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Abstract — T. Ikawa obtained an ordinary differential equation for the circular helix. Recently, the helix have
been investigated by many differential geometers such as T. |kawa, H. Balgetir, M. Bektas, M. Ergut, N.
Ekmekci and H. H. Hacisalihoglu. In this paper, making use of this author's methods, we obtained
characterizations of helix for a curve with respect to the Frenet frame in 3-dimensional Galilean space Gs.

K eywor ds— Galilean Space, Helix

1. PRELIMINARIES

The Galilean space is a three dimensional complex projective space, Ps, in which the absolute figure {w, f,
I1, 15} consists of a real plane w (the absolute plane), area line f — w (the absolute line) and two
complex conjugate points, |,,1, € f (the absolute points) [1].

We shall take, as a real modd of the space Gs, a rea projective space P;, with the absolute {w, f}
consisting of a real plane wc G;, and ared line f — w, on which an elliptic involution & has been
defined.

Let ¢ bein homogeneous coordinates

W....X, =0, f..x;=%x=0
£:(0:0:X%,: %) > (0:0:%;:=X,).
In the nonhomogeneous coordinates, the similarity group Hg has the form
X'=ay, +a,X
Yy =a, +8,X+a,C0SpYy+a,sngz (@
Z'=ay +a,X—a,SNpy+a,,Ccosepz

where a; and ¢ arereal numbers.
For a,, = a,, =1, we have the subgroup, By, the group of Galilean motions:

X'=a+Xx
Bg... Y =b+cx+ycoseg+zsing
Z =d+ex—ysing+ zcose

In G3 there are four classes of lines:
a) (proper) nonisotropic lines - they do not meet the absolute linef.
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b) (proper) isotropic lines - lines that do not belong to the plane w but meet the absolute linef.

) unproper nonisotropic lines - al lines of w but f.

d) the absolute linef.

Planes x =const. are Euclidean and so is the plane w. Other planes are isotropic.

Inwhat follows, the coefficients a,, and a,; will play aspecial role.

In particular, for a,, = a,; =1, (1) definesthe group By < H, of isometries of the Galilean space G; .

2. FRENET FORMULAS

For a curve c:l - G;, | € R parametrized by the invariant parameter S= X, is given in the
coordinate form

c(x) = (%, (), z(x)), 2
the curvature x(X) and thetorsion 7(X) are defined by

det(c'(x),c"(x),c"(x))

"n2

k(X)) =4y () +2"%(¥), 7(x)= 2 ©)
K°(X)
The associated moving trihedron is given by
T=c'(x)=1LYy'(x),Z(x)),
1 " _ i " "
N :@C (x) = o (0, y"(x), Z'(x)), (4)
B = ——(0-2'(X), y'()).
x(X)

The vectors T, N, and B are called the vectors of the tangent, principal normal and the binormal line,
respectively. For their derivatives the following Frenet's formulas hold [2]

VT =xN,
V:N =178, %)
V:B=-N

3. THE CHARACTERIZATIONSIN THE GALILEAN SPACE G3

We used the same terminologies as in [3-5], and the following Definitions, Theorems and Corollaries were
obtained.

Definition 3. 1. Let o be acurve in 3-dimensional Galilean space Gs, and {T, N, B} be the Frenet frame
in 3-dimensional Galilean space Gz dong « . If xand r are positive constants along « , then « iscaled
acircular helix with respect to the Frenet frame.

Definition 3. 2. Let o be acurve in 3-dimensional Galilean space G; and {T, N, B} be the Frenet frame
in 3-dimensional Galilean space Gz along « . A curve a such that

K
— = const.
T
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is called ageneral helix with respect to Frenet frame.

Theorem 3. 1. Let a beacurvein 3-dimensiona Galilean space Gz. « isagenera helix with respect to
the Frenet frame {T, N, B}, if and only if
V.V V.T-KV.T=3¢"V;N (6)
where K = L 72,
K

Proof: Suppose that « is general helix with respect to the Frenet frame {T, N, B}. Then from (5), we
have

V. V. V.T=(x"-x1*)N+ (2t + xt")B. (7

Now, since « isgeneral helix with respect to the Frenet frame

£ ~ const.
T
and this upon the derivation givesrise to
K't=xt'". (8)
If we substitute the equations (8),
N = 1 V.T, 9
K
and
B=1v.N (10)
T

in (7), we obtain (6).
Conversely, let us assume that the egquation (6) holds. We show that the curve o is agenera helix.
Covariant differentiating (9), we obtain

VN=—SvTilvvT (12)
K K
and so
V.V.N= (— %j VT2 vvTilvvvT, (12)
K K K
If we use (6) in (12) and make some calculations, we have
i 12 lJ
V.V.N = (—%j AL VA P L VLA (13)
K K K K

Also we obtain

Spring 2007 Iranian Journal of Science & Technology, Trans. A, Volume 31, Number A2



180 A.O. Ogrenmis/ et al.
V.V.N=-r*N+7B (14)

Since (13) and (14) are equal, routine calculations show that o isageneral helix.

Corollary 3. 1. Let o beacurvein 3-dimensional Galilean space Gs. « isacircular helix with respect to
the Frenet frame {T, N, B}, if and only if

V.V, V.T=-?V.T. (15)

Proof: From the hypothesis of corollary 3.1 and since « isacircular helix, we can easily show (15).

Theorem 3. 2. Let a beacurvein 3-dimensiona Galilean space Gz. « isagenera helix with respect to
the Frenet frame {T, N, B}, if and only if

V.V, V.T-KV.T=317'"V,:N (16)
where K :K——TZ and A:E:const.
K T

Proof: It issimilar to the proof of Theorem 3. 1.

Theorem 3. 3. If o be acurvein 3-dimensional Galilean space G;. « isageneral helix with respect to
the Frenet frame {T, N, B}, then
V,V,.V,T-KV,B=3«'V N (17)

14

~ K
whee K = ——+ k7.
T

Proof: Suppose that ¢ is a general helix with respect to the Frenet frame {T, N, B}. Then from (7) and
(8), we have

V,V.V.T=(x"-xc’)N+3x"rB. (18)
If we substitute the equations

N=-1v,B (19)
T

and (10) in (18), we obtain (17).

Theorem 3. 4. If a be acurvein 3-dimensiona Galilean space Gz. « is a general helix with respect to
the Frenet frame {T, N, B}, then

V,V,V,T-KV,B=317'V,N (20)

"

~ K K
where K = —— + k7 and 4 = — = const.
T T

Proof: Itissimilar to the proof of Theorem 3.3.
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Corollary 3. 2. Let o beacurvein 3-dimensional Galilean space G;. « isacircular helix with respect to
the Frenet frame {T, N, B} if and only if

V,V,V,T =xrV,B. (21)

Proof: From the hypothesis of corollary 3.2 and since « isacircular helix, we can easily show (21).
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