DOUBLE SEQUENCE SPACES DEFINED BY ORLICZ FUNCTIONS*

E. SAVAS¹ AND R. F. PATTERSON^{2**}

¹Istanbul Ticaret University, Department of Mathematics, Uskudar, Istanbul, Turkey Email: ekremsavas@yahoo.com

²Department of Mathematics and Statistics,
University of North Florida, Building 11 Jacksonville, Florida 32224, USA
Email: rpatters@unf.edu

Abstract – In this paper we introduce some new double sequence spaces using the Orlicz function and examine some properties of the resulting sequence spaces.

Keywords - Double sequences, P-convergent, Orlicz functions

1. INTRODUCTION AND BACKGROUND

Before we enter the motivation for this paper and the presentation of the main results we give some preliminaries.

Recall that an Orlicz function M: $[0,\infty) \to [0,\infty)$ is continuous, convex, non-decreasing function such that M(0) = 0 and M(x) > 0 for x > 0, and $M(x) \to \infty$ as $x \to \infty$. If the convexity of an Orlicz function is replaced by $M(x+y) \le M(x) + M(y)$, then this function is called the modulus function, which is defined and characterized by Ruckle [1].

In 1900, Pringsheim [2] presented the following definition:

Definition 1. 1. A double sequence $x = (x_{k,l})$ has a Pringsheim limit ℓ (denoted by P- $\lim x = \ell$) provided that given $\varepsilon > 0$, there exists $N \in N$ such that $\left| x_{k,l} - \ell \right| < \varepsilon$ whenever k,l > N. We shall describe such an x more briefly as "P-convergent".

Let w denote the set of all double sequences of real numbers.

Definition 1. 2. Let M be an Orlicz function and $p=(p_{kl})$ be any factorable double sequence of strictly positive real numbers. We define the following sequence spaces:

$$L_{M}^{"}(p) = \left\{ x \in w^{"} : \sum_{k,l=1,1}^{\infty,\infty} \left(M \left(\frac{\left| x_{k,l} \right|}{\rho} \right) \right)^{p_{k,l}} < \infty, \text{ for some } \rho > 0 \right\}$$

$$W''(M,p) = \left\{ x \in w'' : P - \lim_{mn} \frac{1}{mn} \sum_{k,l=1,1}^{m,n} \left(M \left(\frac{\left| x_{k,l} - \ell \right|}{\rho} \right) \right)^{p_{k,l}} = 0, \text{ for some } \rho > 0 \text{ and } \ell \right\}$$

^{*}Received by the editor March 27, 2005 and in final revised form February 19, 2007

^{**}Corresponding author

$$W_0''(M, p) = \left\{ x \in w'' : P - \lim_{mn} \frac{1}{mn} \sum_{k, l=1, 1}^{m, n} \left(M \left(\frac{|x_{k, l}|}{\rho} \right) \right)^{p_{k, l}} = 0, \text{ for some } \rho > 0 \right\}$$

and

$$W_{\infty}^{"}(M,p) = \left\{ x \in w^{"} : \sup_{mn} \frac{1}{mn} \sum_{k,l=1,1}^{m,n} \left(M\left(\frac{\left|x_{k,l}\right|}{\rho}\right) \right)^{p_{k,l}} < \infty, \text{ for some } \rho > 0 \right\}.$$

When M(x)=x, then the family of sequences defined above becomes $L^{"}(p)$, [c,1,1,p], $[c,l,l,p]_{o}$, $[c,l,l,p]_{\infty}$ respectively. If we let $p_{k,l}=1$ for all k and l, then $L_{M}^{"}(p)$, $W^{"}(M,p)$, $W^{"}_{o}(M,p)$, and $W^{"}_{\infty}(M,p)$ reduce to $L_{M}^{"}$, $W^{"}_{o}(M)$, $W^{"}_{o}(M)$, and $W^{"}_{\infty}(M)$ respectively.

Theorem 1. 1. Let $H=\sup_{k,l} p_{k,l}$, then $L_M'(p)$ is a linear set over the set of complex numbers C.

Proof: Let x and y be elements of $L_M^{"}(p)$ and both α and β are complex numbers. The goal of this proof is to find some ρ_3 such that

$$\sum_{k,l=1,1}^{\infty,\infty} \left(M \left(\frac{\left| \alpha x_{k,l} + \beta y_{k,l} \right|}{\rho_3} \right) \right)^{p_{k,l}} < \infty.$$

Since x and y are in $L_{M}^{''}(p)$, there exist some positive ρ_{1} and ρ_{2} such that

$$\sum_{k,l=1,1}^{\infty,\infty} \left(M \left(\frac{\left| x_{k,l} \right|}{\rho_1} \right) \right)^{p_{k,l}} < \infty$$

and

$$\sum_{k,l=1,1}^{\infty,\infty} \left(M \left(\frac{\left| y_{k,l} \right|}{\rho_2} \right) \right)^{p_{k,l}} < \infty.$$

Similar to Parashar and Choudhary [3], we will define $\rho_3 = max\{2|\alpha|\rho_1,2|\beta|\rho_2\}$. Since *M* is non-decreasing and convex

$$\sum_{k,l=1,1}^{\infty,\infty} \left(M \left(\frac{\left| \alpha x_{k,l} + \beta y_{k,l} \right|}{\rho_3} \right) \right)^{p_{k,l}} \leq \sum_{k,l=1,1}^{\infty,\infty} \left(M \left(\frac{\left| \alpha x_{k,l} \right|}{\rho_3} + \frac{\left| \beta y_{k,l} \right|}{\rho_3} \right) \right)^{p_{k,l}}$$

$$\leq \sum_{k,l=1,1}^{\infty,\infty} \frac{1}{2^{p_{k,l}}} \left[M \left(\frac{\left| \alpha x_{k,l} \right|}{\rho_1} \right) + M \left(\frac{\left| \beta y_{k,l} \right|}{\rho_2} \right) \right]^{p_{k,l}}$$

$$< \sum_{k,l=1,1}^{\infty,\infty} \left[M \left(\frac{\left| x_{k,l} \right|}{\rho_1} \right) + M \left(\frac{\left| y_{k,l} \right|}{\rho_2} \right) \right]^{p_{k,l}}$$

$$\le C \sum_{k,l=1,1}^{\infty,\infty} \left[M \left(\frac{\left| x_{k,l} \right|}{\rho_1} \right) \right]^{p_{k,l}} + C \sum_{k,l=1,1}^{\infty,\infty} \left[M \left(\frac{\left| y_{k,l} \right|}{\rho_2} \right) \right]^{p_{k,l}}$$

$$\le \infty,$$

where $C = max \{1, 2^{H-1}\}$. Thus $L_M''(p)$ is a linear space.

Definition 1. 3. An Orlicz function M is said to satisfy Δ_2 -condition for all values of u, if there exists a constant K>0 such that $M(2u) \le KM(u)$ for all $u \ge 0$.

It is easy to show that K>2 always. The Δ_2 -condition is equivalent to the satisfaction of inequality $M(lu) \le K(l)M(u)$ for all values of u and for l > 1.

We shall present the following trivial lemma.

Lemma 1.1. Let M be the Orlicz function which satisfies Δ_2 -condition, and let $0 < \delta < 1$. Then for each $x \ge \delta$ we have $M(x) < Kx \frac{1}{\delta}M(2)$ for some constant K>0.

Theorem 1. 2. For any Orlicz function M which satisfies Δ_2 -condition, we have

$$(1) \left[c, 1, 1 \right] \subset W''(M)$$

(1)
$$[c,1,1] \subset W^{"}(M)$$

(2) $[c,1,1]_0 \subset W_0^{"}(M)$

$$(3) [c,1,1]_{\infty} \subset W_{\infty}^{"}(M).$$

Proof: Let $x \in [c,1,1]$, thus

$$A_{m,n} = \frac{1}{mn} \sum_{k,l=1}^{m,n} \left| x_{k,l} - \ell \right| \to 0 \text{ as } m, n \to \infty.$$

Let $\varepsilon > 0$ and choose δ with $0 < \delta < 1$ such that $M(t) < \varepsilon$ for $0 \le t \le \delta$. Thus, by the above lemma we obtain the following

$$\frac{1}{mn} \sum_{k,l=1,1}^{m,n} M(|x_{k,l} - \ell|) = \frac{1}{mn} \sum_{k,l=1,1 \& |x_{k,l} - \ell| \le \delta}^{m,n} M(|x_{k,l} - \ell|) + \frac{1}{mn} \sum_{k,l=1,1 \& |x_{k,l} - \ell| > \delta}^{m,n} M(|x_{k,l} - \ell|) \\
< \frac{1}{mn} \varepsilon(mn) + \frac{1}{mn} K \frac{1}{\delta} M(2)(mn) A_{m,n}.$$

Therefore, as m and n go to infinity, in Pringsheim's sense it follows that $x \in W''(M)$. Part 2 and 3 follow similar arguments as Part 1 and are thus omitted. This completes the proof.

Theorem 1. 3. (1) Let $0 < \inf p_{k,l} \le p_{k,l} \le 1$. Then

$$W^{"}(M,p) \subset W^{"}(M).$$

(2) Let $1 \le p_{k,l} \le \sup p_{k,l} < \infty$. Then

$$W''(M) \subset W''(M,p)$$
.

Proof: $x \in W''(M, p)$, since $0 < \inf p_{k,l} \le 1$, we obtain the following:

$$\frac{1}{mn}\sum_{k,l=1,1}^{m,n}M\left(\frac{\left|x_{k,l}-\ell\right|}{\rho}\right) \leq \frac{1}{mn}\sum_{k,l=1,1}^{m,n}M\left(\frac{\left|x_{k,l}-\ell\right|}{\rho}\right)^{p_{k,l}}.$$

Thus $x \in W^{''}(M)$. Let us establish Part (2). Let $p_{k,l} \ge 1$ for each k and l, and $\sup p_{k,l} < \infty$. Let $x \in W^{''}(M)$. Then for each $0 < \varepsilon < 1$ there exists a positive integer N such that

$$\frac{1}{mn} \sum_{k,l=1,1}^{m,n} M \left(\frac{\left| x_{k,l} - \ell \right|}{\rho} \right) \le \varepsilon < 1$$

for all $n, m \ge N$. This implies that

$$\frac{1}{mn}\sum_{k,l=1,1}^{m,n}M\left(\frac{\left|x_{k,l}-\ell\right|}{\rho}\right)^{p_{k,l}}\leq\frac{1}{mn}\sum_{k,l=1,1}^{m,n}M\left(\frac{\left|x_{k,l}-\ell\right|}{\rho}\right).$$

Therefore $x \in W^{''}(M, p)$. This completes the proof.

Theorem 1. 4. Let $0 < p_{k,l} \le q_{k,l} < \infty$, for each k and l. Then

$$L_{M}^{"}(p) \subseteq L_{M}^{"}(q).$$

Proof: Let $x \in L_M(p)$. Then there exists for some $\rho > 0$ such that

$$\sum_{k,l=1,1}^{\infty,\infty} \left(M \left(\frac{\left| x_{k,l} \right|}{\rho} \right) \right)^{p_{k,l}} < \infty.$$

This implies

$$M\left(\frac{\left|x_{i,j}\right|}{\rho}\right) \leq 1$$
,

for sufficiently large values of i and j. Since M is non decreasing, we granted

$$\sum_{k,l=1,1}^{\infty,\infty} \left(M \left(\frac{\left| x_{k,l} \right|}{\rho} \right) \right)^{q_{k,l}} \leq \sum_{k,l=1,1}^{\infty,\infty} \left(M \left(\frac{\left| x_{k,l} \right|}{\rho} \right) \right)^{p_{k,l}} < \infty.$$

Thus $x \in L_M^{''}(q)$.

2. STATISTICAL CONVERGENCE

The concept of statistical convergence was introduced by Fast [4] in 1951.

Definition 2.1. The sequence $x = (x_k)$ has statistic limit ℓ , denoted by st_1 - $limx = \ell$ or $x_k \to \ell(st_1)$ provided that for every $\varepsilon > 0$,

$$\lim_{n} \frac{1}{n} | \{ k \le n : |x_k - \ell| \ge \varepsilon \} | = 0,$$

where the vertical bars indicate the number of elements in the enclosed set.

Quite recently, Mursaleen and Edely [5] defined the statistical analogue for double sequence $x=(x_{k,l})$ as follows: A real double sequence $x=(x_{k,l})$ is said to be P-statistical convergence to ℓ provided that for each $\varepsilon>0$

$$P - \lim_{mn} \frac{1}{mn} \left\{ number\ of\ (k,l) : k < m\ and\ l < n : \left| x_{k,l} - \ell \right| \ge \varepsilon \right\} = 0.$$

In this case, we write $st_2 - \lim_{kl} x_{k,l} = \ell$ and we denote the set of all P-statistical convergent double sequences by st_2 and denote the set of P-statistically null sequences by $(st_2)_0$.

Theorem 2.1. If M be an Orlicz function, then $W_0''(M) \subset (st_2)_0$.

Proof: Suppose $x \in W_0''(M)$ and $\varepsilon > 0$, then we obtain the following for every n and m

$$\frac{1}{mn} \sum_{k,l=1,1}^{m,n} M\left(\frac{\left|x_{k,l}\right|}{\rho}\right) \ge \frac{1}{mn} \sum_{k,l=1,1 \& \left|x_{k,l}\right| \ge \varepsilon}^{m,n} M\left(\frac{\left|x_{k,l}\right|}{\rho}\right)$$

$$\geq M(\varepsilon) \big| \ \big\{ k \leq m, l \leq n : \big| x_{k,l} \big| \geq \varepsilon \big\} \ \big| \, .$$

Hence $x \in (st_2)_0$.

Theorem 2. 2. $(st_2)_0 = W_0''(M)$ if and only if M is bounded.

Proof: Suppose that M is bounded and that $x \in (st_2)_0$. Since M is bounded there exists an integer K such that M(x) < K for all $x \ge 0$. Then for each m and n, we have

$$\begin{split} \frac{1}{mn} \sum_{k,l=1,1}^{m,n} M \left(\frac{\left| x_{k,l} \right|}{\rho} \right) &= \frac{1}{mn} \sum_{k,l=1,1 \& \left| x_{k,l} \right| \geq \varepsilon}^{m,n} M \left(\frac{\left| x_{k,l} \right|}{\rho} \right) + \frac{1}{mn} \sum_{k,l=1,1 \& \left| x_{k,l} \right| < \varepsilon}^{m,n} M \left(\frac{\left| x_{k,l} \right|}{\rho} \right) \\ &\leq \frac{K}{mn} \left| \left\{ k \leq m, l \leq n : \left| x_{k,l} \right| \geq \varepsilon \right\} \right. \left| + M(\varepsilon) \right. \end{split}$$

and thus the Pringsheim's limit on m and n grant us the results. Conversely, suppose that M is unbounded so that there is a positive double sequence $s_{m,n}$ with $M(s_{mn}) = (mn)^2$ for m, n = 1, 2, ... Now the sequence x defined by $x_{k,l} = s_{mn}$ if $k,l = (mn)^2$ for m, n = 1, 2, ... and $x_{k,l} = 0$, otherwise. Then we have

$$\frac{1}{mn} | \{k \le m, l \le n : |x_{k,l}| \ge \varepsilon\} | \le \frac{\sqrt{mn}}{mn} \to 0$$

as $m, n \to \infty$, hence $x_{k,l} \to 0$ (st_2)₀. But $x \notin W_0^{''}(M)$, contradicting (st_2)₀ = $W_0^{''}(M)$. This completes the proof.

REFERENCES

1. Ruckle, W. H. (1973). FK Spaces in which the sequence of coordinate vectors in bounded. Canad, J. Math. 25,

973-978.

- 2. Pringsheim, A. (1900). Zur theorie der zweifach unendlichen Zahlenfolgen. *Mathematische Annalen*, 53, 289-321.
- 3. Parashar, S. D. & Choudhary, B. (1994). Sequence spaces defined by Orlicz functions. *Indian J. Pure Appl. Math.* 25(4), 419-428.
- 4. Fast, H. (1951). Sur la convergence statistique. Collog. Math. 2, 241-244.
- 5. Mursaleen, M. & Edely, O. H. (2003). Statistical convergence of double sequences. *J. Math. Anal. Appl.* 288(1), 223-231.