AUTOCORRELATION FOR A CLASS OF POLYNOMIALS WITH COEFFICIENTS DEFINED ON T*

M. TAGHAVI

Department of Mathematics, College of Sciences, Shiraz University, Shiraz, I. R. of Iran Email: taghavi@math.susc.ac.ir

Abstract – In this work we deal with the coefficients of $|A(e^{it})|^2$, where A is in a class of polynomials having Unimodular coefficients. We first present a technique that calculates lower bounds for particular autocorrelations and then in a more general case we present an upper bound for their maximal order.

Keywords - Autocorrelation, frequency, Fouier coefficient

1. INTRODUCTION

Let $A(z) = a_0 + a_1 z + \dots + a_d z^d (z \in C)$ be a polynomial of degree d with complex coefficients. The coefficients of $A^2(z)$ are called the *correlations* of A and each of the 2d+1 integers lying in the interval $\begin{bmatrix} 0,2d \end{bmatrix}$ is called a *frequency* of $A^2(e^{it})$. For $k \in \{0,1,\cdots,d\}$ define $c_k = \overline{a_0}a_k + \overline{a_1}a_{k+1} + \dots + \overline{a_{d-k}}a_d$ and set $c_{-k} = \overline{c_k}$. The 2d+1 complex numbers $c_{-d},\cdots,c_0,\cdots,c_d$ are called the *autocorrelations* of A. The frequencies of the trigonometric polynomial $A(e^{it})^2$ are those integers in the interval [-d,d].

As is mentioned in references [1] and [2], estimating the correlation and autocorrelation (in absolute value) of a polynomial with coefficients defined on the unit circle T is a useful tool in telecommunication. Most of the work was and still is to find the best upper bound at some class of frequencies and to find the lower bound at a given frequency. In [3] we used 2-stable cycle technique and estimated correlation of the Rudin-Shapiro polynomials at a particular frequency. In [4] we introduced a quite fast algorithm and calculated the autocorrelations numerically. In what follows we stay away from computers, and again present a new technique for estimating autocorrelations (in absolute value) of the Rudin-Shapiro polynomials.

Let $A(z) = a_0 + a_1 z + \cdots + a_d z^d$ and $B(z) = b_0 + b_1 z + \cdots + b_d z^d$ be polynomials such that their coefficients take only the values +1 or -1. The pair (A(z),B(z)) of polynomials is said to have *Golay condition* if

$$|A(e^{it})|^2 + |B(e^{it})|^2 = 2d + 2.$$
 (1)

In that case, the pair itself is called a *Golay polynomial pair*. Since the early 1950s Goley polynomials have been studied extensively by telecommunication engineers and their properties are provided in [5], [6] and [7]. Our main interest is on a type of Golay polynomial pair (p_n, q_n) inductively defined as follows: $(p_0, q_0) = (1,1)$ and for any integer $n \ge 1$.

$$p_n(z) = p_{n-1}(z) + z^{L_{n-1}}q_{n-1}(z), q_n(z) = p_{n-1}(z) - z^{L_{n-1}}q_{n-1}(z), (2)$$

^{*}Received by the editor March 15, 2006 and in final revised form August 13, 2007

392 M. Taghavi

where $L_n = 2^n$. They are called the Rudin-Shapiro polynomials and were introduced by H. S. Shapiro in 1951, [5]. To see if they are of Golay form, one can easily verify that.

$$p_n(z) = \varepsilon_0 + \varepsilon_1 z + \dots + \varepsilon_{L_n-1} z^{L_n-1}, \qquad q_n(z) = \delta_0 + \delta_1 z + \dots + \delta_{L_n-1} z^{L_n-1},$$

where ε_k and δ_k take only the values +1 or -1.

Lemma 1. The Rudin-Shapiro polynomials have Golay condition.

Proof: Note that for $n \ge 0$, the degree of $p_n(z)$ and $q_n(z)$ are $L_n - 1$. Since $\left|p_0\left(e^{it}\right)\right|^2 + \left|q_0\left(e^{it}\right)\right|^2 = 1 + 1 = 2 = 2 \times 0 + 2$, we conclude that $\left(p_0(z), q_0(z)\right)$ is a Golay polynomial pair. Suppose that for some $n \ge 0$, $\left(p_n(z), q_n(z)\right)$ is a Golay polynomial pair. By (2),

$$|p_{n+1}(e^{it})|^{2} = \overline{p_{n}(e^{it})} e^{itL_{n}} q_{n}(e^{it}) + (|p_{n}(e^{it})|^{2} + |q_{n}(e^{it})|^{2}) + p_{n}(e^{it}) e^{itL_{n}} q_{n}(e^{it})$$

$$= (|p_{n}(e^{it})|^{2} + |q_{n}(e^{it})|^{2}) + 2\operatorname{Re}(e^{itL_{n}} p_{n}(e^{it}) q_{n}(e^{it}))$$

and

$$|q_{n+1}(e^{it})|^{2} = -\overline{p_{n}(e^{it})} e^{itL_{n}} q_{n}(e^{it}) + (|p_{n}(e^{it})|^{2} + |q_{n}(e^{it})|^{2}) - p_{n-1}(e^{it}) e^{itL_{n}} q_{n}(e^{it})$$

$$= (|p_{n}(e^{it})|^{2} + |q_{n}(e^{it})|^{2}) - 2Re(e^{itL_{n}} p_{n-1}(e^{it}) q_{n}(e^{it})).$$

Hence, since $p_n(z)$ is of degree $L_n - 1$, by induction, we have

$$|p_{n+1}(e^{it})|^{2} + |q_{n+1}(e^{it})|^{2} = 2[|p_{n}(e^{it})|^{2} + |q_{n}(e^{it})|^{2}]$$

$$= 2[2(L_{n}-1)+2]$$

$$= 2(L_{n+1}-1)+2.$$

Thus $(p_{n+1}(z), q_{n+1}(z))$ is a Golay polynomial pair. Therefore, the Rudin-Shapiro polynomials have Golay condition. That is,

$$|p_n(e^{it})|^2 + |q_n(e^{it})|^2 = 2^{n+1}.$$
 (3)

2. A LOWER BOUND FOR AUTOCORRELATIONS

In what follows p_n and q_n are the Rudin-Shapiro polynomials and the variable z is restricted so that |z| = 1. For fixed n, the polynomial p_n is of degree $L_n - 1$ and so the frequencies of $|p_n|^2$, written $freq(|p_n|^2)$, are integers in the frequency interval $[1 - L_n, L_n - 1]$. Also, since q_n is of degree $L_n - 1$, both $freq(p_n\overline{q}_n)$ and $freq(\overline{p}_nq_n)$ are integers in $[1 - L_n, L_n - 1]$. Let α_n be one of these frequencies and $g_n \in \{|p_n|^2, p_n\overline{q}_n, \overline{p}_nq_n\}$. By the Fourier coefficient of g_n at α_n we mean the coefficient for the term z^{α_n} , or simply

$$(g_n)^{\wedge}(\alpha_n) = \frac{1}{2\pi} \int_0^{2\pi} e^{-it\alpha_n} g_n(e^{it}) dt.$$

One can easily see that in the case $g_n = |p_n|^2$, there are $2^{n+1} - 1$ Fourier coefficients of g_n , which are actually the autocorrelations of p_n . Also, due to the restriction on z (that is |z| = 1), Iranian Journal of Science & Technology, Trans. A, Volume 31, Number A4

 $(z^{Ln-m}g_n)^{\wedge}(\alpha_n) = (g_n)^{\wedge}(\alpha_n - L_{n-m})$ for every integer m. We set $(g_n)^{\wedge}(\alpha_n) = 0$ anytime α_n lies outside of the interval $[1 - L_n, L_n - 1]$.

To see the location of frequencies at which the maximum autocorrelations occur, we start to examine the $2^2 \times 2^2$ square representation of $|p_2|^2$. It is formed by four 2×2 squares where each is formed by four squares as follows:

	p_1		$\overline{q_1}$		
	$\overline{p_0}$	\overline{q}_0	$\widetilde{p_0}$	$\overline{-q}_0$	
	$\left p_0 ight ^2$	\overline{p}_0q_0	$\left p_0 ight ^2$	$-\overline{p}_0q_0$	
\overline{p}_2	$p_0\overline{q}_0$	$\left q_0 ight ^2$	$p_0\overline{q}_0$	$-\leftert q_{0} ightert ^{2}$	
	$ p_0 ^2$	\overline{p}_0q_0	$\left p_0 ight ^2$	$-\overline{p}_0q_0$	
	$-p_0\overline{q}_0$	$-ig q_0ig ^2$	$-p_0\overline{q}_0$	$\left q_0 ight ^2$	

For any $j, k \in \{1, 2, 3, 4\}$, we label value in the square located at jth row and kth column by $b_{j,k}$. In the above example, $b_{j,k} = \pm 1$ for all j and k. Although it is not our intention here, one use of this square representation is that, without calculating, we are able to write $|p_2(e^{it})|^2$ as

$$\begin{aligned} \left| p_{2} \left(e^{it} \right) \right|^{2} &= \left(b_{1,4} \right) e^{3it} + \left(b_{1,3} + b_{2,4} \right) e^{2it} + \left(b_{1,2} + b_{2,3} + b_{3,4} \right) e^{it} \\ &+ \left(b_{1,1} + b_{2,2} + b_{3,3} + b_{4,4} \right) \\ &+ \left(b_{2,1} + b_{3,2} + b_{4,3} \right) e^{-it} + \left(b_{3,1} + b_{4,2} \right) e^{-2it} + \left(b_{4,1} \right) e^{-3it} \\ &= -e^{3it} + e^{it} + 4 + e^{-it} - e^{-3it}. \end{aligned}$$

In general, one may represent $|p_n|^2$ by $2^n \times 2^n$ squares, each of which is formed by four $2^{n-1} \times 2^{n-1}$ squares and so on. The constant term of $|p_n(e^{it})|^2$ always equals 2^n and it is called the central coefficient. For the n=2 case above, the length of all non central coefficients is 1. Therefore the maximum autocorrelation of p_2 is 1, but this is not so for $n \ge 3$. By presenting the square representation of $|p_4|^2$ the same as above, we noticed that it has maximum autocorrelation of length 5, and is the coefficient of the e^{11it} term (or to say at frequency 11). In $|p_6|^2$ and $|p_8|^2$ the maxima appear respectively at frequencies 43 and 171. Writing the binary representations for 11, 43 and 171 we get 1011 (n=4), 101011 (n=6) and 10101011 (n=8). Hence we suspected that in a general case, anytime n is an even integer, the maximum would occur at 1010...1011 (n digits) and equals $\frac{1}{3}(2L_n+1)$. The square representation of $|p_n|^2$ may also be presented as

	p_{n-2}	p_{n-1} q_{n-2}	p_{n-2} q_{n-1}	-2
\overline{p}_n	$\left p_{n-2}\right ^2$	$\overline{p}_{n-2}q_{n-2}$	$\left p_{n-2}\right ^2$	$-\overline{p}_{n-2}q_{n-2}$
	$p_{n-2}\overline{q}_{n-2}$	$\left q_{n-2} ight ^2$	$p_{n-2}\overline{q}_{n-2}$	$-\left q_{n-2}\right ^2$
	$\left p_{n-2}\right ^2$	$\overline{p}_{n-2}q_{n-2}$	$\left p_{n-2}\right ^2$	$-\overline{p}_{n-2}q_{n-2}$
	$-p_{n-2}\overline{q}_{n-2}$	$-\left q_{n-2} ight ^2$	$-p_{n-2}\overline{q}_{n-2}$	$\left q_{n-2} ight ^2$

and using this square, we write $|p_n(z)|^2$ in terms of $|p_{n-2}|^2$, $|q_{n-2}|^2$, $\overline{p}_{n-2}q_{n-2}$, and $p_{n-2}\overline{q}_{n-2}$ as follows:

394 M. Taghavi

$$\begin{aligned} \left| p_{n}(z) \right|^{2} &= (b_{1,4}) z^{3L_{n-2}} + (b_{1,3} + b_{2,4}) z^{2L_{n-2}} + (b_{1,2} + b_{2,3} + b_{3,4}) z^{L_{n-2}} \\ &\quad + (b_{1,1} + b_{2,2} + b_{3,3} + b_{4,4}) \\ &\quad + (b_{2,1} + b_{3,2} + b_{4,3}) \overline{z}^{L_{n-2}} + (b_{3,1} + b_{4,2}) \overline{z}^{2L_{n-2}} + (b_{4,1}) \overline{z}^{3L_{n-2}} \\ &= -z^{3L_{n-2}} \overline{p}_{n-2} q_{n-2} + z^{2L_{n-2}} \left(\left| p_{n-2} \right|^{2} - \left| q_{n-2} \right|^{2} \right) + z^{L_{n-2}} p_{n-2} \overline{q}_{n-2} \\ &\quad + 2 \left(\left| p_{n-2} \right|^{2} + \left| q_{n-2} \right|^{2} \right) \\ &\quad + \overline{z}^{L_{n-2}} \overline{p}_{n-2} q_{n-2} + \overline{z}^{2L_{n-2}} \left(\left| p_{n-2} \right|^{2} - \left| q_{n-2} \right|^{2} \right) - \overline{z}^{3L_{n-2}} p_{n-2} \overline{q}_{n-2}, \end{aligned}$$

and therefore by Lemma 1, for |z|=1

$$|p_{n}(z)|^{2} = 2(z^{L_{n-1}} + \overline{z}^{L_{n-1}})|p_{n-2}|^{2} - (z^{3L_{n-2}} - \overline{z}^{L_{n-2}})\overline{p}_{n-2}q_{n-2} + (z^{L_{n-2}} - \overline{z}^{3L_{n-2}})p_{n-2}\overline{q}_{n-2} - L_{n-1}(z^{L_{n-1}} + \overline{z}^{L_{n-1}}) + 2^{n}.$$

Hence if k_n is a non zero frequency of $|p_n|^2$, then

Now let n be an even integer and put $k_n = \frac{1}{3}(2L_n + 1)$, which of course is in the frequency interval $[1 - L_n, L_n - 1]$. The right side of the above expression involves six different Fourier coefficients. In the first one

$$2(z^{L_{n-1}}|p_{n-2}|^2)^{\wedge}(k_n) = 2(|p_{n-2}|^2)^{\wedge}(k_n - L_{n-1}) = 2(|p_{n-2}|^2)^{\wedge}(k_{n-2}),$$

and this is because

$$k_n - L_{n-1} = \frac{1}{3}(2L_n + 1) - L_{n-1} = \frac{1}{3}2^{n+1} - 2^{n-1} + \frac{1}{3} = \frac{1}{3}[2(2^{n-2}) + 1] = k_{n-2}$$

Similarly, in the fifth term we have

$$\left(z^{3L_{n-2}}\overline{p}_{n-2}q_{n-2}\right) \wedge (k_n) = \left(\overline{p}_{n-2}q_{n-2}\right) \wedge (k_n - 3L_{n-2}) = \left(\overline{p}_{n-2}q_{n-2}\right) \wedge (k_{n-2} - L_{n-2})$$

Finally the second, third, fourth, and sixth expressions in (4) are all zero, because first of all

$$freq(|p_{n-2}|^2), freq(p_{n-2}\overline{q}_{n-2}), freq(\overline{p}_{n-2}q_{n-2}) \in [1-L_{n-2}, L_{n-2}-1]$$

and therefore non of these four terms have frequencies in this interval. So putting $k'_n = k_n - L_n$ (clearly in the frequency interval), the relation (4) reads

$$(|p_n|^2)^{\wedge} (k_n) = 2(|p_{n-2}|^2)^{\wedge} (k_{n-2}) - (\overline{p}_{n-2}q_{n-2})^{\wedge} (k'_{n-2}).$$
 (5)

Next we consider the representation for $\overline{p}_n q_n$,

	p_{n-2}	p_{n-1} q_{n-2}		2
	$\left p_{n-2}\right ^2$	$\overline{p}_{n-2}q_{n-2}$	$-\left p_{n-2}\right ^2$	$\overline{p}_{n-2}q_{n-2}$
\overline{p}_n	$p_{n-2}\overline{q}_{n-2}$	$\left q_{n-2}\right ^2$	$-p_{n-2}\overline{q}_{n-2}$	$\left q_{n-2} ight ^2$
	$\left p_{n-2}\right ^2$	$\overline{p}_{n-2}q_{n-2}$	$- p_{n-2} ^2$	$\overline{p}_{n-2}q_{n-2}$
	$-p_{n-2}\overline{q}_{n-2}$	$-\left q_{n-2}\right ^2$	$p_{n-2}\overline{q}_{n-2}$	$-\left q_{n-2}\right ^2$

which gives us

$$\begin{split} \overline{p}_{n}(z)q_{n}(z) &= \left(b_{1,4}\right)\!z^{3L_{n-2}} + \left(b_{1,3} + b_{2,4}\right)\!z^{2L_{n-2}} + \left(b_{1,2} + b_{2,3} + b_{3,4}\right)\!z^{L_{n-2}} \\ &\quad + \left(b_{1,1} + b_{2,2} + b_{3,3} + b_{4,4}\right) \\ &\quad + \left(b_{2,1} + b_{3,2} + b_{4,3}\right)\!\overline{z}^{L_{n-2}} + \left(b_{3,1} + b_{4,2}\right)\!\overline{z}^{2L_{n-2}} + \left(b_{4,1}\right)\!\overline{z}^{3L_{n-2}} \\ &= z^{3L_{n-2}}\,\overline{p}_{n-2}q_{n-2} + z^{2L_{n-2}}\Big(\big|q_{n-2}\big|^2 - \big|p_{n-2}\big|^2\Big) \\ &\quad - z^{L_{n-2}}\,p_{n-2}\,\overline{q}_{n-2} + \overline{z}^{L_{n-2}}\Big(\big|p_{n-2}\big|^2 - \big|q_{n-2}\big|^2\Big) - \overline{z}^{3L_{n-2}}\,p_{n-2}\,\overline{q}_{n-2} \\ &\quad + \overline{p}_{n-2}\,q_{n-2}\Big) + \overline{z}^{2L_{n-2}}\Big(\big|p_{n-2}\big|^2 - \big|q_{n-2}\big|^2\Big) - \overline{z}^{3L_{n-2}}\,p_{n-2}\,\overline{q}_{n-2}. \end{split}$$

In a similar fashion as obtaining (5), we calculate the Fourier coefficient of $\overline{p}_n q_n$ at the frequency k'_n and get

$$(p_{n}\overline{q}_{n})^{\wedge}(k'_{n}) = -2(|p_{n-2}|^{2})^{\wedge}(k_{n-2}) + 2(\overline{p}_{n-2}q_{n-2})^{\wedge}(k'_{n-2}) + (p_{n-2}\overline{q}_{n-2})^{\wedge}(k'_{n-2}), \tag{6}$$

on which suggests that the Fourier coefficient of $p_n \overline{q}_n$ at k'_n is also needed. From the square representation of $p_n \overline{q}_n$ we obtain

$$(p_{n}\overline{q}_{n})^{\wedge}(k'_{n}) = 2(|p_{n-2}|^{2})^{\wedge}(k_{n-2}) + 2(\overline{p}_{n-2}q_{n-2})^{\wedge}(k'_{n-2}) + (p_{n-2}\overline{q}_{n-2})^{\wedge}(k'_{n-2}). \tag{7}$$

$$\left(\left|p_{n}\right|^{2}\right)^{n}\left(k_{n}\right) = a\lambda_{1}^{\frac{n}{2}} + b\lambda_{2}^{\frac{n}{2}} + c\lambda_{3}^{\frac{n}{2}}.$$
(8)

Evaluating λ_1 and the constant a in (8), we get $|\lambda_1| = 2^{1.46}$ and a=0.42. So we have the existence of a constant B > 0 such that $|(|p_n|^2)^{\wedge}(k_n)| > B|\lambda_1|^{\frac{n}{2}}$, the existence of an absolute constant B so that

$$(|p_n|^2)^{\wedge} \left(\frac{1}{3}(2L_n+1)\right) > BL_n^{0.73}.$$
 (9)

396 M. Taghavi

If *n* is an odd integer, then we put $k_n = \frac{1}{3}(L_n + 1)$, and with similar calculations we get the same estimate.

We complete our discussion by presenting an upper bound for autocorrelations of the Rudin-Shapiro polynomials. In connection with choosing a particular frequency, it will be more general than our lower bound result.

Theorem: Suppose the f_n is $\left|p_n\right|^2$ or $\left|q_n\right|^2$, where (p_n,q_n) is the Rudin-Shapiro polynomial pair. Then

$$\max_{k \neq 0} (f_n)^{\wedge}(k) > \frac{1}{\sqrt{6}} L_n^{\frac{1}{2}}$$

Proof: By (2) we have

$$f_n(z) = \sum_{k=-(L_{n-1})}^{k=L_{n-1}} d_k z^k.$$

Clearly $d_0 = L_n$ and so

$$||f_n||_2^2 = \frac{1}{2\pi} \int_0^{2\pi} |f_n(e^{it})|^2 dt = L_n^2 + 2\sum_{k=1}^{L_{n-1}} |d_k|^2.$$
 (10)

Also, note that

$$\frac{4}{3} - \frac{1}{2L_n} < \frac{\|f_n\|_2^2}{L_n^2} < \frac{4}{3} + \frac{1}{2L_n}.$$
 (11)

This relation can easily be verified by an induction argument. Therefore (10), together with (11) imply that

$$\sum_{k=1}^{L_n-1} |d_k|^2 = \frac{1}{2} \left[\left\| f_n \right\|_2^2 - L_n^2 \right] > \frac{1}{6} L_n^2 - \frac{1}{4} L_n.$$

Thus

$$\max_{k \neq 0} (f_n) \wedge (k) = \sqrt{\max_{k \neq 0} |d_k|^2} \ge \sqrt{\frac{1}{L_n - 1} \sum_{k=1}^{L_n - 1} |d_k|^2} > \sqrt{\frac{2L_n^2 - 3L_n}{12(L_n - 1)}} > \frac{1}{\sqrt{6}} L_n^{\frac{1}{2}}.$$

REFERENCES

- 1. Barker, R. H. (1953). *Group synchronizing of binary digital system*, in "Communication Theory", London, Butterworth.
- 2. Golay, M. J. (1949). on multislit spectrometry and applications. Journal of Optical Society of America.
- 3. Taghavi, M. (1996). An estimate on the correlation coefficients of the Rudin-Shapiro polynomials. *IJST*, 20(2), 235-240.
- 4. Abdolahi, A. & Taghavi, M. (2005). Dyadic representation of the Rudin-Shapiro Coefficients with applications. J. Appl. Math. & Comp., 18(1-2), 301-310.
- 5. Shapiro, H. S. (1951). Extremal problems for polynomials and power series, Thesis, M.I.T.
- 6. Turyn, R. (1968). Sequences with small correlation, in "error correcting codes" (H. Mann editor), Wiley.
- 7. Schroeder, M. R. (1984). Number Theory in Science and Communication. Berlin Heidelberg, Springer-verlag.