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Abstract – The probability of losing a customer in M/G/n/0 and GI/M/n/0 loss queuing systems with 
heterogeneous servers is minimized. The first system uses a queue discipline in which a customer who arrives 
when there are free servers chooses any one of them with equal probability, but is lost otherwise. Provided 
that the sum of the servers rates are fixed, loss probability in this system attains minimum value when all the 
service rates are equal. The second system uses queue discipline, in which a customer who enters into the 
system is assigned to the server with the lowest number. Loss probability in this system takes the minimum 
value in the case when the fastest server rule is used in which an incoming customer is served by the free 
server with the shortest mean service time. If the mean of the arrival distribution is fixed, then loss probability 
is minimized by deterministic arrival distribution. 

 
Keywords – Service rate, Erlang’s loss formula, heterogeneous servers, loss probability, recurrent input, exponential 
server, overflow distribution 
 

1. INTRODUCTION 
 
In analyzing many queuing models, it is usually assumed that all the servers (channels) in the queuing 
system are identical (homogenous) in the sense that they have the same service time (s.t.) distribution. 
However, the servers of many real-life systems are different (heterogeneous). Such a situation appears 
when servers of the same mark were made at different factories, or before exploitation in the system they 
were used in at different systems, and therefore have a non-identical degree of wearing out. The Queuing 
models with heterogeneous servers also arise in a number of important applications such as computer 
systems, communications systems and production lines. Fundamental loss queuing systems, 0/// nGM  
and 0/// nMGI , with identical servers, have been studied almost completely. A very important measure 
of effectiveness for these systems is the loss probability meant for the stationary probability of losing a 
customer or the probability that all servers of the system are busy. Stationary probability in which k 
servers of the system 0/// nGM  (Erlang’s loss model) are busy is given by well-known Erlang’s 
formula 
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where μλρ /=  is the offered load, λ/1 is the mean interarrival time, and 1/μ  is mean ST. This formula, 
first derived in [1] for the case when all servers have the same exponential s.t., plays an important role in 
analyzing communication systems and its properties have been studied extensively and exhaustively. One 
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of the surprising properties of formula (1) is that the limiting distribution of the number of busy servers is 
invariant to the s.t. distribution G, i.e., limiting probabilities npp ,,0 "  are independent of the form G  
depending on G only through its mean. This remarkable result and many connected questions have been 
studied by several authors. For example, the validity of (1) for absolute continuous s.t. distribution has 
been proved in [2]. An exact mathematical proof of this formula for arbitrary s.t. distribution with a finite 
mean has been given in [3]. Erlang’s formula for system 0/// nMGI  with recurrent input and with the 
identical exponential servers has been obtained in [4]. In [5] Erlang’s formula has been extended to the 
case of dependent service times. In [6-8], Erlang’s loss model has been studied using discrete-time process 
at arrival and departure epochs.  

From formula (1) we can find the loss probability np  in the system 0/// nGM  
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This formula is called Erlang’s loss formula and is expressed in terms of the mean s.t. and the mean 
interarrival time. 

In this paper we consider the problem of minimizing loss probability in 0/// nGM  and 
0/// nMGI  queuing models with different servers. We denote the loss system with recurrent input by 
0/// nGGI

G
, and with s.t. distribution Gk at kth server, where ),,( 1 nGGG "

G
=  symbolizes the 

heterogeneity of the servers. In the case when Gk = G for nk ,,1"= , we have an 0/// nGM  system 
with identical servers which we shall call homogeneous. Non-homogeneous queuing systems have been 
studied mainly for exponential servers. In [9, 10] a limitied distribution of the number of customers in the 
system nMM //

G
 have been found with heterogeneous exponential servers and an unbounded waiting 

room. In [11] the problem of minimization of the loss probability in the 0/// nMM
G

 system has been 
solved, provided the sum of the service rates (total service rate) is fixed and the arriving customer is 
assigned to the free server with the shortest mean s.t. 

Most of the non-homogeneous queues have been analyzed for two-server cases. In [12], explicit 
expressions for the steady-state probabilities for an 0/2// GM  queue with two classes of Poisson arrivals 
has been derived. The result of these authors is for the case of an arbitrary number of arrival classes in 
[13]. The queuing models with two non-identical exponential servers have been analyzed in [14-17], 
where a new queue discipline has been introduced in which a customer who arrives when both servers are 
free, chooses his server with some probability. The systems 0/2// GM

G
 and 2// GM

G
 with this 

discipline have been investigated in [18, 19]. The system 2// MGI  with recurrent input and a service 
rate depending on the number of busy servers was studied in [20]. 
 

2. LOSS PROBABILITY IN THE MODEL 0/// nGM
G

 
 

Consider the loss queuing system 0/// nGM
G

 consisting of n  heterogeneous servers labeled by 
numbers n,,2,1 " . The arrival process is Poisson with rate λ , and the s.t. of any customer at the kth 
server has a distribution function Gk  with finite mean kμ1  for nk ,,1"= . For this system the following 
discipline is used: An arriving customer chooses any one of the free servers with equal probability and is 
lost if all n servers are busy. Let ( )X tk = 1  if kth server is busy at time t, and ( )X tk = 0  otherwise. Then 
limiting probability that k servers with numbers kii ,,1 " are busy can be written as  
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where ( )nii ,,1 "  is a permutation of ( n,,1" ). Note that ( ) ( ) ( )tXtXtX n++= "1  is the number of 



Minimizing loss probability in… 
 

Spring 2007                                                              Iranian Journal of Science & Technology, Trans. A, Volume 31, Number A2 

201

busy servers at time t . Let kp  denote the limiting probability that k  servers are busy, i.e.,   
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In particular, np  is the loss probability in the 0/// nGM

G
 queue with different servers. 

In this section we consider the problem of minimizing the loss probability np  subject 
to μμμ nn =++"1 , where μ  is constant. The solution of this problem is based on the explicit 
expression for np . 

In [21] it has been shown that the limiting probabilities (3) exist and are given by  
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where ρ λ μk k= / . Then limiting probabilities npp ,,0 "  are given by  
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where ( )nkk EE ρρ ,,1 "=  is the kth elementary symmetric function of the nρρ ,,1 " , which is defined 
as 
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where the summation extends (over the ( )knC , ) all combinations of k distinct elements { }kii ,,1 "  
from{ }n,,1" . Letting ( )knCES kk ,=  in (5), we obtain pk  in the form 

 

                                                         .0,
!! 0

nk
k
S

k
S

p
n

k

kk
k ≤≤= ∑

=

                                                  (6) 

 
It is a generalization of Erlang’s formula (1) to the heterogeneous servers’ case. In particular, from 

(6) we conclude that the limiting distribution of the number of busy servers which are independent of the 
form nGG ,,1 " , depends only their mean values nμμ 1,,1 1 " . In particular, if the service times have the 
same mean1 / μ , then k

kS ρ=  and probabilities npp ,,0 "  are calculated by Erlang’s formula (1). 
From formula (6) we can find the loss probability in the queue 0/// nGM

G
 with different servers  
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It is a generalization of Erlang’s loss formula (2) to the different servers case. 

Our main result about the problem of minimizing the loss probability can be expressed by the 
following theorem. 
 
Theorem 1. If sum service rates μμμ nn =++"1  is fixed, then loss probability np  in the system 

0/// nGM
G

 attains its minimum value for μμμ === n"1 . 
 
Proof: Rewrite (7) in a way that is more convenient for analysis. Using the relation  
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for positive number naa ,,1 "  and setting ( )nkk SS ρρ /1,,/1 1 "= , we can write (7) in form 



V. Saglam / A. Shahbazov 
 

Iranian Journal of Science & Technology, Trans. A, Volume 31, Number A2                                                              Spring 2007 

202 

 

                                                                  ( )∑
= −

=
n

k

k

n kn
S

n
p 0 !

!1
.                                                            (8) 

 
Taking account of the inequality [22] 
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From this and formula (8) we obtain 
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For the case when μμμ === n"1  the loss probability pn takes the value that is equal to the 
expression in the right side of (9), so that pn  takes minimum value when .1 μμμ === n"  Note that 
the expression on the right side of (9) is the loss probability with (2) in the M G n/ / / 0 system with 
homogeneous servers. We conclude that an homogeneous system is better than the corresponding 
heterogeneous system, provided that the total service rate is fixed. 
 

3. LOSS PROBABILITY IN THE MODEL 0/// nMGI
G

  
WITH ORDERED ENTRY 

 
We consider the loss queuing system consisting of n  heterogeneous exponential servers labeled by 

n,,1 "  and arranged in series in that order. The following queue discipline is used: Each arriving 
customer is served by the lowest numbered server that is free. The customer initially arrives at the 1th 
server. If this server is free, he is served and departs. If this server is busy, he overflows and arrives at the 
2nd server and so forth. The output stream from the kth server is the input stream to the (k+1)th server, for 

1, ,  1k n= − . Finally, the customer who finds all servers busy is lost from the system. The overflow 
process from the n th server is the same as that from the loss system .0/// nMGI  Interarrival times to 
the system are independent random variables and have distribution function F with mean λ1 . The s.t. of 
any customer at the k th server is exponential with μ k  parameter for nk ,,1 "= . Suppose that F and 

nμμ ,,1 "   are fixed. Then loss probability pn  has a varying value depending on the order of the servers. 
How does the order of the servers minimize pn ? The solution of this problem is based on the explicit 
expression for pn . Such an explicit formula in the case that servers are identical is given in [4, 23]. In [24, 
25], the generating function of the first passage time from any state to a full state in the loss system with 
identical exponential channels has been found and have shown that this time is independent of the 
placement of call policy used. Laplace-Stieltjes (LS) transform of the interoverflow times from a 

KMGI /1//  queuing system was derived in [26]. 
It was shown in [4] that loss probability in the homogeneous system 0/// nMGI  is given by  
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where f  is the LS transform of the interarrival time and 
 



Minimizing loss probability in… 
 

Spring 2007                                                              Iranian Journal of Science & Technology, Trans. A, Volume 31, Number A2 

203

⋅≤≤
−−

== nk
kf

kf
f

fcc k 1,
)(

)(1
)(

)(1,10 μ
μ

μ
μ "  

 
f sk ( )  denotes the LS transform of the interoverflow times distribution from the first k servers 

for nk ,,1 "= . Then f sk ( )  satisfy Palm’s difference equations 
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where )()(0 sfsf =  is the LS transform of F. This is the extension of Palm’s equation to the 
heterogeneous servers case. From this equation we can find the mean of overflow time from the first k  
servers  
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From this recurrent equation we obtain an important formula for the mean of the overflow times from 
queue 0/// nMGI

G
. 
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Using this simple relationship ,1 nn pa λ=  we obtain the loss probability in the heterogeneous system 

0/// nMGI
G
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In particular, from (11) and (12), we can find the loss probability in queues 0/1// MGI
G

 and 
0/2// MGI

G
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In the case that μμμ == 21  the last formula yields Palm’s loss formula (10) with 2=n . 
 
Theorem 2. Loss probability np  in the queue 0/// nMGI

G
 system achieves its minimum value when 

the servers are operated in the order ),,( 1 nii " , an arbitrary permutation of ),,1( n"  for which 

niii μμμ ≥≥≥ "
21

. 
We shall prove the theorem by an interchange argument. Let )(ipn  denote the value of the np  when 

the servers are operated in order ),,( 1 niii "= . Without loss of generality, assume that the optimal order 
of the servers is given by a sequence ),,1( n"=α . Interchanging k −1 and k  in this sequence gives a 
new sequence ),,1,1,,2,,1( nkkkk "" +−−=β  which will not be optimal, i.e., 
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Using (12) we have 
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where f k−1

* (.)  is the LS transform of the overflow distribution from the first k −1 servers with service 
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rates kk μμμ ,,, 21 −…  respectively. This transform is obtained from Palm’s equation (11):  
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Substituting (12) and (16) into (15) leads to the inequality 
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Using the expression of the )(1 kkf μ−  and )( 1

*
1 −− kkf μ  from (11) and (17) respectively, and denoting 

(.)2−kf  by (.)ϕ , we have 
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Subtracting both sides of this inequality from 1 gives inequality 
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and )(2 tFk−  denote overflow distribution from the first k − 2  servers. Dividing both sides of inequality 
(18) by factor b  and performing simple algebra we obtain 

 
                                                         )()( 212 kkkk ff μμ −−− ≤ , nk ≤≤2 .                                                 (19) 
 
Since )(2 sfk−  is non-increasing, in  0≥s  we get kk μμ ≥−1 , nk ≤≤2 , i.e., 

nμμμ ≥≥≥ "21 which concludes the proof.  
According to this theorem the loss probability in the queue 0/// nMG

G
 attains its minimum value if 

servers are operated in the order of shortest mean service time. In other words, in order to minimize the 
loss probability we must use the fastest-server rule in which each arriving customer is served by the free 
server with the shortest mean of service time. 

We now consider the above queuing system with a given mean interarrival time and given service 
rates nμμ ,,1 " . Which interarrival time distribution minimizes the loss probability in this system? This 
question has been solved in [27] for the case of identical servers. Let Ha denote the class of all interarrival 
time distributions, F having a fixed mean a, and )(Fpn  be loss probability in the above system with 
interarrival time distribution F Ha∈ . Let 
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Clearly, A Ha∈  and e-as is the LS transform of A(t). 
 
Theorem 3. Loss probability ),(2 Fp F Ha∈  in the queue 0/2// MGI

G
 is minimized by F=A. 



Minimizing loss probability in… 
 

Spring 2007                                                              Iranian Journal of Science & Technology, Trans. A, Volume 31, Number A2 

205

 
Proof: Using Jensen’s inequality we have asesf −≥)(  for any 0≥s , where )0('fa −=  is the mean of 
interarrival time. Formula (14) for loss probability )(2 Fp  in the queue 0/2// MGI

G
 can be written as  
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From Jensen’s inequality we can find inequality 
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Using this inequality in (20) we have 
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Since the LS transform of )( tA  is ase− , we see that the expression on the right side of the last inequality 
has the value of )(2 Fp  for AF = . Consequently, loss probability )(2 Fp achieves its minimum value 
for :AF =  
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. 
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