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Abstract 

In Statistical quality control a very widely used measure is average run length (ARL) which may be worked out by 
different methods like integral equation, approximations, and Monte Carlo simulations. The ARL measure and the 
other related measures are of major significance in every type of production process. An omission in its 
computation (and hence its related measures such as extra quadratic loss (EQL)) may cause a loss. This 
necessitates great care in the choice of its evaluation method. This article will deal with this issue using some 
approximation methods and the Monte Carlo simulations. The discrepancies among the results will be examined to 
highlight the deficiencies of using approximation methods in quality control techniques. 
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1. Introduction 

In Statistical Process Control (SPC) we are looking 
for an efficient monitoring technique which may 
ensure stability of the parameters of interest in a 
process. These parameters may be location, scale, 
association, proportion, etc. and quality of the 
process output depends on how timely we are able 
to detect any change in the behavior of these 
process parameters. There are a number of tools 
which may be used for this purpose like Pareto 
chart, Cause and Effect diagram, Check sheet, etc. 
The kit comprising these tools is formally known as 
SPC tool-kit which is used for detecting shifts in 
process behavior in terms of its parameters.  

Monitoring of the process parameters is one key 
to enhancing the performance of the output. For this 
purpose many statistical tools are used in practice 
and control chart is one of the most popular 
choices. The most commonly used control charts 
for location and spread parameters are

, and chartsX R S , proposed by Shewhart back in 

the 1920s. There are a variety of classifications to 
define the design structure of a control chart such as 
parametric versus non-parametric, variable versus 
attributes, univariate versus multivariate, bayesian 
versus classical, simple versus ranked set sampling 
etc. In process monitoring using control charts an 
important performance measure is Average Run 
Length (ARL), along with some other useful measures 
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like standard deviation run length (SDRL), relative 
ARL (RARL), extra quadratic loss (EQL), 
performance comparison index (PCI).  The details 
about the said measures may be seen in Zhang and 
Wu (2006); Wu et al., (2009); Ou et al., (2011); Ou 
et al., (2012); Ahmad et al., (2013) and the 
references therein. 

The ARL is interpreted as the expected number of 
samples we have to wait to receive an out-of-
control signal. Now a distortion in this number 
consequently may affect other performance 
measures such as SDRL, RARL, EQL and PCI, 
which could ultimately harm the process outcomes. 
The ARL measure is mathematically defined as an 
integral which is sometimes analytically not 
solvable. In such situations different authors have 
various approaches to work out this number 
including approximations and simulations. 
Reynolds (1975); Champ and Rigdon (1991); 
Hawkins (1992); Fu et al., (2002); Schaffer and 
Kim (2007); Hanif et al., (2012) and the references 
therein may be seen for some relevant literature on 
it.   

Champ and Rigdon (1991) mentioned that 
Markov chain and integral equation approaches are 
often used to evaluate run length measures for 
control charts. They indicated that Markov chain 
approach uses discretization of the possible values 
in order to reach at the run length properties. The 
integral equation approach depends on the 
evaluation of the integral analytically or using some 
approximation methods. They noted that under 
certain conditions (such as using midpoint rule in 



 
 

IJST (2014) 38A3: 289-294                                                                                                                                                                              290 
 
their case) the two approaches lead to the sane 
approximation results. Therefore for our study 
purposes we have not included Markov chain 
approach and used the other approximation 
methods. 

In order to compute these measures like ARL, 
SDRL and the other related measures, we need to 
apply them very carefully. Any skipping or 
omission of these approximations in quality control 
applications (where we mainly deal with smaller 
sample sizes) may distort these performance 
measures. This causes loss of efficiency in the 
production processes. In this study we will consider 
the approximation methods of Menzefricke (2002) 
and the same will be evaluated here through 
extensive Monte Carlo Simulations. The 
discrepancies among the results of all different 
approaches will be highlighted in the next section. 

2. Average Run Length Evaluation using 
Different Techniques 

In Menzefricke (2002) a control chart is proposed 
for the location parameter of a normally distributed 
process using Bayesian approach. He considered 
prior uncertainty in the form of prior distribution, 
the characteristic of interest in the form of sampling 
distribution, the updated information in the form of 
posterior distribution and finally used posterior 
predictive distribution to develop the design 

structure of his proposed Bayesian X -Chart. He 
assumed that: the characteristic of interest

 2~ ,X N    where   and   are location and 

scale parameters respectively; the prior uncertainty 

of  2
0 0~ , /N m n   where 0m  is a priori 

estimate of   and 0n  is the prior sample size. This 

implies that for the current sample 1 2, ,...,
cnx x x  of 

size cn  we have: the current sample mean

 2~ , / cx N n  ; the posterior distribution

 2
0 0 0 0~ ( ) /( ), /( )c c cx N n m n x n n n n    . 

Consequently for the future sample 
1 2, ,..., ny y y  of 

size n  we have: the future sample mean

 2~ , /y N n  ; the posterior predictive distribution 

 2
0 0 0 0~ ( / ( ))( ) , ( / )(1 / ( ))c cy x N x n n n m x n n n n     .  

Based on the above mentioned setup, 
Menzefricke (2002) defined the Bayesian control 
limits (specified parameters) as 

0 0 0 0 0 1 / 2 0( /( ))( ) ( / ) 1 /( )c cn n n m Z n n n n         

using predictive distribution and calculated their 
performance with the help of the integral 

2 1 1 1

( )

(1 ( / ) ( / ))

z
dz

u n n z u n n z


    , 

where ()  denotes the standard normal density,

( )z  denotes the standard normal distribution 

function evaluated at z , 1 /2 11 /u Z n n  , 

2 1 /2 11 /u Z n n   and 1 0 cn n n  . He 

mentioned that these measures may be obtained 
using one dimensional numerical integration. He 
provided the results for mean and standard 
deviation of the in-control distribution of Run 
Length (RL) (i.e. ARL0 and SDR0) (we will refer to 
these results of Menzefricke (2002) by NI method 
in this study). An alternative he suggested in the 
form of an approximation for ARL0 is given by 

1
1 1 1 1 1[2 ( ) 1 ( ( ) / ( )))]u nu u n u     using 

Laplace’s method (we will refer to these results by 
APP approach in this study).  

The above mentioned ARL and SDRL properties 

are functions of the ratio 1/n n  and Menzefricke 

(2002) evaluated their values for certain choices of 

1/n n  using NI and APP. The same results have 

been evaluated here using Monte Carlo simulation 
approach (we will refer to these results by MCS in 
this study). The results of ARL0 and SDRL0 by the 
said approaches are given in Table 1 for different 

choices of 1/n n . For Monte Carlo simulations 

5x105 repetitions are used, which may be increased 
to improve the precision of the results further. 
Schaffer and Kim (2007) may be seen for 
discussion on the number of replications needed in 
control chart Monte Carlo simulation studies, 

The errors (in percentage terms) for different 
techniques including NI, APP and MCS are also 
reported for ARL0 and SDRL0 in Table 1. The off-
centering effect is considered almost negligible, 
however, if present it may affect the properties (see 
Riaz, 2011). The differences in ARL0 and SDRL0 
among different techniques and their corresponding 
error rates are also shown in the form of graphs 
shown in Figs. 1-3 for ease in comparison.  
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Table 1. ARL0 and SDRL0 Values for Three Methods and their Corresponding Error Rates 

 
ARLo Error Rates (%) for ARLo SDRL0 

Error Rates (%) for 
SDRL0 

n/n1 APP NI MCS 
MCS vs. NI 

(ARLo) 
MCS vs. APP 

(ARLo) 
NI vs. APP 

(ARLo) 
NI MCS MCS vs. NI (SDRL) 

0 370 370 370.16 0.043 0.043 0.000 370 369.98 0.007 
0.01 371 389 390.74 0.446 5.053 4.627 389 388.86 0.036 
0.02 373 408 408.54 0.133 8.700 8.578 407 409.68 0.655 
0.05 385 468 474.79 1.429 18.911 17.735 467 476.52 1.998 
0.1 420 576 604.89 4.776 30.566 27.083 578 597.65 3.288 
0.2 540 832 981.89 15.266 45.004 35.096 802 974.98 17.742 
0.5 1464 2242 4237.50 47.091 65.451 34.701 2925 4260.62 31.348 
1 10143 12677 45557.00 72.173 77.736 19.989 24231 44766.83 45.873 
0 370 370 370.16 0.043 0.043 0.000 370 369.98 0.007 

 

 
 

Fig. 1. ARL0 Curves for Different Techniques 
 

 
 

Fig. 3. Comparative Error Rates of ARLo and SDRL for Different Techniques 
 
 

 
 

Fig. 3. Comparative Error Rates of ARLo and SDRL for Different Techniques 
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From Table 1 and Figs. 1-3 it is advocated that: 
i) APP causes the most distortion in the results for 

all choices of 1/n n  as obvious from Table 1 and 

Fig. 1.  
ii) NI works reasonably well for smaller choices of 

1/n n  as may be seen in Table 1 and Figs. 1 and 2.  

iii) MCS offers better computations of run length 

properties for all choices of 1/n n  as apparent from 

Table 1 and Figs. 1 and 2. Note that in Figs. 1 and 2 
the gaps among different curves indicate the 
amount of computational difference among 
different techniques. 
iv) the error rates between different approaches 

keep increasing with an increase in the ratio 1/n n , 

except for NI versus APP, as can be observed from 
Table 1 and Fig. 3. 

The above points (i)-(iv) indicate that NI and APP 
methods introduce an error in the in-control run 
length properties with an increase in the ratio 

1/n n . It would eventually seriously affect the out-

of-control run length properties as well. In reality 
the behavior of the integrand does not remain 
constant over the complete range of the fraction

1/n n . This causes a varying amount of error over 

the changing values of 1/n n , especially for the 

cases where the ratio 1/n n  gets larger. It is more 

likely to come across larger values of the ratio 

1/n n  in practical situations to exploit the Bayesian 

environment in its true spirit and get more benefit 
out of prior information available (cf. Berger, 1985; 
Bernardo and Smith, 1994). Therefore, the 
application of these computational techniques needs 
attention to get better run length properties both in 
the in-control and out-of control process situations.  
The out-of-control run length study is also carried 
out by considering different amounts of shifts. The 
shifts are considered in terms of   defined as:

1 0( ) /     where 1  is shifted mean, 0
is in-control mean and  =0 implies in-control 
otherwise out-of-control. We have considered 

varying choices of 1/n n . The resulting ARL and 

SDRL outcomes are reported in Tables 2 and 3 
respectively, for n=4 as an illustration (for other 
values of n one may observe the deviance in results 
on similar lines). Table 2 contains some additional 
measures, along with ARL, for overall performance 

including RARL, EQL and PCI (where 1/n n =0 is 

used as benchmark). The results clearly indicate the 

distortion in different measures, especially for the 

larger values of 1/n n . 

3. Concluding Remarks 

In SPC we are mainly dependent on the run length 
properties to investigate the process behavior and 
its performance. Any skip in the computation of 
these properties may cause a loss in the final 
outcome of the process due to misleading run 
length results. This necessitates great care in the 
choice of the evaluation method used for exploring 
run length properties. It has been examined in this 
study that different computational/approximation 
methods depend very much on the nature of the 
function under investigation and give an under 
estimation in run length values in general due to 
omission of important terms in the evaluation of 
integral. Therefore, it is important to guard against 
these types of skips for more accurate run length 
properties in both the in-control and out-of-control 
process environments. Moreover, in case of mixture 
behaviors over the varying values of the parameter 

quantities (like 1/n n ) we may opt a merger of 

different computation methods depending upon the 
changing values of the parameter quantities.  
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Table 2. ARL Values under Varying Choices of 1
n/n 

 
 

 
Table 3. SDRL Values under Different Out-of-Control Situations 

 
 

 
 
 
 
 
 
 

 
 
 
 

      1
n/n

 


0 0.01 0.02 0.05 0.1 0.2 0.5 1 

-3 1.001 1.001 1.002 1.002 1.003 1.004 1.01 1.046 

-2.5 1.024 1.025 1.025 1.027 1.032 1.044 1.107 1.274 

-2 1.187 1.196 1.199 1.213 1.245 1.315 1.587 2.51 

-1.5 2.005 2.025 2.052 2.127 2.224 2.586 4 9.276 

-1 6.294 6.45 6.602 7.043 7.987 10.225 21.403 78.819 

-0.75 14.989 15.418 15.854 17.193 20.105 27.034 65.967 333.106 

-0.5 43.843 45.269 47.199 52.584 62.97 88.983 269.364 1705.717 

-0.25 155.011 162.205 169.193 191.093 240.807 364.441 1299.481 10252.41 

0 370.16 390.743 408.544 474.786 604.889 981.894 4237.496 45557 

0.25 155.017 161.574 168.377 191.794 240.897 365.323 1302.845 10610.8 

0.5 44.003 45.543 47.063 52.427 62.73 88.856 268.491 1728.063 

0.75 14.994 15.41 15.885 17.301 20.144 27.071 68.531 318.93 

1 6.332 6.452 6.595 7.097 7.94 9.987 21.273 78.177 

1.25 3.255 3.292 3.358 3.51 3.828 4.672 8.465 24.477 

1.5 1.999 2.027 2.046 2.12 2.259 2.609 4.029 9.438 
2 1.19 1.195 1.2 1.219 1.248 1.311 1.588 2.378 
2.5 1.024 1.023 1.026 1.027 1.035 1.046 1.097 1.287 

3 1.001 1.002 1.002 1.002 1.002 1.003 1.012 1.048 

EQL 6.561 6.677 6.803 7.193 7.980 9.949 22.588 121.974 
RARL 1.000 1.017 1.034 1.089 1.199 1.480 3.300 18.735 
PCI 1.000 1.018 1.037 1.096 1.216 1.516 3.443 18.591 

        1
n/n 

 0 0.01 0.02 0.05 0.1 0.2 0.5 1 

-3 0.036 0.035 0.042 0.04 0.058 0.067 0.099 0.21 

-2.5 0.156 0.158 0.161 0.166 0.183 0.217 0.345 0.574 

-2 0.471 0.482 0.487 0.503 0.557 0.64 0.947 1.994 

-1.5 1.418 1.437 1.464 1.545 1.654 2.038 3.418 8.575 

-1 5.786 5.933 6.064 6.535 7.56 9.556 20.879 77.524 
-0.75 14.504 14.981 15.405 16.647 19.689 26.454 65.421 329.911 
-0.5 43.28 44.763 46.355 51.996 63.928 89.505 263.555 1651.199 

-0.25 153.964 161.949 168.352 190.932 243.338 368.038 1299.975 9988.535 

0 368.475 388.86 409.684 476.521 597.651 974.98 4260.624 44766.83 

0.25 154.716 161.849 168.228 190.077 243.775 356.698 1292.028 10265.54 

0.5 43.585 44.73 46.42 52.117 62.135 87.682 265.887 1723.09 
0.75 14.492 14.913 15.477 16.723 19.891 26.418 66.717 309.07 

1 5.779 5.905 6.062 6.575 7.321 9.342 20.929 76.99 

1.25 2.702 2.733 2.807 2.967 3.246 4.164 8.168 24.31 
1.5 1.416 1.444 1.461 1.542 1.688 2.055 3.516 8.935 
2 0.475 0.481 0.49 0.516 0.569 0.641 0.966 1.725 
2.5 0.154 0.154 0.164 0.166 0.189 0.217 0.319 0.617 
3 0.037 0.039 0.04 0.043 0.044 0.056 0.112 0.232 
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