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Abstract– In this paper, free vibration of axially moving symmetrically laminated plates subjected 
to in-plan forces is analyzed using the element-free Galerkin method. This category includes 
symmetric cross-ply and angle-ply laminates and anisotropic plates. The governing differential 
equation for a moving plate is numerically solved using the Galerkin method. The shape functions 
are constructed using the moving least squares (MLS) approximation and the essential boundary 
conditions are introduced into the formulation through the use of the Lagrange multiplier method 
and the orthogonal transformation techniques. The effect of skew roller and intermediate supports 
on the natural frequency of plate are examined.           
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1. INTRODUCTION 
 

Axially moving systems are applicable in a wide range of engineering problems which arise in industrial, 
civil, aerospatial, mechanical, electronic and automotive applications. Some specific examples are papers, 
plastics and composites in production lines, power transmission and conveyor belts, the paper and plastic 
sheets in the process, the steel strip in a thin steel sheet production line, the band saw blade, etc. In many 
of these instances, the moving material is not isotropic, but is a single-layer orthotropic material or 
consists of several orthotropic layers [1].  

The axial speed greatly affects the dynamic behavior of the system even at low speeds. Therefore, it 
becomes a serious problem in achieving good quality for produced materials. In a certain critical velocity, 
the first natural frequency of the system becomes zero and the straight configuration of equilibrium 
becomes unstable. Thus, accurate prediction of dynamic characteristics of such structures is required for 
the analysis and optimal design of a broad class of technological devices [2]. 

The wide interest in vibrations of axially moving systems has given rise to large scientific 
productions. The first studies on the subject date back to the last century, Ashley and Haviland studied the 
bending vibration of a pipe line containing flowing fluid [3].  

Many of the previous studies for axially moving continua used one-dimensional string or beam 
theory instead of plate theory. Swope and Ames studied the vibrations of finite and infinite moving 
threadlines. Their paper qualitatively described the effect of the axial velocity on the linear frequencies 
[4]. Mote computed band saw flexural natural frequencies using the Euler–Bernoulli beam theory [5]. The 
effects of longitudinal steady translational motion on the vibration frequencies and modes of simple Euler 
beams were considered by Simpson [6].  
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Although one-dimensional models lead to reliable results for narrow isotropic strips, two-dimensional 
analysis is required for modeling of many problems such as composite materials, wide width plates, non-
uniform forces across the width, no free lateral boundaries, intermediate supports, etc. Ulsoy and Mote [7] 
proposed a two-dimensional plate modeling of a wide band saw blade. In 1995, Lin and Mote [8] 
examined the equilibrium displacement and stress distribution of the web with small flexural stiffness 
under transverse loading. Lengoc and Mccalion [9] considered cutting conditions on dynamic response of 
bandsaw blades. Afterwards, Lin [10] investigated the stability and vibration characteristics of two-
dimensional axially moving plates with two simply supported and two free edges, subjected to uniform in-
plane tension in the transport direction. 

Using the finite element method, Wang [11] and Laukkanen [12] presented the numerical analysis of 
the moving thin plates. Their works were based on the mixed interpolated tensorial component plate 
bending elements and four-node Mindlin–Reisser-type bending elements, respectively. Luo and Hutton 
[13] presented the formulation of a moving triangular isotropic plate element subjected to in-plane forces 
and gyroscopic forces and compared the results with the Rayleigh–Ritz method.  

More recently, free vibration of moving laminated composite plates was studied by Hatami et al, 
using an exact and a semi-analytical finite strip method [1]. They found that the translating speed, 
boundary conditions and the aspect ratio have effects on the natural frequencies of a moving plate. Their 
research included only straight rollers. They also introduced an exact finite strip method to analyze 
moving viscoelastic plates [14]. Wang et al. carried out a dynamic analysis of an axially translating plate 
with time-variant length [15]. 

In recent years, a class of new numerical method called mesh-free or mesh-less method has been 
developed and successfully applied in solid mechanics. Mesh-less methods have been extensively used for 
solving problems in applied mechanics [16-18].  

Different versions of mesh-free method have been proposed, such as smooth particle hydrodynamics 
(SPH) [19], mesh-less local Petrov-Galerkin (MLPG) method [20], finite point method (FPM) [21-23] and 
element-free Galerkin (EFG) method [24, 25]. The EFG method is a well-developed method that uses the 
moving least squares (MLS) approach for field approximation. The EFG formulation does not require 
element connectivity among the nodes and only a set of nodes scattered in the problem domain is used. 
This makes the EFG method simpler than the finite element method (FEM) in domain discretization 
procedure. An important aspect is that EFG can treat plates and shells with C1-continuity if at least 
complete quadratic polynomial basis is used [26]. 

The EFG method has so far been applied to many problems in solids and structures, such as 
deflection analysis of thin plates [27] and shells [28], vibration of thin plates and analysis of laminated 
plates [29, 30]. In this method, the generalized displacement at an arbitrary point is approximated from 
nodal displacements using the moving least squares (MLS) approximation. A domain of compact support 
is predetermined and only nodes within the domain are included in the interpolation. 

In the present work, the EFG is applied to study the transverse vibration of axially moving 
symmetrically laminated composite plates. The category of symmetrically laminated plates may include 
cross-ply or angle-ply laminates and may have orthotropic or anisotropic bending properties. The effect of 
skew-end roller on the natural frequency of axially moving laminates is investigated. It can be easily 
modeled by the EFG. In the present formulations, the deflection of plates is the only unknown at a node. 
Therefore, the dimension of the discrete eigenvalue equations obtained by the present formulation is equal 
to the number of nodes that discretize the plate domain. 

This paper is organized into the following sections. In Section 2, the element-free Galerkin method is 
overviewed. In Section 3, mathematical formulation of the problem for axially moving plates is presented. 
Plate properties and boundary conditions are mentioned in Section 4, and then, numerical results and 
discussions are demonstrated in Section 5. Finally, some concluding remarks are presented in Section 6. 
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2. ELEMENT-FREE GALERKIN METHOD 
 

a) MLS approximants 
 

The EFG employs the moving least-squares (MLS) to generate the shape functions for wh(x) as an 
approximation of the real displacement w(x). The weak form of the Galerkin method is used to develop 
the discretized system of equations. 

Moving least squares (MLS) method is now widely used in construction of shape functions for the 
mesh-free method. Its general formulation is briefly given here. In this method the displacement of a point 
of interest x, say w(x), is approximated with a displacement approximation function wh(x) in the following 
form 

 
1

( ) ( ) ( ) ( )x x x p x a x
m

h T
j j

j

w p a


                                                (1) 

where p(x) is a complete basis whose components are monomials in terms of the coordinates. In this 
paper, the polynomial basis is chosen as  

2 2( ) {1, , , , , 6p x }                      T x y x xy y m                                           (2)  

in which m is the number of bases. 
The coefficients a(x) are functions of x, and are represented as 

1 2( ) { ( ), ( ),..., ( )}a x x x xma a a                                                           (3) 

These coefficients are obtained at any point x by minimizing a functional of weighted residual as 
follows 

2 2

1 1

( )[ ( ) - ( )] ( )[ ( ) ( ) - ]x x x x x x p x a x
Nod n

h T
I I I I I I

I I

J w w w x w w
 

                               (4) 

where Nod is the number of nodes in the neighborhood of x, which is also called the influence domain of 
x. Also, ( )Iw x x  is a weight function and wI is the nodal parameter at node I. At an arbitrary point x, a(x) 
is determined so that 

0
a

J



                                                                       (5) 

which results in the following linear equation system: 
( ) ( ) ( )A x a x B x w                                                            (6) 

where the symmetric matrix A is called weighted moment and B is a non-symmetric matrix in the form of  

1

( ) ( ) ( ) ( )A x x x p x p x
Nod

T
I I I

I

w


                                                     (7) 

( ) { ( ) ( ),..., ( ) ( )}B x x x p x x x p xI I n nw w                                           (8) 

Substituting Eq. (6) into Eq. (4), leads to 

1

1 1

( ) ( ) ( ) ( ) ( )x p x A x B x x
Nod Nod

h T
I I I

I I

w w w

 

                                       (9) 

In order to establish the eigenvalue equation of a free vibration problem, the first and second order 
partial derivatives of the shape function ΦI(x) need to be computed. To efficiently compute these partial 
derivatives, we define 

)()(1 xpxAγ(x)                                                            (10) 
Hence, we have 

(x)B(x)γxΦ T)(                                                           (11) 
and 

Aγ=p                                                                      (12) 
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The partial derivatives of γ(x) can be obtained by 
γApAγ , iii ,,                                                                 (13) 

or 
γ)AγAγApAγ ,,, ijijjiijij ,,,, (                                            (14) 

In Eq. (13) and (14) the partial differentiations with respect to x and y are represented by the comma-
subscript convention. The partial derivatives of shape function Φ can be obtained as follows: 

(x)(x)Bγ(x)B(x)γΦ ,,, i
T

i
T

i                                            (15) 

or 

ij
T

ijjiij
T

ij ,,
T

,
T

,, BγBγBγBγΦ  ,,                                    (16) 
 

b) Weight functions 
 

The choice of the weight function is very important and affects the performance of the EFG method. 
The weight function controls the influence domain of a point. Several weight functions are available in 
literature [31]. Here, the well-known quadratic spline is employed which provides continuity in the first 
and second derivatives. 

2 3 41 6 8 3 1
) ( )

0 1
(x-xI I

r r r r
w w r

r

    
  


                           (17) 

The normalized distance is  
x xI

I

r
R





                                                               (18) 

where IR  is the size of the influence domain. This parameter should be chosen in such a way that the 
matrix A becomes regular, i.e. the domain of influence of each node must have enough neighborhood 
nodes to make A invertible. 
 

3. MATHEMATICAL FORMULATION OF THE PROBLEM FOR AN  
AXIALLY MOVING PLATE 

 
a) Differential equation and material properties 

 
The governing differential equation for an axially moving laminated plate subjected to plane stress is 
expressed as 
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               (19) 

where ρ is the average mass per volume of the laminate. Nx and Ny are the in-plane forces per unit length 
in x and y directions, respectively. Nxy is the shear in-plane force per unit length and v is the constant 
velocity of plate in longitudinal direction of plate. Here the stiffness coefficients Dij for a laminate 
consisting of nl orthotropic layers and total thickness h are defined as [1] 

2
2 3 3

1
1

2

1
( ) ( ) ( , 1, 2,6)

3

h
nl

ij ij ij I I I
Ih

D Q z dz Q h h i j


                                 (20) 

The coefficients Ǭij vary from layer to layer and depend on the material properties and the layer 
orientation α. They are given in Appendix A. 
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In Eq. (20) hI is the distance from the median surface to the higher surface of the Ith layer. The 
coefficients ijQ  may vary from layer to layer.  

The transverse displacement w due to the vibration can be written in the form 

( , ) ( )x xh tw t w e                                                                 (21) 
in which λ can be decomposed as: 

i                                                                          (22) 
where σ and ω are the real and imaginary parts of the eigenvalues λ. 

 
b) Free vibration formulation 

 
By substituting Eq. (21) into Eq. (19) and taking a typical term of ( )xhw  as ( )xj  and then 

applying the Galerkin method we have: 
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Here, Φj (x) is used as typical term of weight functions in the Galerkin method. 
The weak form of the Eq. (23) can be represented by 
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Note that in Eq. (24) Mnn and Vn denote the normal moment and shear force on the plate edges, 
respectively, and n


  is partial differentiation with respect to normal direction of plate edge, and 

moreover, "nx" and "ny" are the components of the unit vector normal to the boundary, with Γ symbolizing 
the boundary. 

If the boundary condition is free, Mnn and Vn are zero, moreover if the plate edge is simply supported 

then the normal moment Mnn and 
1

Nod

j j
j

w w


  vanish. Also, if the boundary condition is clamped 
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
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   are enforced to zero. Therefore, the boundary integrals in Eq. 

(24) disappear when free vibration analysis is of concern.  
The matrix form of Eq. (24) can be written as 

 
2( ){ } {0}M+ G+K w                                                         (25) 

 
in which {w}={w1,w2,…,wn} is the vector of nodal displacements and M is the mass matrix in the form of 
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

                                                        (26) 

and G is the gyroscopic matrix of an axially moving plate in the form of  
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
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The total stiffness matrix K in Eq. (25) is 

bK k +k -ks m
g g                                                             (28) 

where bk , k s
g  and km

g  are the bending stiffness matrix, geometric stiffness matrix for a stationary plate 

and geometric stiffness matrix for a moving plate, respectively. They are: 
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Equation (25) can be rewritten in the following form 
 

ˆ( ){ } { }Θ+Λ w 0                                                       (32) 

where 

ˆ{ }
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G k

Λ
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 
  
 

                        (33) 

 
In the eigenvalue problem (32), Θ is a symmetric matrix and Λ is a skew-symmetric one. It should be 

noted that while all eigenvalues λ are pure imaginary ( i  ), the traveling plate is stable and the values 

of ω are the natural frequencies of the plate. When transport speed increases, ω decreases until at a certain 

critical speed, the first natural frequency of the system becomes zero. For speeds higher than the critical 

speed, the plate may experience flutter instability as in unstable conditions the real part of at least one of 

the eigenvalues λ is non-zero ( 0  ) [1]. 
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4. PLATE PROPERTIES AND BOUNDARY CONDITIONS 
 

a) Shape of plates 
 

Figure 1 shows a plate moving between two bilateral rollers, one of which is along the y-axis at x=0 and 
the skew angle of the second one is β. Although in many practical applications the longitudinal edges are 
free, various boundary conditions are considered in this research. The in-plane tension in x-direction may 
be non-uniform and vary linearly. 

 

 
Fig. 1. An axially moving plate between two rollers 

 
In some practical applications, moving plates pass over intermediate rollers or supports which may be 
modeled in the form of line supports which are assumed to be frictionless. The out-of-plane displacement 
for nodes located along line supports vanishes (see Fig. 2).  

 
Fig. 2. A multi-span moving plate 

 
b) Material of laminated moving plate 

 
One layer orthotropic plate, five-layer symmetrically angle-ply, and three-layer cross-ply laminated 

plates are examined in the numerical results. The cross-ply laminates considered have lay-up [0o/90o/0o] 
with the dimensionless orthotropic material properties of E1/E2= 40 and G12/E2= 0.6, ν12= 0.25 as chosen 
by Leung and Zhou [32].  

The lay-up of five-layer angle-ply plates, which have been used by Chow et al [33], is [α/-α/α/-α/α] 
with α =0o, 15o, 30o, 45o. The material properties are E1/E2= 15.4, G12/E2=0.79, ν12= 0.3. It should be noted 
that, for the case of α =0 the plate is regular orthotropic.  

 
c) Essential boundary conditions 

 
The use of MLS approximation produces shape functions which do not possess the Kronecker delta 

function property, i.e. ( )i j ijx   . It implies that the essential boundary conditions cannot be imposed 
in the same way as in the conventional finite element method. The essential boundary conditions are 
satisfied by using Lagrange multipliers in the following weak form equation [26] 

 
ˆ( ) 0

w

T

S

w w ds                                                             (34) 

where   is a vector of Lagrange multiplier, w  is the prescribed essential boundary conditions and ŵ  
denotes the deflection and rotation about the tangent to the boundary. 
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The discrete form of the essential boundary conditions derived from Eq. (34) can be written as 
 

}0{}{][ 12  nnnb wH                                                            (35) 
 

where nb is the number of constraint points on the boundary. For a clamped boundary, Hij may be 
expressed as 

dsNNH T
nji

S
jiij

W

][ ,                                                     (36) 

and for a simply supported boundary it is given by 
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S
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W

]0[                                                        (37) 

Here Ni is a Lagrange interpolation function along the boundaries, and n in Eq. (36) is the unit normal to 
the boundary. Generally, the matrix H is sparse and singular. Using singular-value decomposition 
technique, it can be decomposed as 

T
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




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2
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0
                                         (38) 

where R and V are the orthogonal matrices,   is the singular value of H, and r is the rank of H, which 
represents the number of independent constraints. 

The matrix V can be written as 
T

rnnrn
T }{ )(  VVV

                                                        (39) 
Performing orthogonal transformation in Eq. (32), the eigenvalue equation can be expressed as 
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where 
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Λ
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                                              (41) 

in which 

( ) ( ) ( ) ( ) ( ) ( ), ,k V kV G V GV M=V MVT T T
n r n n n r n r n n n r n r n n n r             

            (42)  
and Õ is matrix of eigenvectors. Solution of Eq. (40) gives the natural frequency of plate free vibration. 
 

5. RESULTS AND DISCUSSIONS 
 

a) General 
 

Non-dimensional variables used in the results are expressed as 
 

2 2 2
2 2

2 2 2
, , , ( , ) ( , )

2 x y x y
o o o

b h b h a b
c v r k k N N

D D b D

 
  

                     (43) 

where Ω and c denote dimensionless natural frequency and traveling speed, respectively. kx and ky are in-
plane load parameters along x- and y-directions, respectively (positive when tensile) and finally, r is aspect 
ratio of the plate. The stiffness parameter Do in Eq. (43) is defined as 

3
2

12 2112(1 )o

E h
D

 



                                                                 (44) 

 
In all tables, S denotes simply supported while C and F mean clamped and free boundary conditions, 
respectively. For instance, notation SFSF means that the left and right edges of the plate are simply 
supported while the upper and lower edges are free. 



Free vibration of moving laminated composite… 
 

August 2014                                                                                IJST, Transactions of Civil Engineering, Volume 38, Number C2      

385

b) Validity and convergence study 
 

The numerical procedure based on the EFG method presented in this paper has been implemented in 
MATLAB and applied to axially moving laminated composite plates.  
The convergence study using the EFG method with regular distributed nodes is presented in Table 1 for a 
SFSF axially moving cross-ply laminated plate. The aspect ratio of the plate and skew angle of end roller 
are 1.3 and 0o, respectively. Normalized axial force kx varies linearly along plate width from 10.0 to 20.0. 
The obtained results for two different axial speeds are compared with those obtained by Hatami et al [1]. 

 
Table 1. Frequency parameters Ω for the axially moving SFSF cross-ply laminated  

plate subjected to non-uniform axial tension (β=0) 
 

EFG nodes 
c=1   c=4 

Ω1 Ω2 Ω3   Ω1 Ω2 Ω3 

4×4 2.4724 2.8048 3.7605 1.9070 2.2952 3.3081 

5×5 2.2856 2.4927 3.3122 1.6780 1.9391 2.8771 

6×6 2.2693 2.4699 3.2841 1.6199 1.8685 2.7915 

7×7 2.2663 2.4676 3.2584 1.6117 1.8605 2.7469 

8×8 2.2673 2.4677 3.2311 1.6135 1.8614 2.7208 

9×9 2.2677 2.4671 3.2250 1.6140 1.8607 2.7138 

10×10 2.2754 2.4747 3.2310 1.6214 1.8674 2.7181 

11×11 2.2622 2.4614 3.2159 1.6076 1.8543 2.7026 

Ref [1] 2.2648 2.4648 3.2243   1.6092 1.8562 2.7105 
 

From the convergence study carried out in Table 1, we find that when an 11×11 nodal density is used, 
the present results have a good agreement with the previous study. 

The results show that the rate of convergence for higher axial speed is lower, mainly because axial 
velocity leads to complex modes and the amount of the complexity grows with the increase of axial speed. 

The ability of the EFG method in modeling of angle-ply laminates and intermediate supports is 
shown in Table 2 by comparing the results with those obtained by Cheung and Zhou [34] and Hatami et al 
[1]. In Table 2 the first six frequency parameters of a symmetric angle-ply laminated plate with three equal 
spans (n-span= 3) as shown in Fig. 2, are given. The plate is simply supported at all edges and the 
orientation of the major direction is α=45o. The results are for stationary condition (v= 0). The results 
obtained by using the EFG method are in good agreement with the previous studies.  

 
Table 2. First six frequency parameters Ω for a stationary three-span angle-ply laminated  

plate with simply supported edges (β=0) 
 

EFG nodes 
c=0 

Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 
Present 
method 

2.75 2.89 3.35 5.83 6.14 6.43 

Ref. [34] 2.80 2.95 3.35 5.81 6.11 6.40 

Ref [1] 2.80 2.94 3.39 5.79 6.12 6.40 

 

The first six frequency parameters for an orthotropic four-span plate with different orthotropicity 
ratio (E1/E2) are listed in Table 3 and compared with obtained results by using the finite strip method that 
was carried out by Hatami et al[1]. The non-dimensional speed variable c is equal to 2 and normalized 
axial force kx is constant along plate width (kx=2). A good agreement between the two methods is 
observed. 
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Table 3. First six frequency parameters Ω for a moving orthotropic four-span plate with simply supported edges 
(β=0) 

 Mode 
Present method   Ref [1] 

E1/E2=1 E1/E2=10 E1/E2=20 E1/E2=1 E1/E2=10 E1/E2=20 

1 0.5423 1.6143 2.2635 0.5332 1.6067 2.2552 

2 0.5978 1.8662 2.6306 0.5864 1.8531 2.6151 

3 0.7466 2.4847 3.2624 0.7284 2.4510 3.2028 

4 0.9181 2.8212 3.5243 0.9071 2.7575 3.4777 

5 2.1493 2.9905 3.5419 2.0701 2.9229 3.4795 

6 2.1863 3.1608 4.2710 2.1013 3.1512 4.1916 
 

c) Numerical studies for straight-end roller 
 

First six frequency parameters for a rectangular cross-ply laminated plate with r=1.3 and different 
boundary conditions are shown in Tables 4 to 6. The plate is subjected to a non-uniformly distributed axial 
tension load varying linearly along the plate width from kx=10 to kx=20. The obtained results are 
presented for different axial velocity parameters c.  

 
Table 4. First six frequency parameters Ω for a moving cross-ply laminated plate with SFSF edges  

 

Mode 
Ω 

c=1 c=2 c=3 c=4 c=5 

1 2.2622 2.1379 1.9246 1.6076 1.1424 

2 2.4614 2.3444 2.1451 1.8543 1.4475 

3 3.2159 3.1141 2.9436 2.7026 2.3873 

4 5.7969 5.7047 5.5517 5.3386 5.0663 

5 7.8470 7.7508 7.5885 7.3569 7.0510 

6 8.0798 7.9847 7.8245 7.5962 7.2955 
 

Table 5. First six frequency parameters Ω for a moving cross-ply laminated plate with CFCF edges  
 

Mode 
Ω 

c=1 c=2 c=3 c=4 c=5 
1 4.4265 4.3283 4.1646 3.9349 3.9349 

2 4.5562 4.4600 4.2997 4.0749 4.0749 

3 5.0371 4.9446 4.7906 4.5753 4.5753 

4 7.0010 6.9126 6.7658 6.5615 6.5615 

5 11.3820 11.2880 11.1320 10.9150 10.9150 

6 11.8970 11.8250 11.7040 11.5330 11.5330 
 

Table 6. First six frequency parameters Ω for a moving cross-ply laminated plate with SSSS edges  
 

Mode 
Ω 

c=1 c=2 c=3 c=4 c=5 

1 2.5371 2.4215 2.2252 1.9405 1.5479 
2 4.1129 4.0166 3.8563 3.6322 3.3444 
3 7.7101 7.6087 7.4410 7.2085 6.9132 
4 8.0561 7.9613 7.8014 7.5738 7.2741 
5 8.9096 8.8234 8.6785 8.4731 8.2045 
6 11.3590 11.2940 11.1840 11.0270 10.8200 
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For rectangular moving angle-ply laminated plates with line supports shown in Fig. 2, the first six 

frequency parameters are presented in Tables 7 to 9. For various boundary conditions, the critical speeds, 

in which one of the natural frequencies of plate vanishes, are presented. The orientation of the major 

direction is α=45o and β=0. 
 

Table 7. First six frequency parameters Ω for a moving angle-ply laminated two-span plate 
 

Mode 

SSSS   CFCF  SFSF 

ccr=5.4040  ccr=2.9058  ccr=1.9941 

c=0 c=0.5ccr  c=0 c=0.5ccr  c=0 c=0.5ccr 

1 2.7263 2.1390  1.6018 1.3322  0.9977 0.8420 

2 3.0715 2.4806  2.3404 2.1177  1.5166 1.3899 

3 5.6919 5.1687  2.7777 2.5926  2.3564 2.2672 

4 6.1022 5.6832  3.1634 2.9869  2.4916 2.4027 

5 7.1080 6.5980  5.3476 5.1922  4.2922 4.1956 

6 7.4523 6.8548  5.3591 5.2117  4.5900 4.5163 
 

Table 8. First six frequency parameters Ω for a moving angle-ply laminated three-span plate  
 

Mode 

SSSS   CFCF  SFSF 

ccr=5.4564  ccr=2.5065  ccr=2.004 

c=0 c=0.5ccr  c=0 c=0.5ccr  c=0 c=0.5ccr 

1 2.7523 2.1662  1.3126 1.0996  1.0022 0.8469 

2 2.8856 2.2995  1.9261 1.7514  1.2670 1.1298 

3 3.3470 2.7472  2.3593 2.1968  1.8493 1.7344 

4 5.8258 5.3962  2.5927 2.4587  2.3338 2.2476 

5 6.1350 5.8153  3.0007 2.8731  2.5068 2.4170 

6 6.4284 6.0782  3.1639 3.0378  2.7928 2.7058 
 

Table 9. First six frequency parameters Ω for a moving angle-ply laminated four-span plate  
 

Mode 

SSSS   CFCF  SFSF 

ccr=5.5325  ccr=2.3420  ccr=2.0595 

  
  

  
1 2.7888 2.2104  1.2026 1.0130  1.0305 0.8740 

2 2.8544 2.3006  1.6042 1.4475  1.1832 1.0437 

3 3.1560 2.6348  2.1206 1.9798  1.5685 1.4382 

4 3.4994 2.9807  2.3843 2.2710  2.0161 1.9025 

5 6.1756 5.8223  2.5500 2.4380  2.4013 2.3126 

6 6.5094 6.1732  2.8344 2.7374  2.4424 2.3663 
 

For a moving angle-ply laminated plate with α=45o subjected to a uniform axial tension, the variation of 

the fundamental frequency parameter Ω1 against transport speed parameter c is given in Fig. 3.  
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Fig. 3. The effect of axial speed on the fundamental frequency of a SFSF angle-ply one-span plate  

 
The plate boundary is SFSF and is single-span with aspect ratio r= 1.5. As shown in the figure, the 

natural frequency decreases when the axial speed increases till the speed reaches its critical value, at 
which natural frequency becomes zero. As shown in Fig. 3, for a certain speed, the fundamental frequency 
has greater values for larger in-plane tensions, because based on the Eqs. (28) and (30), the stiffness of the 
plate increases by increasing of in-plane tensions. 

For a constant axial velocity (c= 4.0) and axial tension (kx= 15), the variation of Ω1 against aspect 
ratio r of the cross-ply laminated plate is given in Fig. 4. Three types of boundary conditions SFSF, CFCF 
and SSSS are considered. The natural frequency decreases rapidly when the aspect ratio increases. It can 
also be seen that the natural frequency of SSSS moving plate with r>3 is higher than CFCF and SFSF 
ones. 
 

 

Fig. 4. Variation of the first frequency parameter against the aspect ratio for a moving one-span cross-ply plate 
 

The six first mode shapes of a rectangular cross-ply laminated plate with SSSS boundary conditions 
are shown in Fig. 5.  
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d) Numerical studies for skew-end roller 
 

In spite of wide appearance of skew rollers in some of moving systems such as power transmission 

belts, lines of composite sheets production and conveyor belts, the authors have not found any information 

on the vibration of these axially moving plates in the open literature. Hatami et al, performed nonlinear 

analysis of axially moving plates using the finite element method [35]. They considered the effect of 

skew-end roller in their research. 

Free vibration of axially moving plate with skew-end roller shown in Fig. 2, is analyzed using the 

EFG method for an angle-ply laminated SFSF plate. The natural frequencies of the first six modes are 

shown in Table 10 for stationary plate and moving one. The aspect ratio of the plate a/b is 1.5, and the 

plate is subjected to uniform axial tension (kx=10). The results are presented for various values of fiber 

orientations α. 

 

2 1 

4 3 

6 5 
Fig. 5. Six first mode shapes for a moving one-span cross-ply plate 

 
For a moving SFSF cross-ply laminated plate with c=3, the effect of uniform axial force on the 

fundamental frequency of the plate for various skew angles can be observed in Fig. 6. The plate aspect 

ratio is a/b=1.5 and the critical axial force, shown in the figure, is the minimum axial force required for the 

plate stability.  
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Table 10. First six frequency parameters Ω for a moving angle-ply laminated skew end plate with (β=30) 
 

Mode 
α=0 α=15   α=30   α=45 

c=0 c=2 c=0 c=2 c=0 c=2 c=0 c=2 

1 0.9953 0.7978 0.9699 0.7575 0.9245 0.6850 0.8926 0.6229 

2 1.3307 1.1297 1.3766 1.1755 1.4800 1.2751 1.4775 1.2428 

3 2.0003 1.8394 2.2811 2.1313 2.2780 2.0158 2.0620 1.7463 

4 2.6831 2.4910 2.5330 2.3204 2.8467 2.7029 3.1450 2.7974 

5 3.5032 3.3181 3.4823 3.2689 3.4079 3.1700 3.4456 3.2755 

6 3.7185 3.5634   4.1728 4.0476   4.2561 4.0137   3.7275 3.4798 
 

For a constant axial tension (kx= 10), the variation of Ω1 against axial speed parameter c for different 
values of skew angle β of the cross-ply SFSF laminated plate is given in Fig. 7. The natural frequency 
decreases rapidly when the axial speed increases, as shown in the figure.  
 

 
 

Fig. 6. Variation of the first frequency parameter against the axial uniform load for a  
moving skew-end cross-ply plate  

 
 

 
Fig. 7. Variation of the first frequency parameter against the axial speed for a moving skew-end cross-ply plate 
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6. CONCLUSION 
 

An element-free Galerkin (EFG) formulation is employed to study the free vibration of laminated 
composite plates. Numerical results for skew-end roller and axially moving plates with intermediate line 
supports are presented. Some numerical experiments are carried out, to illustrate the ability and efficiency 
of the method and also to examine the effects of some parameters such as layers orientation, aspect ratio, 
axial speed, in-plane forces, and line supports on the natural frequencies of moving laminated plates.  

Generally, natural frequency of moving laminated plates increases by decreasing the axial speed of 
plate and aspect ratio while it decreases by increasing of in-plane axial tension. 

For plates with skew-end roller, with decrease of skew angle, an increase in natural frequency of plate 
is observed. 
This research shows that the EFG method is computationally efficient, moreover, it is a very simple 
procedure for modeling the skew plates with various boundary conditions.  
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APPENDIX A: Ǭij coefficients 

 
4 2 2 4

11 11 12 66 22cos 2( 2 )sin cos sinQ Q Q Q Q                                                            (A.1) 

          
2 2 4 4

12 11 22 66 12( 4 )sin cos (sin cos )Q Q Q Q Q                                                         (A.2) 
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16 11 12 66 12 22 66( 2 )sin cos ( 2 )sin cosQ Q Q Q Q Q Q                                         (A.3) 

 
4 2 2 4

22 11 12 66 22sin 2( 2 )sin cos cosQ Q Q Q Q                                                            (A.4) 

 
3 3

26 11 12 66 12 22 66( 2 )sin cos ( 2 )sin cosQ Q Q Q Q Q Q                                         (A.5) 

 
2 2 4 4

66 11 22 12 66 66( 2 2 )sin cos (sin cos )Q Q Q Q Q Q                                            (A.6) 
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where E1 and E2 denote the Young's moduli parallel to and perpendicular to the fibers while ν12 and ν21 are the 

corresponding Poisson's ratios; α is the anticlockwise angle of fiber orientation of a layer from the positive x-

direction. G12 is the shear modulus of laminates. 

 

 
  


