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1. INTRODUCTION 
 
In the domain { }1010 ,);,( yyyxxxyxD <<<<=  we consider the equation  
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where the class lkC + means the existence and continuity for all derivatives 
 

/ ( )r s r sx y C D∂ ∂ ∂+ ∈ ( )lskr ,...,0;,...0 == . 
 
We will call the solution of the class 

 
/ ( )i j i jx y C D∂ ∂ ∂+ ∈ ( )1,0;2,1,0 == ji  

 
as regular. The equation (1) is the generalization of the Bussineska-Lyava equation that describes 
longitudinal waves in a thin elastic shaft with allowance for the effects of the crosswise inertia. The 
Goursat problem for (1) consists of finding a solution in D  on conditions defined for the characteristics: 

 
( ) ( ) ( ) ( )yyxuyyxu x 100 ,,, ϕϕ == , py∈ , 

 

                       ( )pC2
1, ∈ϕϕ ; ( ) ( )xyxu ψ=0, , ( ) ( )xyxuy 10, ψ=  qx∈ , ( )qC2

1, ∈ψψ ,                      (2) 
 

[ ]10, yypy =∈ , [ ]10, xxqx =∈ . 
 

Here, we consider the conditions of function coincidence from (2) on the boundary of their 
definitions (co-ordination conditions) as satisfied: 
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                                         ( ) ( ) ( ) ( ) ( ) ( )01000010 ,, yxxyxy ϕψψϕψϕ =′==′ .                                      (3) 
 

The solution of the mentioned (Goursat) problem is obtained in [1] and its uniqueness is shown. In 
this paper, we investigate characteristic problems for the equation (1), in which at least one of the Goursat 
conditions is changed by the value of the next normal derivative. As a result, each time a characteristic 
that is a carrier of boundary conditions is obtained, the highest order given by a normal derivative is 
increased by a unit. In this case, we use the results from the work [2]. Here, the problems that are obtained 
from the equation (1) and the conditions (2), by replacing conditions in Eq. (2), following conditions are 
concluded:  

 
                                              ( ) ( )0 2,xxu x y yϕ= , ( )pC 2

2 ∈ϕ ,                                                   (4) 
 

                                                ( ) ( )0 2,yyu x y xψ= , ( )qCy 2
2 ∈ .                                                      (5) 

 
In fact, in this paper we investigate the question of clarification of conditions for coefficients of the 

equation that provide a definite level of the intentionality of these problems and, naturally, about the 
acquisition of the decision itself. In this paper the methods of works ([2] and [3]) are developed. For more 
details see ([4], [5] and [6]). 

We have decided to indicate only a class of the desired unknown function u  in formulations of all 
problems suggested below, taking into account that coefficients of the equation (1) are also chosen from 
the same class. 
 

2. MAIN RESULTS 
 

Problem 1. To find the function 
 

( ) ( ) ( )qDCpDCDCu ∪∩∪∩∈ +++ 100222 , 
 

which is a solution to the equation (1) in D, that satisfies all the conditions (2), except the first condition 
from (2), which is replaced by the condition (4). 

This problem may be reduced to the Goursat problem with the help of a certain integral equation. For 
this purpose, we integrate equation (1) twice with respect to y in the bound from *y  to y; ( *y , y P∈ ), 
then, in the obtained relation we direct *y  to 0y  and *x  to 0x . 
Taking into account the boundary conditions we obtain 
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Here, )(yϕ  is the function from the first condition of (2). For its membership in the class )(2 PC  it 

is sufficient, in addition to the already available conditions of coefficient smoothness, to assume that 
 

).(,,);(, 10
211101

20
1202 PDCaaaPDCaa ∪∈∪∈ ++  

 
When )(,0),( 002 yyxa ϕ≠  is uniquely defined from (6) through the resolution of this integral equation. 
We can easily see the two possibilities to obtain the exact solutions (6) that are provided correspondingly 
by the identities: 

 
                                                       .0)()(,0)( ≡−≡ yyAyByA                                                      (8) 

 
In this case of the first identity 
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while in the case of the second 

 

                              ∫ ∫−=
y

y y

dd
xa

A
xa
rA

yxayxa
yry

0

.]
),(

)(exp[
),(
)()(

),(
1

),(
)()(

002002002002

η

ητ
τ
ττ

τ
ηηϕ                    (10) 

 
Now, let .0),( 002 ≡yxa  Here, we also have the two possibilities of the explicit solution (6). When 
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we find 
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If 0),( 001 ≡yxa , and when 0),( 000 ≠yxa , while 
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we have 

 
                                                               .)],()[()( 1

000
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Thus, the following take place 
 
Theorem 1. Problem (1) is uniquely solved when the inequality 0).( 002 ≠yxa  is satisfied. The cases of 
the explicit reduction to the Goursat problem are provided by any of the two of sets of the following 
conditions: 
1) 0).( 002 ≠yxa  

and at least one of the identities  0)()(,0)( ≡−≡ yyAyByA  is satisfied; 
2) .0),(),(,0),( 0

2
000

2
01002 ≠+≡ yxayxayxa  

Problem 2. Its formulation from the previous one is in a way that (4) is changed for the second condition, 
not the first one in (2). Here the solution is found in the class as in problem (1). 

In this case the relation (6) should be written with a provision for (7), like the equation for defining 
)(1 yϕ . Since the formulation of the Goursat problem presupposes the realization of the coordination (3), 

the right part of the equation will be completely known. 
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The role of the inequality 0),( 002 ≠yxa , is played here by 0),( 012 ≠yxa . It also provides, for the 

record, )(1 yϕ  through the resolution of the equation. Here, we should apply the conditions on the 
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coefficients like in the similar case in problem (1). The analogs of the identities (8) are 
 

                                                    .0)()(,0)( 111 ≡−≡ yyAyByA                                                   (14) 
 

When 0)(1 ≡yA , then 
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while in the case of the second identity (14) 
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If 0),( 012 ≡yxa , 0),( 011 ≠yxa  and 
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If 0),( 011 ≡yxa , and when 0),( 010 ≠yxa , while 
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we have 
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As a result of the conduced considerations the following theorem can be written: 
 
Theorem 2. The problem (2) is uniquely solved when the inequality 0).( 012 ≠yxa  is satisfied. The 
explicit solvability takes place when any of the two conditions requirement group is realized satisfied: 
1) 0).( 012 ≠yxa  
and at least one of the identities  0)()(,0)( 111 ≡−≡ yyAyByA  is satisfied; 
2) .0),(),(,0),( 0

2
100

2
11012 ≠+≡ yxayxayxa  

Since in the equation (1) variables x and y occur equally independent, problems on the change of the 
third and fourth Goursat conditions (2) for (5) are symmetrical to the previous two. Then, we will be 
limited by writing conditions for the coefficients only. 

 
Problem 3. It will be obtained by the change of the third Goursat condition (2) for (5). We will be 
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searching for the solution in the class 
 

( ) ( ) ( )qDCpDCDCu ∪∩∪∩∈ +++ 200122 , 
 

During the investigation of this problem, we do like we did in the problem (1), only we integrate (1) 
twice, not by y, but by x. For )(xψ  the analog of equations (4) and (5) is obtained: 
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With the help of which, we come to the following results 
 
Theorem 3. The problem (3) is uniquely reduced to the Goursat problem when any set of conditions is 
satisfied: 
1) 0).( 020 ≠yxa  and )(,,);(, 01
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any of the following identities is satisfied 0)()(,0)( ≡−≡ xyKxMxK  
3) 0).(,0).( 010020 ≠≡ yxayxa , and );(,, 02
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Here, the realization of the first group of conditions leads to the fact that  )(xψ  will be written in 
resolution terms, while the realization of the groups (2), (3), (4) and (5) will provide for writing it in the 
explicit form with the help of the formulas of (9)-(12) types correspondingly. 
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Problem 4. The fourth condition (2) is changed for (5). The solution class is the same as in problem (3). 
In this case, for )(1 xψ , the analog of the equation (13) is obtained: 
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With the help of which, we come to the following results. 
 
Theorem 4. The problem (4) is uniquely reduced to the Goursat problem when any of the following sets 
of conditions is satisfied: 
1) 0).( 021 ≠yxa  and );(,,);(, 01
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2) 0).( 021 ≠yxa  and  )(,,);(, 01
101211

02
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when at least one of the following additional identities is satisfied 
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3) 0).(,0).( 011021 ≠≡ yxayxa , and );(,, 02

101211 qDCaaa ∪∈ +  

 
).(,);(,,);( 3

21
01

000102
03

20 qCqDCaaaqDCa ∈∪∈∪∈ ++ ψψ  
 

4) ,0),(,0).(,0).( 001011021 ≠≡≡ yxayxayxa and );(, 03
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Here, the realization of the first group of conditions leads to the fact that )(1 xψ  will be written in 
resolution terms, while the realization of the groups (2), (3), (4) and (5) will provide for writing it in the 
explicit form with the help of the formulas of (9)-(12) types correspondingly. 
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