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Abstract – In this paper we consider some ( )α β, -metrics such as generalized Kropina, Matsumoto and 
2( )F α β

α
+=  metrics, and obtain necessary and sufficient conditions for them to be Einstein metrics when β  

is a constant Killing form. Then we prove with this assumption that the mentioned Einstein metrics must be 
Riemannian or Ricci flat. 
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1. INTRODUCTION 

 
A Finsler space is a manifold M  equipped with a family of smoothly varying Minkowsky norms, one on 
each tangent space. Riemannian metrics are examples of Finsler norms that arise from an inner-product. A 
Finsler metric function ( )L x y,  is called an ( )α β, -metric if L  is a positively homogeneous function of 
a Riemannian metric ( ) ( ) i j

ijx y a x y yα , =  and a differential 1-form ( ) ( ) i
ix y b x yβ , =  of degree 

one. The especially interesting examples of ( )α β, -metrics are Randers and Kropina metrics. Randers 
metric and its Ricci tensor are related by their histories in physics. The well-known Ricci tensor was 
introduced in 1904 by G. Ricci. Nine years later Ricci’s work was used to formulate Einstein’s gravitation 
theory [1]. 

Einstein metrics are defined in the next section but, loosely, we will say a Finsler metric F  is 
Einstein if the average of its flag curvatures at a flag pole y  is a function of position x  alone, rather than 
the priori position x  and flag pole y . C. Robles investigated Randers Einstein metrics in her Ph.D. 
Thesis in 2003. She obtained necessary and sufficient conditions for Randers metric to be Einstein and by 
using Einstein navigation description, she proved the second Schur lemma [2]. 

The classification of projectively related Einstein Finsler metrics on compact manifold is investigated 
in [3, 4]. In this paper we consider the famous ( )α β, -metrics such as generalized Kropina, Matsumoto 
and 

2( )F α β
α
+=  metrics, and obtain the necessary and sufficient conditions for them to be Einstein metrics 

when β  is a constant Killing form. Also, we prove under these conditions that the above metrics must be 
Riemannian or Ricci flat. We also use Einstein convention in the following.  
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2. PRELIMINARIES 
 
Let M  be an n-dimensional C ∞  manifold. Denote by xT M  the tangent space at x M∈ , and by 

x M xTM T M∈= ∪  the tangent space of M . Each element of TM has the form (x,y), where x M∈  and 

xy T M∈ .  Let 0 \{0}TM TM= .  The natural projection TM Mπ : →  is given by ( )x y xπ , = . The 
pull-back tangent bundle TMπ ∗  is a vector bundle over 0TM  whose fiber vTMπ ∗  at 0v TM∈  is 
just xT M , where ( )v xπ = . Then  
 

0{( ) }x xTM x y v y T M v T Mπ ∗ = , , | ∈ , ∈ .  
 
A Finsler metric on a manifold M  is a function [0 )F TM: → ,∞ , having the following properties:  
(i) F is C ∞  on 0TM ;  
(ii) ( ) ( ) 0F x y F x yλ λ λ, = , > ;  
(iii) For any tangent vector xy T M∈ , the vertical Hessian of 

2

2
F  given by 

 
21( ) ,

2 i j
ij

y y

g x y F
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, =  

 
is positive definite [5].  

Every Finsler metric F  induces a spray 2 ( )i i
i i

x y
G y G x y∂ ∂

∂ ∂
= − ,  which is defined by  

 
1( ) ( ){2 ( ) ( )}
4

jl jki il j k
k l

g g
G x y g x y x y x y y y

x x
∂ ∂

, := , , − , ,
∂ ∂

 

 
where the matrix ( )ijg  means the inverse of matrix ( )ijg  [6]. The coefficients i i

j jkG G,  of the Berwald 
connection can be derived from the spray iG  as follows: 
 

ii
ji i

j jkj k

GGG G
y y

∂∂
= , = .
∂ ∂

 

 
The Riemann curvature i

i k
k p p px

K dx T M T M∂
∂

= ⊗ | : →yK  is defined by 
 

                                  
2 2

( ) 2 2
i i i i j

i j j
k k j k j k j k

G G G G GK y y G
x x y y y y y
∂ ∂ ∂ ∂ ∂

= − + − .
∂ ∂ ∂ ∂ ∂ ∂ ∂

                             (1) 

 
When ( ) i j

ijF a x y y=  is a Riemannian metric, ( )i i j l
k jklK R x y y= , where ( )i

jklR x  denote the 
coefficients of the usual Riemannian curvature tensor. Thus the quantity yK  in Finsler geometry is still 
called the Riemann curvature [7]. 

The Ricci scalar function of F  is given by 
 

2

1 i
iK

F
ρ := .  

 
Therefore, the Ricci scalar function is positive homogeneous of degree 0 in y [8]. This means 

( )x yρ ,  depends on the direction of the flag pole y , but not its length. The Ricci tensor of a Finsler 
metric F  is defined by 
 

1{ }
2 i j

m
ij m y y

Ric K:=  
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Ricci-flat manifolds are manifolds whose Ricci tensor vanishes. In physics, Riemannain Ricci-flat 
manifolds are important, because they represent vacuum solutions to Einstein’s equations.  
A Finsler metric is said to be an Einstein metric if the Ricci scalar function is a function of x  alone, 
equivalently [8] 
 

( )ij ijRic x gρ= .  
 
Ricci-flat manifolds are special cases of Einstein manifolds.  

Let ( )M F,  be an n-dimensional Finsler space equipped with an ( )α β, -metric F , where  
 

( ) ( ) ( ) ( )i j i
ij iy a x y y y b x yα β= , = ,  

 
M. Matsumoto [9] showed that iG  of ( )α β, -metric space are given by  
 
                                                                       002 2i i iG Bγ= + ,                                                                 (2) 

 
where  

0( ) ( ) ( ) {( ) ( ) }i i i i iB E y F F s F F C y b= / + / − / / − / ,β α αα αα α α α α β  
2 2

00 0( ) ( 2 ) 2( )E F F C C r F s F F F= / , = − / + ,β α β α ααβ αβ α β αγ  
2 2 2 2 2i ir r

r rb a b b b b bγ α β= , = , = − ,  
1 1( ) ( )
2 2ij i j j i ij i j j ir b b s b b| | | |:= + , := − ,  

i ih i
j hj j i js a s s b s:= , := .  

The symbol " "|  in the above formula stands for the h-covariant derivation with respect to the 
Riemannian connection in the space ( )M α, , and the matrix ( )ija  means the inverse of matrix ( )ija . The 
functions i

jkγ stand for the Christoffel symbols in the space ( )M α, , and the suffix 0 means transvecting 
by iy .  

Putting 
 

                                                2 2( ) 2 ( )p F F FF F F Fα β αα α ααβ β α β αγ= − / + ,                                        (3) 
 
                                         2 2( ) ( )q F F F FF FF F Fβ α β αα α α αααβ β α β αγ= − − / + ,                                     (4) 
 
                                                                           1 F Fr β αα= /                                                                      (5) 

 
                                                            3 2 2

0 2( )F F Fs αα α ααα β αγ= / + ,                                                      (6) 
 
                                                       4 2 2

1 ( )F F F F Ft αα β α α ααα β αγ= − / + .                                                  (7) 
 
We get,  
 
                                              1 0 100 0 0 0 00 0( ) ( )i i i iB pr q s y s r s bsr t= + + + + .                                           (8) 
 

Substituting (8) in (2) and (1), we obtain Berwald’s formula in split and covariantized form:  
( ) {2 ( ) ( ) ( ) 2 ( ) }k j k j k

ii i j i i j j i
k k jk y y y y y

K y B y B B B B BK | |= + − − + .  
The one form β  is said to be Killing (closed) one form if 0ijr =  ( 0ijs =  respectively). β  is said to 

be a constant Killing form if it is Killing and has constant length with respect toα , equivalently  
0 0ij ir s= , = .  
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Example 2.1. Let F α β= +  be the family of Randers metrics on 3S  constructed in [10]. β  satisfies 
that 0ijr = and 0.is =  Moreover, the authors have found a special family of these Randers metrics with 
constant flag curvature 1K = . 
 

3. SOME SPECIAL ( )α β, -METRIC SPACES 
 
3.1. generalized Kropina spaces 
 
In this section we consider the case of generalized Kropina spaces. A generalized Kropina metric is given 
by 1 p pF α β−= , where 0 1p ≠ , . We get  
 
                                                       1 1(1 ) .p p p pF p F pα βα β α β− − −= − , =                                                 (9) 

 
Substituting (9) in (5), we get  
 

                                                                         
2

1 (1 )
pr

p
α

β
= .

−
                                                                  (10) 

 
Now we suppose that β  is a constant Killing form, then by substituting (10) in (8), we have  

 

                                                                      
2

0(1 )
i ipB s

p
α

β
= .

−
                                                               (11) 

 
From (11), we obtain 

 

                                                        
2 2

0
0 02(1 ) (1 )

ji i i
j j

p b pB s s
p p

α α
β β
|

| |= − + ,
− −

                                              (12) 

 

                                                
2 2

02

2
( )
(1 ) (1 ) (1 )

j ji i i
j j

py pb pB s s
p p p

α α
β β β. = − + ,

− − −
                                     (13) 

 
where j

i i
j y

B B. = . Using (13) we have  
 

                                                                           0j i
j iB B . . = ,                                                                    (14) 

 

                                                 
2 4 2 2

. 0 02 2 2 2

4
(1 ) (1 )

j i ij i
i j ij i

p pB B s s s s
p p
α α
β β. = − .

− −
                                      (15) 

 
Derivating (12) by iy  and transvecting by jy  we get 

 
                                                                         ( ) 0j i

j iy B | . = .                                                                   (16) 
 

Substituting (12)-(16) in Berwald's formula, this is re-written as:  
 

                                 
2 2 4 2

0 0 02 2 2 2

2 ( 1) 2
(1 ) (1 ) (1 )

ii i ij i
i i ij ii

p p p pK s s s s sK p p p
α α α
β β β |

+
= + − + .

− − −
                      (17) 

 
Where i

iK  is the spray curvature of the Riemannian metric .ija  
As a result of (17), we can derive the spray curvature of the Kropina metric with constant Killing, if set 
p=-1, 
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4 2

024
ii ij i

i ij iiK s s sK
α α
β β |= − − .                                                    (18) 

 
3.2. Matsumoto spaces 
 

In this section we consider the case of Matsumoto spaces. The Matsumoto metric is
2F α

α β−= , so  
 

                                              2 2 2 2( 2 ) ( ) ( ) .F Fα βα αβ α β α α β= − / − , = / −                                         (19) 
 
Substituting (19) in (5), we get  
 

                                                                          
2

1 .
2

r α
α β

=
−

                                                                   (20) 

 
Now we suppose that β  is a constant Killing form, so by substituting (20) in (8), we have 

 

                                                                       
2

0 ,
2

i iB sα
α β

=
−

                                                                (21) 

 
from (21), we get  
 

                                                       
2 2

0
0 02

2
( 2 ) 2

ji i i
j j

b
B s s

α α
α β α β

|
| |= + ,

− −
                                                    (22) 

 

                                 
2 2

0 0 02 2

2 2
2 ( 2 ) ( 2 ) 2
j j ji i i i i

j j

y y b
B s s s s

α α α
α β α β α β α β. = − + + .
− − − −

                            (23) 

 
Using (23), we get  

 
                                                                           0j i

j iB B . . = ,                                                                    (24) 
 

                                  
4 3 2

. 0 0 0 02 3 2

2 4
( 2 ) ( 2 ) ( 2 )

j i ij i i
i j ij i iB B s s s s s sα α α

α β α β α β. = − + .
− − −

                         (25) 

 
Derivating (22) by iy  and transvecting by jy  

 
                                                                          ( ) 0.j i

j iy B | . =                                                                  (26) 
 
Substituting (22)-(26) in Berwald's formula, this is re-written as:  

 

                                    
3 2 4

0 0 03 2

2 2
( 2 ) 2 ( 2 )

ii i i ij
i i i ijiK s s s s sK

α α α
α β α β α β|

−
= + + − .

− − −
                           (27) 

 
Recollect i

iK  is the spray curvature of the Riemannian metric ija . 
 
 
3.3. 

2( )F α β
α= + metrics 

 
In this section we consider the space of 

2( )F α β
α
+=  metric. From (5) we have  

 
                                                      2 2 2( ) 2( )F Fα βα β α α β α= − / , = + / .                                               (28) 
 
Substituting (28) in (5), we get  
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2

1
2 .r α
α β

=
−

                                                                     (29) 

 
Now we suppose that β  is a constant Killing form, so by substituting (29) in (8), we have  

 

                                                                         
2

0
2i iB sα
α β

= .
−

                                                                (30) 

 
From (30), we get  

 

                                                           
2 2

0
0 02

2 2
( )

ji i i
j j

b
B s s

α α
α β α β

|
| |= + ,

− −
                                                    (31) 

 

                                      
2 2

0 0 02 2

4 2 2 2
( ) ( ) ( )

j j ji i i i i
j j

y y b
B s s s s

α α α
α β α β α β α β. = − + + .
− − − −

                             (32) 

 
Using (32) we get  

 
                                                                           0j i

j iB B . . = ,                                                                    (33) 
 

                                     
4 3 2

. 0 0 0 02 3 2

4 8 16
( ) ( ) ( )

j i ij i i
i j ij i iB B s s s s s sα α α

α β α β α β. = − + .
− − −

                            (34) 

 
Derivating (31) by iy  and transvecting by jy  

 
                                                                        ( ) 0.j i

j iy B | . =                                                                    (35) 
 
Substituting (31)-(35) in Berwald's formula, this is re-written as:  

 

                            
2 2 4 3

0 0 0 0 02 2 3

12 4 4 8
( ) ( ) ( )

ii i i ij i
i i i ij iiK s s s s s s sK

α α α α
α β α β α β α β|= + + − − .
− − − −

             (36) 

 
Where i

iK  is the spray curvature of the Riemannian metric ija . The following example is special case of 
this metric such that Berwald has investigated it.  
 
Example 3.1. Suppose  
 

2 2 2 2 2

2 2 2 2 2 2

( ( ) )

(1 ) ( )

y x y x y x y
F

x y x y x y

| | − | | | | − < , > + < , >
= .

− | | | | − | | | | − < , >
 

 
F is the well-known metric defined on the unit ball n nB R⊆  centered at the origin. F is 

projectively flat and, moreover, has zero flag curvature 0K =  [11]. 
 

4. EINSTEIN CRITERION 
 
In this section we assume that Ricci scalars of the mentioned ( )α β, -metrics are functions of x  alone, 
i.e. F is Einstein. We have 2 ( ) i

iF Ric x K= , so we can derive necessary and sufficient conditions for 
them to be Einstein.  
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4.1. Einstein Matsumoto metrics 
 

From (27),  
 

3 2 4

0 0 000 3 2

2 20
( 2 ) 2 ( 2 )

i i ij
i i ijs s s s sRic

α α α
α β α β α β|= − + −
− − −

 

 

                                                                     
4

2 ( )
( )

Ric xα
α β

− .
−

                                                             (37) 

 
Multiplying (37) by 2 3( ) ( 2 )α β α β− −  removes y  from the denominators and we can derive the 
criterion for the Matsumoto metric to be Einstein as follows: 
 

0Rat Irratα+ = ,  
 
where Rat and Irrat are, respectively, degree 7 and degree 6 polynomials in y . 
 
Lemma 4.1. A Matsumoto metric with constant Killing form β  is Einstein if and only if both Rat=0 and 
Irrat=0 hold.  

 
4 2 3 5 4 6 4 2 2 4

0 0 000( 8 24 8 ) 4 (2 26 8 )i i
i iRat s s sRicα β α β β α β α α β α β |= − − − + + + +  

 
6 4 3 6 4 3(4 2 ) (6 8 ) ( )ij

ijs s Ric xα β α β α β α β− + + + ,  
 

4 2 2 4 4 2 2 4 2 3
0 0 000( 19 22 ) 2( ) 12( 2 )i i

i iIrrat s s sRicα α β β α α β α β α β |= + + − + − +  
 
                                               6 4 2 6 4 2( 5 ) 6( ) ( )ij

ijs s Ric xα α β α α β+ + − + .                                          (38) 
 

Proof: We know that α  can never be polynomial in y . Otherwise, the quadratic 2 ( ) i j
ija x y yα =  

would have been factored into two linear terms. Its zero set would then consist of a hyper-plane, 
contradicting the positive definiteness of ija . Now, suppose the polynomial Rat is not zero. The above 
equation would imply that it is the product of polynomial Irrat with a non-polynomial factorα . This is not 
possible. So Rat must vanish and, since α  is positive at all 0y ≠ , we see that Irrat must be zero as well.  

Notice that Rat=0 shows that 2α  divides 5
00Ricβ . Since 2α  is an irreducible degree two 

polynomials in y, and 5β  factors into five linear terms, it must be the case that 2α  divides 00Ric . That is, 
α is Einstein.  
Therefore,  
 

2
00Ric cα= ,  

 
where c must be a constant by the Riemannian Schur Lemma. We can get some more information out of 
the two equations Rat=0 and Irrat=0, in Lemma 4.1. By replacing every instance of 00Ric  with 2cα  and 
so divide through by the common factor of 2α  to Rat=0, we will get an expression of the form  

 
                                                                          2

1 10 P Qα= + ,                                                                  (39) 
 
where 1P  is a polynomial of degree one, and 1Q  is a polynomial of degree three, as follows: 
 

2 3 2 2
1 0 0 0( 8 24 ) 4 (2 26 )i i

i iP c s s sα β β β α β |= − − + + +  
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2 3 2 3(4 2 ) (6 8 ) ( )ij
ijs s Ric xα β β α β β− + + + ,  

 
3 4

1 08 8 i
iQ c sβ β |= − + .  

 
From (39) we conclude that 2α  divides 1Q  and so 0β = . Then the Matsumoto metric is actually 

Riemannian. In fact, we proved the following theorem:  
 
Theorem 4.2. Let ( )M F,  be a Matsumoto Finsler space with constant Killing formβ , then F  is 
Einstein if and only if it is Reimannian Einstein metric.  
 
4.2. Einstein 

2( )F α β
α
+=  metrics 

 
From (36),  

 
2 2 4 3

0 0 0 0 000 2 2 3

12 4 4 80
( ) ( ) ( )

i i ij i
i i ij is s s s s s sRic

α α α α
α β α β α β α β|= + + − − .
− − − −

 

 

                                                                     
4

2

( ) ( )Ric xα β
α
+

− .                                                              (40) 

 
Multiplying (40) by 3 2( )α β α−  removes y  from the denominators and we can derive the criterion 

for the above metric to be Einstein as follows:  
 

0Rat Irratα+ = ,  
 
where Rat and Irrat are, respectively, degree 7 and degree 6 polynomials in y . 
 
Lemma 4.3. A Finsler space of metric 

2( )F α β
α
+=  is Einstein if and only if Rat=Irrat=0 hold.  

where, 
 

4 2 3 4 6 4 2 6
0 0 000( 3 ) 12 4( ) 4i i ij

i i ijRat s s s s sRicα β α β α β α α β α β|= − − − + + +  
 

6 4 3 2 5 7( 3 3 ) ( )Ric xα β α β α β β− − + − ,  
 

4 2 2 4 6 4
0 0 000( 3 ) 8 4 4i ij i

i ij iIrrat s s s s sRicα α β α β α α|= + − − +  
 
                                                      6 4 2 2 4 6( 3 3 ) ( ).Ric xα α β α β β− − + −                                               (41) 

 
By similar arguments such as Matsumoto metrics, we have the following theorem:  
 
Theorem 4.4. Let 

2( )( )M F α β
α
+, =  be a Finsler space with constant Killing formβ . If F  is Einstein then 

it is Reimannian metric.  
 
4.3. Einstein generalized Kropina metrics 
 

From (17), 
 

2 2 4

0 000 2 2 2 2

2 ( 1)0
(1 ) (1 )

i ij
i ij

p p ps s s sRic p p
α α
β β

+
= + −

− −
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2

2(1 ) 2
0

2 ( )
(1 )

i p p
i

p s Ric x
p
α α β
β

−
|+ − .

−
                                                (42) 

 
The relation 00

i
i RicK =  is a consequence of the definition of ijRic  and Euler's theorem. Consider 

the following two possibilities: 
 
Case 1. 1 0p− < . In this case, by multiplying 2( 1) 2 2,  (1 )p pα β− −  removes y from the denominators. 
 
Case 2. 1 0p− > . Then p is negative (since it is not equal to 0 or 1), by multiplying 2 2(1 ) ,  pp β | |−  
remove y  from the denominators. 

In case 1, removing y from the denominator leaves an expression of the form 
 

                                                                      (2 2)0 p P Qα −= + .                                                                (43) 
 
where P is a polynomial of degree 4, and Q is a polynomial of degree 2p+2, as follows 
 

2 2 2 2 4 2
0 0 000(1 ) 2 ( 1) 2 (1 )i ij i

i ij iP p p p s s p s s p p sRicβ α α α β |= − + + − + − ,  
 

2 2( 1)(1 ) ( )pQ p Ric xβ += − − .  
 
Lemma 4.5. A generalized Kropina metric is Einstein if P=Q=0. 
The statement holds if P=Q=0. Suppose that F is Einstein metric. We claim ( ) 0Ric x = . Otherwise, from 
(43), we can say that (2 2)pα −  divides Q. In particular, 2α divides Q, 

 
                                                             2 (2 2)(1 ) ( )pQ p Ric xβ += − − .                                                       (44) 
 
But it forces 2α  to divide (2 2)pβ + , (because 2α  and  ( )Ric x  are relatively prime) which is not possible 
since 2α  is irreducible and (2 2)pβ +  factors into linear terms. Hence 0β = , but this is a contradiction and 
so we have ( ) 0Ric x = . Therefore, P=Q=0. 
 
Theorem 4.6. An Einstein generalized Kropina metric with constant Killing form β  is Ricci flat and α  
is Einstein. 
This is just case 1. One can derive similar results for case 2. 

If set 1p = − , we derive the condition for a Kropina metric, with a constant Killing β  form, to be 
Einstein as follows:  
 

1 1 0P Q= = ,  
 
where, 
 

2
1 004P Ricβ=  

 
4 2 4

1 04 4 ( )ij i
ij iQ s s s Ric xα βα α|= − − − .  

 
In [10], Robles and Bao proved a Schur lemma for Randers metric: 
 
Theorem 4.7. [2] The Ricci scalar Ric(x) of any Einstein Randers metric in a dimension greater than two 
is necessarily constant.  

The Einstein navigation description was used for Randers metric. However, nothing is known about 
corresponding for the other ( )α β, -metrics yet. We have the following theorem in the case of scalar flag 
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curvature metrics:  
 
Theorem 4.8. [9] Let F  be a scalar flag curvature Finsler space, then F  is Einstein if and only if F  is a 
constant flag curvature.  

Suppose that F  is one of the ( )α β, -metrics in this paper with constant Killing form β . If F is 
Einstein metric, then from the above theorems, F  is constant Ricci scalar. Therefore we can get the 
following corollary:  
 
Corollary 4.9. Ricci scalar functions of any Einstein metrics of Matsumoto, generalized Kropina and 

2( )F α β
α
+=  type, with constant Killing form is necessarily constant.  
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