Ve X mt my Py me (o
- 1.915 - 0.500 | 0.700 - -
- 1.819 - 1.0008 | 1.000 | 0.954 | 0.540

2283 | 1.890 | 1.250 | 3.625

2026 | 0901 | 1.131 | 0.544

-0.870 | -0.238 | 2.539 | 3.256

0.047 | 0.876 | 0.065 | 0.529

-0.830 | -0.474 | -0.941 | 3.222

-0.860 | 0.874 | -0.893 | 0.527

-1.721 | -0.827 | -1.315 | 3.215

-1.610 | 0.873 | -1.405 | 0.527

-1.829 | -0.632 | -1.985 | 3.214

-1.871 | 0.873 | -1.413 | 0.527

-0.193 | 0.253 | -2.000 | 3.213

-0.685 | 0.873 | -0.726 | 0.527

0.488 | 1.271 | -0.092 | 3.213

0.330 | 0.873 | -0.206 | 0.527

|l N[O|O || W|IN|F,|O

-1.216 | 0.723 | 0.838 | 3.213

-0.657 | 0.873 | -0.657 | 0.527
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Prediction(x1) Prediction(x2)

0 10 2
0 10 20
Ll

P

Fig. 3. The simulated values of X, = (X, X, )", for

k =1,..,25 are shown as points. In top, middle and
bottom pand, the mean of prediction

“T=(mtms ), the mean  of  filter

m,
ka=(mlkk,m§k)' and the mean of smoother

my = (my,, m;, )" with their confidence intervals are
shown as aline and dashed lines, respectively.
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