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Abstract– This study extends the theory of three-dimensional consolidation to unsaturated soils 
and formulates the theory for finite element analysis by treating the pore water and pore air as a 
mixed pore fluid. This formulation considers variations in the permeability and compressibility of 
the mixed pore fluid with changes in the void ratio and degree of saturation. The compressibility of 
the mixed pore fluid is derived using Boyle’s Law. An example of the settlement of a vertical 
drain is investigated and discussed; this example demonstrates that the numerical analysis theory is 
applicable and reliable. The results indicate that the rate of consolidation of unsaturated soils is 
clearly slower than that of saturated soils, the rate of dissipation of the pore fluid pressure is 
considerably slower, and the permeability of the mixed pore fluid decrease during consolidation. 
This theory is applicable to unsaturated soils with high degrees of saturation and can be used to 
obtain more reliable predictions of unsaturated soil consolidation.          
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1. INTRODUCTION 
 

The consolidation of soils as a result of the dissipation of excess pore pressures has been of considerable 
concern in both practice and theory in soil mechanics for many years. Biot’s theory of consolidation [1] is 
preferable from a theoretical perspective because it incorporates the coupling effect between the 
dissipation of excess pore water pressure and deformation of the soil skeleton during consolidation. 
However, Biot’s theory assumes complete soil saturation, whereas many practical problems involve the 
consolidation of unsaturated compacted soils, such as the filling of earth dams, roadways, and railways 
with compacted fill. Blight [2] derived a consolidation equation for the pore air in dry and hard 
unsaturated soil using Fick’s law. Scott [3] introduced changes in the terms for the void ratio and degree 
of saturation in the consolidation equation for unsaturated soils containing closed air bubbles. Barden [4] 
first proposed a consolidation model that considered the coupling of deformation, pore water pressure, and 
pore air pressure. Fredlund and Hasan [5-7] proposed the use of two partial differential equations to solve 
for the pore water pressure and pore air pressure, assuming that the air phase is continuous. 
Dakshanamurthy [8] established a numerical model to describe the pore water–air flow based on Fredlund 
and Hasan’s theory. Ausilio [9] investigated the one-dimensional consolidation of unsaturated soil based 
on increasing load or matric suction. Fazeli [10] conducted ten triaxial tests which were carried out to 
study the unsaturated shear strength characteristics of Shiraz silty clay soil. QIN Aifang [11-12] derived 
semi-analytical and analytical solutions based on Fredlund’s one-dimensional consolidation theory for 
unsaturated soils. Badv [13] conducted a series of consolidation and direct shear tests and investigated the 
relationship between the key mechanical and physical properties. 
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The finite element method has expanded the range of applicability of consolidation theory for 
unsaturated soils. Chang and Duncan [14] extended the theory of consolidation to partially saturated clay 
soils and developed a finite element formulation for the problem. Narasimhan [15] presented a method for 
numerically simulating the movement of water in variably saturated deformable porous media that 
considers a general three-dimensional field of flow in conjunction with a one-dimensional vertical 
deformation field. Schrefler [16-17] developed a fully coupled model to simulate the slow transient 
phenomena involved in the flow of water and air in deformable porous media. The finite element method 
is used for the discrete approximation of the partial differential equations governing the problem. Wong 
Tai [18] investigated a coupled numerical simulation of the consolidation of unsaturated soils. Conte [19] 
solved simplified consolidation equations for unsaturated soils based on the consolidation theory proposed 
by Fredlund and his coworkers using a Fourier transform. This paper presents an extension of Biot’s 
theory that permits finite element analyses of the consolidation of unsaturated soils with arbitrary 
geometry and boundary conditions. The theory considers variations in the permeability and 
compressibility of the mixed pore fluid with changes in the void ratio and degree of saturation. This theory 
is applicable to unsaturated soils with high degrees of saturation and can be used to obtain more reliable 
predictions of unsaturated soil consolidation. 
 

2. CONTROL EQUATIONS OF CONSOLIDATION 
 
For unsaturated soils with high degrees of saturation, the pore air is sealed in the pore water, and thus, 
consolidation equations can be established by considering the pore water and air to be a mixed pore fluid. 
We can then establish a simplified mixed pore fluid continuity equation. 

 (1) Pore fluid pressure 
Because the pore air is sealed in the pore water, Hanbing Bian [20] assumed that the pore water 

pressure uw is equal to the pore air pressure ua. Then, the mixed pore fluid pressure um can be expressed as 

wm uu                                                                          (1) 

Under this condition, the effective stress principle formula can be expressed in the same form as 
Terzaghi's effective stress principle for saturated soil, which states that the total stress is borne by the 
skeleton stress and mixed pore fluid pressure: 

'{ } { } { } mM u                                                              (2) 
 (2) Equilibrium differential equations 
The equilibrium differential equations can be written as 

'[ ] { } [ ] { } { }T T
mM u f                                                      (3) 

Substituting the constitutive equations and geometric equations, we can obtain the equilibrium 
differential equations expressed in terms of displacement and pore fluid pressure: 
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(3) Continuity equation of pore fluid 

The unit volume compression (
t
v




) is equal to the volume of fluid discharged from a unit volume 

and the residual pore fluid compression (
t
v


 1

). 
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                  (5a) 

The nonlinear finite element formulation presented in this paper uses an incremental method. 
Assuming that the pore fluid density rm and permeability coefficient Km are constant during the time 
interval t , Eq. (5a) can be expressed as 

2 1v m v
m

m

K
u

t r t

  
   

                                                          (5b) 

The residual pore fluid compression is caused by changing pore fluid pressure. Therefore, 
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                                                                   (6) 

where 
1

m
m

v

du
B

d
  is the volume modulus of compression and 1vd  is the volumetric strain in the pore 

fluid due to changes ( mdu ) in the fluid pressure.                                                                 

Substituting Eq. (6) into the continuity Eq. (5b), the continuity equation can be expressed as  

2 1
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Finally, we obtain simultaneous differential equations that can be solved to obtain the displacement 
and mixed pore fluid pressure um: 
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3. FINITE ELEMENT EQUATIONS OF CONSOLIDATION 

 
 (1) Equilibrium differential equations 

The finite element formulation of the differential equilibrium equations can be established using the 
weighted residual method as follows: 

'[ ] { } [ ] { } { }T T e
m

e e

B dxdydz B M u dxdydz F                                      (9) 

Because { } [ ]{ }eN   and '[ ]{ }e
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'[ ] [ ][ ] { } [ ] { }[ ] { } { }
e eT T e

m

e e

B D B dxdydz B M N dxdydz p F                   (10) 



C. Lu and S. Zhu 
 

IJST, Transactions of Civil Engineering, Volume 38, Number C2                                                                                August 2014 

488

where 









8

8

2

2

1

1

0

0
...

0

0

0

0
][

N

N

N

N

N

N
N , ]...[][ 821

' NNNN  , { }e  is the unit nodal 

displacement vector, { }e
mp  is the unit nodal pore fluid pressure vector, and eF}{ is the element nodal 
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Then, Eq. (10) can be expressed as 
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We can then obtain the general equilibrium equations by using the increment of displacement 

_
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where }{ R  is the load increment and , 1{ }m tp   is the pore fluid pressure at the previous time step. 
 (2) Continuity equation of the pore fluid 
Using the difference method and increment of displacement, the continuity equation can be expressed 

as 
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The corresponding finite element equation can be established using the principle of virtual work: 
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, and 

1{ }e
mQ  is the flux of the pore fluid flowing from each node in each unit. 

In the grid, the sum of the flux of the pore fluid flowing from each unit around a node is zero, i.e., 

1 0m i
e

Q                                                                  (15) 

Therefore, the corresponding general continuity equation can be established. 
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Finally, we obtain the simultaneous finite element equations, which can be expressed as 
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The displacement and mixed pore fluid pressure can be obtained using Eq. (17). This method is 
mainly applicable to unsaturated soils with high degrees of saturation. 
 

4. PARAMETER DETERMINATION 
 
(1) Pore fluid volume compression modulus Bm 

Bm is defined as 

0
1 1

(1 )m m
m

v a

du du
B e

d de
                                                               (18) 

where 0e  is the initial void ratio and 1ae  is the proportion of voids filled with air. 

1 (1 )a re S e                                                                      (19) 

Here, Sr is the degree of saturation. 
According to Boyle’s Law, 
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where ap  is the atmospheric pressure. Taking the derivative of each side of Equation (20), we obtain 
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Substituting (21) into (18), we obtain 
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(2) Variation in the degree of saturation, Sr 
The variation in the degree of saturation over the time interval t  can be expressed as 
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Substituting Eq. (21) and assuming that w au u , 
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(3) Unit weight of mixed pore fluid rm 

wrm rSr                                                                     (26) 

where wr is the unit weight of pore water. 
(4) Permeability coefficient of pore fluid Km 
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Chang [21] presented an empirical equation of the following form that satisfactorily describes the 
relationships between the soil permeability, void ratio, and degree of saturation: 

s e sK K G H                                                                 (27) 

where K is the permeability of the unsaturated soil, Ks is the permeability of completely saturated soil, Ge 

is a factor whose value depends on the void ratio, and Hs is a factor whose value depends on the degree of 
saturation. According to Chang and Duncan’s [14] investigation, Ge and Hs can be expressed by the 
following equations: 
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Therefore, the permeability coefficient of a mixed pore fluid Km can be expressed as 
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5. VERIFICATION AND ANALYSIS 

 
 (1) Calculation example 

The example of a vertical drain used by Teh [22] is considered here. The basic sizes are as follows: 
the diameter of the influence area of the drain De=3 m, the diameter of the smear zone ds=0.2 m, and the 
diameter of the vertical drain dw=0.1 m. The vertical drain system is converted into an equivalent 
rectangular parallelepiped influence area according to the theories of Miller [23] and Indraratna [24], as 
shown in Fig. 1. The corresponding sizes Be (the width of the influence area of the drain), bs (the width of 
the smear zone), and bw (the width of the vertical drain) are shown in Fig. 1. The depth of the vertical 
drain H=5 m. Free displacement is assumed at the top boundary, and slip is assumed at the bottom and 
surrounding boundaries. The top, bottom, and surrounding boundaries are assumed to be impervious; only 
the mouth of the vertical drain is pervious. The soil properties are shown in Table 1. 

 
                   Table 1. Soil properties used in the example 

Sr    (Initial degree of saturation) 85% or 95% 

E    (Modulus of elasticity) 10.0 MPa 

     (Poisson’s ratio) 0.0 

kw    (Permeability of the vertical drain) 10-4 m/s 

ks    (Permeability of the smear zone) 2.5×10-9 m/s 

kh    (Horizontal permeability of the undisturbed zone) 10-8 m/s 

kv    (Vertical permeability of the undisturbed zone) 2.5×10-9 m/s 

e0    (Initial void ratio) 0.7 

q0    (Instantaneous load on top of the foundation) 100 kPa 

  Fig. 1. Calculation example 
 

 (2) Analytical solution for saturated soil 
To verify the reliability of the numerical analysis theory, the numerical solution was compared to 

the analytical solution for saturated soil. According to Hansbo’s [25] analytical theory of vertical drains, 
the average degree of consolidation at a depth of z can be expressed as 
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(3) Calculation and analysis 
Two cases were considered. The degree of saturation of the soil is 85% in the first case and 95% in 

the second case. The average degree of consolidation at a depth of zero is plotted for the first case in Fig. 
2. The plot indicates the following: (1) the numerical analysis theory is applicable and reliable; (2) the 
initial deformation of unsaturated soils is greater than that of saturated soils, possibly due to the 
compaction of pore air under instantaneous loads; and (3) the average rate of consolidation of unsaturated 
soils is slower than that of saturated soils (the saturated soil requires approximately 10 days to reach a U 
of 80%, whereas the unsaturated soil requires approximately 30 days). 
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           Fig. 2. Degree of consolidation vs. time                  Fig. 3. Pore fluid pressure vs. time curve for point A 
 

The pore fluid pressures at point A (see Fig. 1) are plotted for both cases in Fig. 3. The rate of 
dissipation of the pore fluid pressure for the unsaturated soil is considerably slower than that for saturated 
soil. 
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                 Fig. 4. Degree of consolidation vs. time                      Fig. 5. Permeability coefficient vs. time 
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The effect of the degree of saturation on the pore fluid pressure and displacement were considered 
(see Figs. 3 and 4). The average degree of consolidation of the unsaturated soil decreases with an 
increasing degree of saturation, as shown in Fig. 4. The rate of dissipation of the pore fluid pressure for 
unsaturated soil slows with a decreasing degree of saturation, as shown in Fig. 3. The variation in the 
permeability of the pore fluid was also considered, as shown in Fig. 5. The vertical permeability 
coefficient Km of the undisturbed zone decreases considerably. 
 

6. CONCLUSION 
 
Biot’s theory for three-dimensional consolidation was extended to unsaturated soils by treating the pore 
water and pore air as a mixed pore fluid. The theory was then formulated for finite element analysis. The 
finite element formulation considers variations in the permeability and compressibility of the mixed pore 
fluid with changes in the void ratio and degree of saturation. An example of settlement of a vertical drain 
was investigated, and the results indicate that the numerical analysis theory is applicable and reliable. This 
theory is most appropriate for applications to unsaturated soils with high degrees of saturation. 

The results demonstrate that the rate of consolidation of unsaturated soils is clearly slower than that 
of saturated soils, the rate of dissipation of the pore fluid pressure for unsaturated soil is considerably 
slower than that of saturated soil, and the permeability of the pore fluid decreases during consolidation. 
These phenomena may have adverse effects on the safety and reliability of engineering designs involving 
soil consolidation calculations. Therefore, the use of the theory of three-dimensional consolidation of 
unsaturated soils is suggested to obtain more reliable predictions of unsaturated soil consolidation.  
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