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Abstract 

In this article, the discrete time state space model with first-order autoregressive dependent process noise is 
considered and the recursive method for filtering, prediction and smoothing of the hidden state from the noisy 
observation is designed. The explicit solution is obtained for the hidden state estimation problem. Finally, in a 
simulation study, the performance of the designed method for discrete time state space model with dependent 
process noise is verified. 
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1. Introduction 

Some phenomena with time varying systems can be 
modeled as the state space models that are very 
common in engineering and physics applications 
for example, in modeling GPS and inertial 
navigation, target tracking, telecommunications, 
stochastic optimal control and control engineering 
(Grewal et al., 2001; Bar-Shalom et al., 2001; 
Kiaipio and Kirubarajan, 2005; Julier and Uhlmann, 
2004; Sarkka, 2007; Farnoosh and Nabati, 2013). 
Some applications of non-linear and non-Gaussian 
state space modelling in earthquake counts, polio 
counts, rainfall occurrence data, glacial varve data 
and daily returns on a share by means of hidden 
Markov models are presented in (Langrock, 2011). 
State estimation of a system that changes over time 
using a sequence of noisy measurements made on 
the system is the main purpose in these models 
because the state vector contains all relevant 
information required to describe the system under 
investigation. The Kalman filter that is well 
described in the literature (Kalman, 1960) considers 
estimation of the dynamic state from noisy 
measurements in the class of estimation problems 
in linear Gaussian state space models. Its modified 
methods like the Extended Kalman filter (EKF), the 
Unscented Kalman filter (UKF) and Gaussian filter 
have been applied in non-liner Gaussian state space 
models (Julier and Uhlmann, 2004; Sarkka, 2007; 
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Wu et al., 2006). Sequential Monte Carlo (SMC) 
methods, which provide very good approximations 
to the optimal filter under weak assumptions for 
non-linear non-Gaussian state space models, have 
been studied in many recent researches (Kantas et 
al., 2009; Andrieu et al., 2010; Doucet et al., 2000). 
Optimal smoothing and numerous approximation 
methods that are closely related to the optimal 
filtering, for computing estimates of current and 
future states of the system have been studied in 
works of (Godsill et al., 2004; Sarkka, 2008). Many 
types of state space models based on their 
applications have been studied in recent years. 
Structured autoregressive state space models and 
hidden state filtering based on SMC in these models 
have been presented in (Prado and Lopes, 2013). 
State space modeling of linear stochastic time-delay 
systems and optimal state estimate based on mean-
square filtering problem is studied in (Basin et al., 
2011). The process and measurement noise in these 
models are both assumed independent over time but 
the case of dependent noise processes might be 
more common in practice (Kailath et al., 2000). 
Analyzing of these models based on estimation of 
the hidden state with the particle approach by 
considering two types of dependence noise between 
process and measurement is studied in (Saha, 
2012). In many applied areas including 
econometrics and environmental signal processing, 
independence of process noise is an unrealistic 
assumption. In this note, dependence of process 
noise with first-order autoregressive is considered 
and the optimal filtering, prediction and smoothing 
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problem for linear systems with dependent process 
noise over observations is treated to obtain the 
optimal estimate and the error covariance. As a 
result, the optimal estimate equations  are derived 
and  the performance of the designed optimal 
estimate for this system with dependent process 
noise is verified. To the best of knowledge, the 
related optimal filtering, prediction and smoothing 
problem for the state space model with dependent 
process noise has not been investigated. 

The outline of this paper is as follows. In Section 
2, the discrete state space model with first-order 
autoregressive as the process noise is described. 
The filtering and prediction problem of the hidden 
state in view of the optimal estimate and the error 
variance are derived in section 3, respectively.  

Section 4 represents the smoothing problem of 
the hidden state and in sections 4.1 and 4.2 the 
explicit solution for the lag-one and the lag-two 
covariance is derived. In section 5, Some numerical 
simulation examples performed by R programming 
software are conducted to verify the accuracy of the 
proposed method. Some conclusions are given in 
section 6. 

2. Problem formulation 

The discrete time linear state space model 
considered in this paper is  
 

kkkk qxAx 1=  

,= kkkk rxHy 
                                                

(1) 
 

where kq  is the process noise, )(0,~ RNrk  is 

the measuremet noise with covariance matrix R . 

The measurement, ky , is a q-dimensional vector 

and the state, kx , is a p-dimensional vector. Time 

is indexed by k  that runs from 0  to n  and the 

matrices kA , kH  and R  are assumed to be 

known. The dependent process noise is defined as 
the first- order autoregressive vector, AR(1)  
 

,= 1 kkk uqq 
                                                

(2) 
 
where )(0,QNuk ~  is independent and 

identically distributed (i.i.d) with zero mean and 
covariance matrix Q . The model (1) can be written 

as  
 

kkkkkk uxAxAx   211 )()(= 
 

kkk uBxAx   21=
 

,= kkkk rxHy 
                                                

(3)
 

 

where )(= kAA  and )(= 1kAB  . ku  and 

kx  are independent for each k . Also at time 0 and 

1 there are no measurements, only the prior joint 
distribution. The system state dynamics depend on 

a delayed state 1kx  and 2kx  and also ku  and kr  

are assumed independent in the model (3).  

The distribution of )','(= 10 xxx  is as follows: 
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where )','(= 10 xxx  is a 2p- dimensional vector 

with the mean )','(= 10   and   is the 

covariance matrix between 0x  and 1x  with 

pp 22   dimensional  
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The estimation problem is to find the best 

estimate of the unobserved state kx , given the 

measurements },,{= 2 ss yyY  , to time s  by 

noting that 0Y  and 1Y  are empty. When ks < , 

ks =  and ks >  the problem is called a 
prediction, filtering and smoothing, respectively. 
The following definitions will be used for solving 
these estimation problems.  
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When kkk == 21 , in (7), s
kp  will be written for 

convenience.  

3. Filtering and prediction problem of the 
hidden state  

The stated filtering problem is solved by the 
followng theorem.  
 
Theorem 1. The optimal filtering equations for the 
model (3) can be evaluated in closed form with 

initial conditions 0
0
0 = mm , 1

1
1 = mm , 00

0
0 = p , 

11
1
1 = p  and 10

1
1,0 = p  for nk ,2,=   

1. The prediction step for the mean and covariance 
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is as follows:  
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 2. The update step for the mean and covariance is 
as follows:  
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Proof (i): The derivations of (8) and (9) follow 
from straight forward calculations,  
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Note that the conditional expectation equality 

1,2=),|(=)|( hYxEYxE hkhkkhk   is valid 

(Basin et al., 2005; Pugachev and Sinitsyn, 2001). 
The prediction covariance matrix can be written as  
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Proof (ii): First, the innovations are defined for 

nk ,2,=   as  
 

)|(= 1 kkkk YyEy
 

.=)|(= 1
1


  k

kkkkkkkk mHyYrxHEy      

(12)

 Not that 0=)( kE   and  

][=)(= 1 k
kkkkk mHyvarvarS 

 
])([= 1

k
k
kkk rmxHvar  

 
.'= 1 RHpH k

k
kk 

                                           
(13)

 
 

Furthermore, the conditional covariance between 

kx  and k  given 1kY  is  
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Using these results, the joint conditional 

distribution of kx  and k  given 1kY  is  
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Using the properties of the conditional 
expectation of normal distribution, the mean and 
variance of the filtering distribution can be written 
as  
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4. Smoothing problem of the hidden state 

The purpose of the optimal smoothing is to 
compute the marginal posterior distribution of the 

state kx  at the time step k after receiving the 

measurements up to a time step n .  
 
Theorem 2. The optimal smoothing equations for 
the model (3) can be evaluated in closed form with 

initial conditions n
nm and n

np  for ,2,= nk .  

The smoothing step for the mean and covariance is 
as follows:  
 






































.')(=

),(=

,)]()()([=

1
1

1
1
11

1
1

1
11

11
1

1
21,

1
11

k
k
k

n
kk

k
k

n
k

k
k

n
kk

k
k

n
k

k
kk

k
kkk

k
kk

JppJpp

mmJmm

pApApJ 
(18)

 
 
Proof: The proposed solution to this smoothing 
problem is based on (Shumway, 2006). First we 

define },,,,,{= 1 nknkk uurr    and 
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111 k

k
kkkkk mxYxE  

   for 

nk ,2,=  . Because 1kY , 1 k
kk mx  and k  

are mutually independent and generate nY , and also 

1kx  and k  are independent, 1k  can be written 



 
 

IJST (2014) 38A3 (Special issue-Mathematics): 321-327                                                                                                                               324 
 
as  
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Because 1kY , 1 k
kk mx  and k  generate nY , 

the equation (18) is obtained  
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The smoothing covariance, n
kp 1 , is obtained by 

straight-forward calculations. By using the 
smoothing mean in the equation (18),  
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Multiplying each side of (22) by the transpose of 

itself and making an assumption, smoothing 
covariance is obtained.  
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since the cross-product terms are zero and  
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4.1. The lag-one covariance smoother 

For the state space model specified in the model 

(3), with kk , kJ , ( nk ,2,=  ), obtained from 

Theorem (1) and (2), the lag-one covariance can be 
written for ,31,,= nnk , 
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Proof: We first calculate the lag-one covariance 
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using the following equations  
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By substituting nk =  in the equation (32), the 
equation (27) is obtained. 

The basic step in the derivation of (26) is to use 
the Theorem (2)  
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Next, multiply the left-hand side of (33) by the 

transpose of the left-hand side of (34), and equate 
that to the corresponding result of the right-hand 
sides of (33) and (34). Then, making an assumption 
of both sides, the result reduces to the equation 
(26).  
 



 
 
 
325 

21, =
n

kk pp
1
1,= 


k
kkp

1
1,= 


k

kkp
1
1, 2= k

pk k

 

1( kA 

4.2. The l

For the

(3), with

Theorem 
written fo
 

=31, 
n

kkp
 
with initi
 

=2, 
n

nnp

( n nk H

1( nA 
 
Proof: S
one covar

two cova

(2)  
 

=2, 
k

kkp

{[(= xE

[( 2 kx

{[(= xE

[( 2 k mx

(=  kI
( kk Hk

 
By sub

equation 
derivation
in the The
 

1  n
kk mx

 and  
 

3   n
kk mx

 
Next, m

transpose
that to th

1
1

21, 


  k
k

kk EJp

12 (  kk pJ

12 (  k
kk ApJ

2 1((k kJ A 
1

1 2, 1) k
k kp p
  

lag-two covar

e state-space m

h kk , kJ , k
(1) and (2), t

or ,= nnk

= 1
31,


  k

k
kk Jp

al condition  

)((=  nnHkI

)(( nI A  
2

1 2, 1) )n
n np H
 

Similar to the 
riance smooth

ariance k
kkp 2, 

{[=  k
kk mxE

)1  k
kk mx

)2
2  

 k

k
k Jm

)1k
kk mx  

() 2
2
2  

 kk

k
k kJm

)( 1
1



k
kkk ApHk

)( 2
1

 k

kk ApI

bstituting k =
(37) is obta

n of (36) is to
eorem (2)  

(= 11  k
n
k mx

(= 33   k
kk mx

multiply the l
e of the left-h
he correspond

1)([(  k
k

n
k mmmE

1,
1

1, 

  n

kk
k

kk p
1

12,
1
1





  k

kk
k
k Bp

1
1) k

kp 


 

, 1 2) ' .n
k k kp J 

riance smooth

model specifi

nk ,2,=  ,

the lag-two co
,31, ,  

( 2,1   n
k

k
kk pp

)(( 
 n

nn pA 
2
1) n

np 
  

1 1' ' 'n n nH k J 

process of p
her, we first c

2  using the T

][ 2 
k
kk

k
k mx

(  kkk mHyk

( 12  
k
k

k
k mm

(( kkk xHk 
(( 111  kkk xH

2
2

1
2,


  k

kk Bp
)2

12,


 k
kk HBp

n=  in the eq
ained. The ba
o use the mea

() 1
1
1 

  n

kk
k
k mJ

() 3
3
3 

  n

kk
k
k mJ

left-hand side
hand side of (
ding result of

2
11 ']) 

  k

k
k

n
k Jmm

2') kJ
 
1,1 ') k

n
kk Jp

.                   (3

er 

ed in the mod

obtained fro

ovariance can 

,') 32,  k
n

k J   (3

(1
21, 


  nn A

2 .n            (37

proving the la
alculate the la

Theorem (1) a

}]2 
k
k  

)]1k
km

 
}])2

1 
  

)])1
k

k
k rm 

))) 1
2
1  

 k

k
k rm

)
                (3

''' 11  kkk JkH

quation (38), t
asic step in t
an of smoothi

),1 k
k

n
k m     (3

),3
22

  k

km   
(4

e of (39) by t
(40), and equa
f the right-ha

 

2

2k

35)
 

del 

om 

be 

36)
 

)) 2
21



n
np

7)
 

ag- 
ag- 

and 

]
 

}]) 

8) 
.2k

the 
the 
ing 

39) 

40)
 

the 
ate 

and 

si
bo
 
p

=

5.

Th
op
sp
th

m

m
pr

in


hi

ob
 

 
Fi

ob
 

th
st

th

an

fil

di
ar

se

fil
k
co

       IJST (2014) 

des of (39) an
oth sides, the r

1
31,21, = 


k
kk

n
kk pp

= 1
31,


 k

kk Jp

. Simulation s

his section pr
ptimal estima
pace model (3
his purpose, th

model with 

measurement n
rocess noise 

nitial values 

0.7=0 , 1
idden state 

bservations, y

ig. 1. The sim

bservations ty

The purpose 
he optimal est
ate space form

he corrupted s

nd variance 

ltering k
km ,

istribution for
re obtained an

ee, k
k

k
k pp >1

In Fig. 2, the
ltering and 

1=1,...,= nk
onfidence int

38A3 (Special iss

nd (40). Then
result reduces

13 [(  n
kk mEJ

( 2,1  k
kkk pJ

study 

resents an exa
ate of the hid
) with depend
he simulation

== 1kk AA

noise varianc
variance Q

are assigned

1=  and 10
of the sys

ky , are shown

mulated state 

(star)  

is to estimate
timation meth
m of the mod

states ky , the

of the predic
k
kp  and the

estimation of
nd are illustra

n
k

k
k p> . 

e mean value
the smooth

10  are show

tervals whic

sue-Mathematics)

n, taking expe
s to the equatio

2
1)( 
  n

k
k
k mmm

')2,  k
n

kk Jp

ample of desi
dden state fo
dent process n
n is carried ou

1= , 0=
ce 1.2=R

1.5= . The 

d: 0=0m , 

0.2=0 . The 

ystem, kx , 

n in Fig. 1.  

tx  (solid line

e the hidden s
hod based on 
del. 10=n  

he states kx , 

ction 1,k
k pm

e smoothing 

f the state in 
ated in Table 

e of the predi
hing distribu
wn as lines 

ch are comp

s): 321-327 

ectation of 
on (36). 

3
3
2 ']) 

  k

k
k Jm

 .3      (41) 

igning the 
or a state 
noise . For 
ut for this 

0.5 , the 

 and the 
following 

1=1m , 

simulated 

and the 

 

e) and the 

state using 
a discrete 
values of 

the mean 
1k

kp , the 
n
k

n
k pm ,  

the model 
1. As we 

iction, the 
ution for
and their 

puted by 



 
 

IJST (2014) 38A3 (Special issue-Mathematics): 321-327                                                                                                                               326 
 

11 1.96   k
k

k
k pm , k

k
k
k pm 1.96  and n

k
n
k pm 1.96  

as dashed lines. The simulation results obtained 
from Table 1 and Fig. 2 show that the prediction of 
the current is more uncertain than the 
corresponding filtered value, which in turn, is more 
uncertain than the corresponding smoother value. 
Consequently, the confidence interval for smoother 
is shorter than the filter and the filter is shorter than 
the predicted. Figure 3 shows the mean values with 
confidence interval of the prediction, the filtering 
and the smoothing of the hidden state, 

,251,=,),(= 21 kxxx kkk  , that is simulated 

from the model with 







 10

01
== 1kk AA , 









0.70.2

0.20.7
= , the measurement noise variance 









0.90

0.9
=R  and the process noise variance 









20

02
=Q . The following initial values are 

assigned: )(0.5,0.75=0 m , )(2,1.1=1 m , 











10

0.1
=0

, 










0.20

0.002
=1

 and 










0.010.01

0.010.01
=10

. 

The simulation results show a definite advantage of 
the designed optimal estimate with regard to 
proximity of the estimate to the real state value. 
 

 
 
Fig. 2. The simulated values of kx , for 1,..,10=k  are 

shown as points. In top, middle and bottom panel, the 

mean of prediction 
1k

km , the mean of filter 
k
km  and the 

mean of smoother 
n
km  with their confidence intervals 

are shown as a line and dashed lines, respectively 

6. Conclusion 

The discrete time state space model is considered 
and an optimal filtering, prediction and smoothing 
method is proposed to estimate the hidden state 
from the noisy observation. In the presented model, 
dependent process noise is defined as first-order 
autoregressive AR(1). The closed form is obtained 
for the optimal estimate and the error variance. The 
simulation results show that the values of the 
estimated calculated close to the real values of the 
simulated hidden state. Furthermore, the confidence 
intervals are found for trajectories of the solution. 
We observed that the smoothers, the filters and the 
predictions for the state having the best confidence 
intervals, respectively. 
 

Table 1. Predictions, filters and smoothers 
 

t ky
 kx

 
1k

km  
1k

kp  
k
km k

kp n
km n

kp  

0 - 1.915 - - 0.500 0.700 - - 

1 - 1.819 - - 1.0008 1.000 0.954 0.540 

2 2.283 1.890 1.250 3.625 2.026 0.901 1.131 0.544 

3 -0.870 -0.238 2.539 3.256 0.047 0.876 0.065 0.529 

4 -0.830 -0.474 -0.941 3.222 -0.860 0.874 -0.893 0.527 

5 -1.721 -0.827 -1.315 3.215 -1.610 0.873 -1.405 0.527 

6 -1.829 -0.632 -1.985 3.214 -1.871 0.873 -1.413 0.527 

7 -0.193 0.253 -2.000 3.213 -0.685 0.873 -0.726 0.527 

8 0.488 1.271 -0.092 3.213 0.330 0.873 -0.206 0.527 

9 -1.216 0.723 0.838 3.213 -0.657 0.873 -0.657 0.527 
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Fig. 3. The simulated values of ),(= 21 kkk xxx , for 

1,..,25=k  are shown as points. In top, middle and 

bottom panel, the mean of prediction 

),(= 1
2

1
1

1  k
k

k
k

k
k mmm , the mean of filter 

),(= 21 k
k

k
k

k
k mmm  and the mean of smoother 

),(= 21 n
k

n
k

n
k mmm  with their confidence intervals are 

shown as a line and dashed lines, respectively. 
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